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Abstract

Background: Here we present a holistic screening of collapsing colonies from three professional apiaries in Spain.
Colonies with typical honey bee depopulation symptoms were selected for multiple possible factors to reveal the
causes of collapse.

Results: Omnipresent were Nosema ceranae and Lake Sinai Virus. Moderate prevalences were found for Black
Queen Cell Virus and trypanosomatids, whereas Deformed Wing Virus, Aphid Lethal Paralysis Virus strain Brookings
and neogregarines were rarely detected. Other viruses, Nosema apis, Acarapis woodi and Varroa destructor were not
detected. Palinologic study of pollen demonstrated that all colonies were foraging on wild vegetation. Consequently,
the pesticide residue analysis was negative for neonicotinoids. The genetic analysis of trypanosomatids GAPDH gene,
showed that there is a large genetic distance between Crithidia mellificae ATCC30254, an authenticated cell strain since
1974, and the rest of the presumed C. mellificae sequences obtained in our study or published. This means that the
latter group corresponds to a highly differentiated taxon that should be renamed accordingly.

Conclusion: The results of this study demonstrate that the drivers of colony collapse may differ between geographic
regions with different environmental conditions, or with different beekeeping and agricultural practices. The role of
other pathogens in colony collapse has to bee studied in future, especially trypanosomatids and neogregarines. Beside
their pathological effect on honey bees, classification and taxonomy of these protozoan parasites should also be clarified.
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Background
The beekeeping sector is suffering unexpected losses in
many countries to such extent that pollination services
in some cases are jeopardized. Several explanatory
‘drivers’ are known: an increasing number of pathogens,
invasive species, exposure to pesticides, reduced genetic
diversity and some apicultural practices. The driver
‘pathogens’ has received much attention, so scientists
have sought for years to find the dangerous mixture of
transmittable bee diseases. They often had to face con-
flicting data and it became increasingly clear that the
involved pathogens may vary significantly in different
regions.
* Correspondence: mhiges@jccm.es
1Bee Pathology Laboratory, Consejería de Agricultura, Gobierno de Castilla-La
Mancha, Centro Apícola Regional (CAR), Marchamalo E-19180, Spain
Full list of author information is available at the end of the article

© 2014 Cepero et al.; licensee BioMed Central
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
Dedication waiver (http://creativecommons.or
unless otherwise stated.
The early detection of Acute Bee Paralysis Virus
(ABPV) [1], Chronic Bee Paralysis Virus (CBPV) [2] and
Deformed Wing Virus (DWV) [3] in collapsing colonies
has determined the experimental design of many subse-
quent health studies. Later on, the set of target viruses
has increased: so, Kashmir Bee Virus (KBV), Black
Queen Cell Virus (BQCV) and Sacbrood Virus (SBV)
became commonly examined [4]. An unbiased micro-
biome study aimed at finding the cause of the Colony
Collapse Disorder (CCD) in the USA has extended this
‘short list’ with the Israeli Acute Paralysis Virus (IAPV)
and the microsporidian parasite Nosema ceranae [5]. Fur-
ther investigations either indicate [6,7] or confirmed
[8-11] the important role of N. ceranae in temperate
areas of the world. Very recently, the trypanosomatid
Crithidia mellificae was found to be a contributory factor
to the colony losses in Belgium [12].
Ltd. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
iginal work is properly credited. The Creative Commons Public Domain
g/publicdomain/zero/1.0/) applies to the data made available in this article,

mailto:mhiges@jccm.es
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/


Cepero et al. BMC Research Notes 2014, 7:649 Page 2 of 10
http://www.biomedcentral.com/1756-0500/7/649
The driver ‘invasive species’ refers mainly to the ecto-
parasitic mite Varroa destructor. With respect to bee mor-
tality, the Varroa-load seems to be one of the few decisive
factors who stand across the borders. In the USA, the small
hive beetle (Aethina tumida) seems to be another leading
cause of mortality in beekeeping operations [13].
Among proposed causes of bee mortality, the exposure

of bees to pesticides received much attention lately and
to such extent that the European Commission adopted a
proposal [14] to restrict the use of 3 pesticides belonging
to the neonicotinoids family (clothianidin, imidacloprid
and thiametoxam) for a two years period. However, na-
tionwide monitoring programs of honeybees’ exposure
level to these crop protection products are rather scarce.
Moreover, the real involvement of these pesticides is
controversial [15].
Although there is a general agreement that the bee

mortality problem is multifactorial [13,16], monitoring
programs or case studies that go beyond screening of
bee pathogens are rather limited. Besides, the few na-
tionwide studies or clinical studies focusing on patho-
gens in combination with pesticide residue analysis [17-19]
are restricted to the current ‘short list’ of pathogens (DWV,
ABPV,V. destructor).
Here we present a holistic screening (a case study) of

collapsing honey bee colonies from three professional
Spanish apiaries with high colony losses. Colonies with
typical depopulation were analysed for the presence of
multiple putative drivers of collapse: honey bee viruses,
Nosema spp. Varroa destructor, Acarapis woodi, trypano-
somatids, neogregarines, neonicotionoid insecticides and
foraging flora. This study could also reveal what causal
factors should be included in future Spanish monitoring
programs [20-28].

Results and discussion
The most widespread pathogens detected in the ana-
lyzed samples were N. ceranae and Lake Sinai Virus
(LSV), found in all samples (100%, 10/10). Viruses of the
ABPV complex, Acarapis woodi, Nosema apis, CBPV,
SBV, SBPV and Varroa destructor were not detected
(0%, 0/10) (Table 1).
The high prevalence (100%) of N. ceranae in the

present study confirmed earlier reports [25,29]. Its abil-
ity to evoke the collapse of honey bee colonies and to
create the symptoms described by veterinarians (see
methods), have been previously reported [10,18,20,30-34].
N. ceranae plays a controversial role in the worldwide
colony losses phenomenon [16]. While in Mediterranean
areas a direct link between this pathogen and the honeybee
losses has been reported [6,8,9,11,30,35,36], it can be ex-
cluded as main cause of losses in colder areas or continen-
tal climates [17,37-39]. Nevertheless, in Belgium it was
found that the adverse effects of this microsporidian can
be enhanced in combination with the trypanosomatid
C. mellificae [12]. In the present study, they were found in
4 samples and 2 apiaries. The three isolates studied (324,
325 and 1980) displayed several haplotypes, with variable
levels of intra-isolate diversity (Table 2). Overall, 18S rDNA
was less variable (pooled total diversity π = 0.16 ± 0.06%;
average ± SE) than GAPDH (π = 0.40 ± 0.14%) although
the difference between both loci was not statistically sig-
nificant. C. mellificae ATCC30254 also presented multiple
haplotypes at the GAPDH locus, which reflects that this
reference strain is not isogenic.
The pairwise comparison of the 18S rDNA sequences

revealed that C. mellificae ATCC30254 (KJ704242 –
KJ704251) exhibited a single mutation that was not
present either in the presumed C. mellificae sequences
deposited in GenBank (KF607064.1 and AB745488.1) or
in ours (KJ704218 – KJ707241). This single difference
between C. mellificae ATCC30254 and the rest of the se-
quences is extremely important since any nucleotide
variant in a highly conserved marker like the 18S rDNA
gene, which displays strong identity (about 99%) among
different genus (Cepero et al., submitted), suggests that
C. mellificae ATCC30254 and our sequences (which
are mostly identical to KF607064.1 and AB745488.1;
Additional file 1: Table S1) might represent genetically
isolated organisms.
The analysis of the genetic distances between GAPDH

sequences showed that C. mellificae ATCC30254
(KJ704273 – KJ704282) displayed a 6.89 ± 1.32% diver-
gence with respect to the rest of the sequences, that
included both the presumed C. mellificae sequences
deposited in GenBank (AB716357.1, AB745489.1 and
JF423199.1) and ours (KJ704252 – KJ704272), which,
again, were in a large fraction identical to AB716357.1
and AB745489.1 (Additional file 2: Table S2). However,
this finding is even more surprising if we bear in mind
that total divergence estimates, as those calculated here,
underestimate the neutral genetic distance between se-
quences (as replacement sites account for nearly 75% of
the coding sequence and their evolutionary rate is se-
verely limited by purifying selection). Consequently, to
obtain more reliable estimates of divergence we per-
formed pairwise comparisons at synonymous sites, which
are considered neutral or nearly neutral. The outcome of
this analysis is that there is a large genetic distance
(23.47 ± 5.48%, Table 3) between C. mellificae ATCC30254,
an authenticated cell strain since 1974, and the rest of the
presumed C. mellificae sequences. This means that the
latter group corresponds to a highly differentiated taxon
that should be renamed accordingly. It is also worth not-
ing the dispersal of Crithidia sp. sequences all over the tree
(Figure 1), which questions their current taxonomic classi-
fication. In line with this, highly divergent C. mellificae
lineages were previously mentioned [40].



Table 1 Results of the honey bee pathogen (viruses, parasites) screening and pollen analyses (pesticide residue; palynology) on samples from collapsing
colonies in Spain

Sample information Viruses Parasites

Sample ID Apiary Location BQCV DWV LSV ALPV V. destructor A. woodi Trypanosomatids Neogregarines N. apis N. ceranae

55 1 Guadalajara 0 0 1 0 0 0 0 0 0 1

56 1 Guadalajara 0 0 1 0 0 0 0 0 0 1

57 1 Guadalajara 0 0 1 0 0 0 0 0 0 1

58 1 Guadalajara 1 0 1 0 0 0 0 0 0 1

59 1 Guadalajara 1 0 1 0 0 0 0 0 0 1

1980 2 Vizcaya 1 1 1 1 0 0 1 0 0 1

324 3 Murcia 1 0 1 0 0 0 1 1 0 1

325 3 Murcia 1 0 1 1 0 0 1 0 0 1

328 3 Murcia 0 0 1 0 0 0 1 0 0 1

329 3 Murcia 0 0 1 0 0 0 0 0 0 1

Sample information Pesticide Palinology

Sample ID Apiary Location Dinotefuran Nitenpyram Thiametoxan Clothianidin Imidacloprid Acetamiprid Thiacloprid Plant genus Source

55 1 Guadalajara 0 0 0 0 0 0 0 Thymus, Raphanus, Rosmarinus,
Salix, Brassica, Dorycnium

Wild spp.

56 1 Guadalajara 0 0 0 0 0 0 0 Thymus, Raphanus, Rosmarinus,
Salix, Brassica, Dorycnium

Wild spp.

57 1 Guadalajara 0 0 0 0 0 0 0 Thymus, Raphanus, Rosmarinus,
Salix, Brassica, Dorycnium

Wild spp.

58 1 Guadalajara 0 0 0 0 0 0 0 Thymus, Raphanus, Rosmarinus,
Salix, Brassica, Dorycnium

Wild spp.

59 1 Guadalajara 0 0 0 0 0 0 0 Thymus, Raphanus, Rosmarinus,
Salix, Brassica, Dorycnium

Wild spp.

1980 2 Vizcaya 0 0 0 0 0 0 0 Helianthemum, Raphanus, Rosmarinus Wild spp.

324 3 Murcia 0 0 0 0 0 0 0 Thymus, Cistus, Salix, Lavandula Wild spp.

325 3 Murcia 0 0 0 0 0 0 0 Thymus, Cistus, Salix, Lavandula Wild spp.

328 3 Murcia 0 0 0 0 0 0 0 Thymus, Cistus, Salix, Lavandula Wild spp.

329 3 Murcia 0 0 0 0 0 0 0 Thymus, Cistus, Salix, Lavandula Wild spp.

0 = not detected; 1 = detected.
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Table 2 Estimates of Trypanosomatid diversity at all sites
(π) expressed as percentage

Isolate 18S rDNA GAPDH

Average π SE Average π SE

ATCC30254 0.00 0.00 0.68 0.23

324 0.06 0.06 0.86 0.35

325 0.30 0.11 0.29 0.11

1980 0.08 0.08 0.39 0.16

Pooled 0.16 0.06 0.40 0.14

SE standard error, calculated by a bootstrap procedure (3000 replicates)
with MEGA5.

Cepero et al. BMC Research Notes 2014, 7:649 Page 4 of 10
http://www.biomedcentral.com/1756-0500/7/649
An unbiased metagenomic study in a Spanish non-
professional apiary with collapsing colonies revealed the
presence of several viruses, among which LSV complex
and ALPV strain Brookings [41]. In this study, the
former was present in all samples, and the latter in only
a few (20%, 2/10). Sequencing of the LSV amplicons
revealed that the strains from apiary 1 and 2 were almost
identical (Genbank: KJ561228, KJ561229), but had a
low resemblance to the strain from apiary 3 (Genbank:
KJ561227). This strain has a high amino acid similarity
(89%) with the Orf1 of LSV strain Navarra (Genbank:
AGF84788). So, different LSV strains are present in
Spain similar to the situation in Belgium [12] and the
USA [40,42]. The pathogenic implications of LSV in
honey bee health status are under discussion. Cornman
et al. [40] suggested a potential association between LSV
and CCD colonies, although this observation was not
found in a Belgian bee health screening [12]. In our work,
LSV represents the most abundant virus in the analyzed
Table 3 Pairwise estimates of synonymous substitutions per s

1 2 3 4 5 6

1

2 0

3 0 0

4 1.58 1.58 1.58

5 0 0 0 1.58

6 1.60 1.60 1.60 0 1.60

7 0 0 0 1.58 0 1.60

8 1.58 1.58 1.58 0 1.58 0 1

9 0 0 0 1.58 0 1.60

10 1.60 1.60 1.60 0 1.60 0 1

11 24.66 24.66 24.66 26.77 24.66 26.30 24

12 21.80 21.80 21.80 23.83 21.80 23.36 21

13 23.21 23.21 23.21 25.29 23.21 24.81 23

14 23.21 23.21 23.21 25.29 23.21 24.81 23

1: AB745489.1, 2: AB716357.1, 3: JF423199.1, 4: KJ704252 – 3, 5: KJ704254, 6: KJ704255, 7
KJ704273, KJ704275, 12: KJ704274, KJ704281 – 82, 13: KJ704276 – 77, KJ704279, 14: KJ70
All positions containing gaps and missing data were eliminated. Comparisons involving A
samples collected during spring and summer. For these
reason, the importance of LSV and the pathogenicity of
different LSV strains should be further investigated.
Black Queen Cell Virus (BQCV) was found in 50%

of samples (5/10) and in all apiaries. This result corre-
sponds with those obtained before [24]. Aphid Lethal
Paralysis Virus (ALPV) strain Brookings was found in
20% of samples (2/10) in two apiaries. The amino acid
sequences were identical (>98%) to those detected previ-
ously in Belgium [12], Spain [41] and the USA [42]
(Genbank: AGU62863, AGF84786, AEH26191). Curiously,
Deformed Wing Virus (DWV) was only detected in one
sample in one apiary, and this might be related to the low
prevalence of V. destructor in the analyzed samples and
therefore apiaries.
Neogregarines were detected in one sample. Direct

sequencing indicated an infection by Apicystis bombi.
However, the presence of overlapping peaks at par-
ticular points of the electropherograms suggested a
potential mixture of templates, which was further in-
vestigated by cloning and sequencing. This process
yielded sequences from another Apicomplexan para-
site (99% identity with Eimeriidae or Cryptosporidiidae in
Blastn), which was co-infecting the colony with A. bombi
(whose presence was only confirmed by direct sequencing).
Although A. bombi was thought to be mainly a bumble-
bee parasite [43,44], there are increasing findings of that
parasite in honey bees [45-47] since a molecular detec-
tion method became available [44]. Nevertheless, the
amplification of other parasites with the same primers
should be taken into account to avoid misdiagnosis in
future studies.
ynonymous site between GAPDH sequences

7 8 9 10 11 12 13 14

.58

0 1.58

.60 0 1.60

.66 26.77 24.66 26.30

.80 23.83 21.80 23.36 3.23

.21 25.29 23.21 24.81 4.34 1.06

.21 25.29 23.21 24.81 1.06 2.14 3.23

: KJ704256 – 63, 8: KJ704264, 9: KJ704265 – 69, KJ704271 – 72,10: KJ704270, 11:
4278, KJ704280. Analyses were conducted in MEGA5 using the Nei-Gojobori model.
TCC30254 and presumed C. mellificae sequences are highlighted in bold.



Figure 1 Map of Spain. Provinces of origin of the samples. In the north, Vizcaya. In the central area, Guadalajara. In the southeast, Murcia.
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Palinological analyses confirmed that the honeybees
foraged on wild plants. As a consequence, no neonicotinoid
residues in stored pollen were detected. Although these
pesticides exhibited severe acute and sublethal effects on
bees [48-50], their role as sole cause of colony loss is still
not clear [13,51]. Indeed, most published data have shown
that acaricides, herbicides or other insecticide molecules,
were more prevalent than neonicotinoids or phenilpira-
zoles in hives [22,23,52-55]. Our results confirm that
neonicotinoids are not the only cause capable of causing
the colony collapse of honey bee colonies.
Conclusion
Many predictive markers and drivers have been suggested
for honey bee colony collapses [5,13,56,57]. The collapses
of honey bee colonies in our study were not related with
the presence of neonicotinoids or V. destructor. Instead, N.
ceranae seems to be the main culprit of the colony losses in
this study as already suggested in previous investigations
[20,30]. The role of other pathogens in colony collapse has
to be studied in future, especially trypanosomatids and
neogregarines. Beside their pathological effect on honey
bees, classification and taxonomy of these protozoans also
should be clarified. The results of this study clearly demon-
strate that the drivers of colony collapse may differ between
different geographic regions (see 16, 40).

Methods
Samples were collected from three professional apiaries
each located in a different region of Spain, all under
different climatic and environmental conditions (Figure 2).
The veterinarians responsible for these apiaries contacted
the Centro Apícola Regional (CAR) pathology laboratory,
because of alarming symptoms like depopulation and
unusually high colony losses.

Apiaries
Apiary 1: It is located in the Center of Spain in the prov-
ince of Guadalajara and consisted of 400 bee colonies
wintered in 2012, distributed in five apiaries all sited in
the same province. In early spring 2013, 70% of the col-
onies had collapsed, with clear symptoms of depopulation
such as disappearance of adult bees and unattended
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brood. Chalkbrood and foulbrood were not reported
by the responsible veterinarian. The 30% of surviving
colonies in early spring had a small adult bee population
and low vitality. To perform the analysis, 25 weak surviv-
ing bee colonies were sampled (worker bees and pollen) in
August 2013.
Apiary 2 2: It is located in the province of Vizcaya,

Northern Spain. In winter 2012, it had 300 bee colonies
distributed in 3 apiaries very closed each other. In early
spring 2013, all colonies showed clear signs of depopulation
and imminent risk of collapse. The responsible veterinarian
has not reported other disease symptoms, although the bee
colonies showed a very marked lack of vitality. For analysis,
ten collapsing colonies were sampled (worker bees and
pollen) in August 2013.
Apiary 3: It is located in the Southeast of Spain, in the

province of Murcia. This apiary wintered 175 bee colonies
distributed in 4 apiaries in 2011 and the 90% of them had
collapsed in early spring 2012. For the analysis, 16 weak
surviving colonies were sampled (worker bees and pollen)
in May 2012.

Honey bee sampling
Samples of worker honey bees (n = 100 worker bees) and
stored pollen, were collected from the brood chamber
by the veterinarians in charge and sent to the CAR bee
Pathology Laboratory in spring (samples from Vizcaya and
Murcia) o early summer (samples from Guadalajara). Sam-
ples from the apiary 1 (n = 25; five per apiary) were pooled
together to obtain five pooled samples of five colonies each,
one pool sample per apiary. Samples from apiary 2 (n = 10)
were pooled into a single sample. Samples for apiary
3 (n = 16; four per apiary) were processed as the first
apiary so there were four pooled samples from four
colonies each (one pooled sample per apiary).

Varroa destructor detection
The presence of V. destructor in worker honey bee sam-
ples were analyzed as described previously [19,20].

DNA and RNA extraction
All bee samples were macerated in AL buffer 50%
(Qiagen) as previously described [24] using sterile bags
with filter. Resulting pellets were used for DNA extraction
and supernatants for RNA extraction. They were frozen
at −80°C until extraction of the nucleic acids.
For DNA extraction, the pellet was resuspended in 3 ml

sterile water and 400 μl was transferred into a 96-well plate
(Qiagen) with glass beads (2 mm diameter, Sigma). Samples
were then processed as previously described [25]. Briefly,
the plates were shaken for 6 min at 30 Hz. Afterwards,
150 μL of each sample was transferred to a Deepwell plate
(Eppendorf) with 30 μl of ATL buffer (Qiagen) and 20 μl of
Proteinase K (Qiagen). After overnight incubation at 56°C,
DNA was extracted using the BS96 DNA Tissue extraction
protocol in a BioSprint machine (Qiagen). Plates were
stored at −20°C until use.
RNA was extracted from the supernatant using the

DNeasy Blood & Tissue kit (Qiagen), according to the
manufacturer’s instructions for RNA isolation. Briefly,
200 μl PBS and 1 μl carrier RNA were added to 220 μl
of the resulting supernatants. After 10 min incubation at
56°C, 230 μl ethanol was added. Subsequent to binding
and washing, RNA elution was accomplished with 50 μl
nuclease-free water.
The C. mellificae reference strain ATCC30254 was

included in the analysis for sequence comparison with field
isolates. This strain was first cultivated as recommended in
ATCC medium 355. Further sub-cultivation was performed
in Brain Heart Infusion (BHI) medium as described by
Popp and Lattorf [58]. Visible and isolated colonies were
taken and resuspended in milliQ water (PCR-quality) and
the processed for DNA extraction as above described.

PCR and MLPA analysis
A broad pathogen screening of the honeybee samples was
performed using published PCR assays for Acarapis spp.
mites [27], Nosema apis and N. ceranae [25], trypanosoma-
tids and neogregarines [44]. Given that the 18S rDNA gene
alone is unsuitable to classify trypanosomatid/s infecting
honeybee colonies (Cepero et al., submitted), these were
also amplified at the GAPDH locus using CrGD-1 F
(5′ GGTCGCCGTGGTGGAC 3′) and CrGD-1R (5′ CGT
CGCCGTGTAGGAGTGA 3′). Since these oligos did not
produce an amplicon from ATCC30254, this strain was
PCR-amplified with Tryp-1 F (5′ CCGAGTACTTCKC
STACCAG 3′) and Tryp-1R (5′ AGCCGAGGATGCC
CTTCAT 3′), a set of primers that should amplify most
Crithidia and Leptomonas species published in GenBank
to date. As template, we used 5 μl DNA in each reaction.
For virus analysis, the BeeDoctor test, a ‘multiplex-

ligation probe dependent amplification’ (MLPA) based
method capable of detecting CBPV, DWV-complex,
ABPV-complex, BQCV, SBPV and SBV, was performed
as described before [59], starting from 3 μl RNA. The
amplified MLPA products were analyzed using 4% high
resolution agarose gel electrophoresis.
In addition, we performed additional RT-PCR analyses

for few viruses. Using random hexamer primers, 500 ng
RNA was retro-transcribed with the RevertAid H Minus
First Strand cDNA Synthesis Kit (Thermo Scientific). For
ALPV strain Brookings and LSV complex detection, we
used 1 μl cDNA template in the PCR test described by
Runckel et al., [42] and Ravoet et al. [12] respectively.

Sequencing and cloning
Positive samples of ALPV strain Brookings, LSV complex,
trypanosomatids and neogregarines were re-analyzed using



Crithidia mellificae ATCC30254

EU076606.1 Crithidia abscondita isolate 127AL

GU321193.1 Crithidia expoeki clone BJ08.175  ,

DQ019001.1 Leptomonas podlipaevi isolate 4-5

DQ019000.1 Leptomonas podlipaevi isolate 5-10-2

EU076604.1 Leptomonas cf. podlipaevi isolate 59LI

EU076603.1 Leptomonas jaderae isolate 34EC

DQ910927.1 Leptomonas neopamerae isolate 73 BR

JN036651.1 Leptomonas pyrrhocoris strain H10

AY029072.1 Leptomonas pyrrhocoris

GU321192.1 Crithidia bombi clone BJ08.85

JN036652.1 Leptomonas scantii strain F221

AF047495.1 Leptomonas seymouri

AF053738.1 Leptomonas seymouri

Presumed Crithidia mellificae

EF546793.1 Leptomonas sp. P

AF053739.1 Crithidia fasciculata

AF053740.1 Crithidia luciliae

AF047493.1 Crithidia fasciculata

JF717835.1 Crithidia brachyflagelli isolate 340VL

EF546787.1 Leptomonas tarcoles

DQ910926.1 Leptomonas acus

JF717833.1 Leptomonas spiculata isolate 332MV

JF717832.1 Crithidia confusa isolate 320AR

EF546792.1 Crithidia deanei

DQ910928.1 Leptomonas bifurcata isolate 53CR

JF717831.1 Crithidia insperata isolate 316AR

EU076605.1 Crithidia insperata isolate 119YS

JF717834.1 Leptomonas tenua isolate 337VL

AF320820.1 Leptomonas sp. Cfm

EU076607.1 Crithidia permixta isolate 128SI

AF322390.1 Leptomonas peterhoffi

AF375664.1 Leptomonas sp. F2

AF322391.1 Blastocrithidia gerricola

AF316620.1 Wallaceina brevicula

AF339451.1 Leptomonas sp. Nfm

EU076608.1 Wallaceina inconstans isolate ZK

EU084896.1 Blastocrithidia miridarum clone 1

EU084897.1 Blastocrithidia miridarum clone 2

FJ968529.1 Leptomonas sp. VY-2009a

DQ383650.1 Leptomonas costaricensis strain 15EC

Leishmania sp.

EU084899.1 Leptomonas collosoma clone 2

EU084898.1 Leptomonas collosoma clone 1

HQ263666.1 Trypanosomatidae sp. LW-2010b Dtris

EU079135.1 Crithidia oncopelti strain ATCC 12982

EU079134.1 Crithidia oncopelti strain ATCC 12982

HM593018.1 Strigomonas galati isolate TCC219

EU079137.1 Blastocrithidia culicis strain ATCC 30268

EU079136.1 Blastocrithidia culicis strain ATCC 30268

Trypanosoma sp.

JQ359740.1 Herpetomonas sp. TCB-2012e isolate TCC1982

JQ359739.1 Leptomonas mirabilis isolate TCC301E

JQ359736.1 Herpetomonas sp. TCB-2012c isolate TCC1444

JQ359737.1 Herpetomonas sp. TCB-2012c isolate TCC1943

JQ359738.1 Leptomonas costoris isolate TCC019E

HQ263664.1 Trypanosomatidae sp. LW-2010a Dmel
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Figure 2 (See legend on next page.)
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(See figure on previous page.)
Figure 2 Phylogenetic analysis of GAPDH sequences of trypanosomatids. The tree was constructed using the Maximum Likelihood method
(based on the General Time Reversible model, assuming a Gamma distribution and allowing some sites to be evolutionarily invariable). Bootstrap
values (500 replicates) are shown next to the branches. Codon positions included were 1st + 2nd + 3rd + Noncoding. All positions containing
gaps and missing data were eliminated. The clade of presumed Crithidia mellificae sequences, both from GenBank (AB745489.1, AB716357.1,
JF423199.1) and from this work (KJ704252- KJ704272), was compressed for ease of visualisation and is displayed in bold. The same was done for
C. mellificae ATCC30254 sequences (KJ704273 – KJ704282).
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the HotStar HiFidelity Polymerase Kit (Qiagen) (viruses) or
the Expand High FidelityPLUS PCR System (Roche Diagnos-
tics) (protozoans).
Protozoan amplicons were cloned using the Topo TA

Cloning Kit (Invitrogen) after purification with the
QIAquick PCR Purification Kit (Qiagen). Plasmids were
purified using the QIAprep Spin Miniprep Kit (QIAgen).
Both strands were sequenced with M13 primers on an
automated ABI3730XL sequencer using Big Dye (Applied
Biosystems). ALPV strain Brookings and LSV complex
amplicons were bidirectional sequenced on an ABI3130XL
with gene-specific primers.
Sequences were checked for accurate base calling

using CodonCode Aligner (CodonCode Corporation) and
their identity verified by means of a nucleotide BLAST.
Alignments were manually edited with BioEdit [60] and
submitted to GenBank (KJ704218 – KJ704282).
Estimates of overall and pairwise nucleotide diversity

were obtained with MEGA v.5.05 [61]. These were mea-
sured as π, applying the Jukes and Cantor (JC) correction
[62], and their standard error (SE) calculated by a bootstrap
procedure (3000 replicates). This software was also used to
construct a maximum likelihood phylogeny under the
GTR + G + I model (General Time Reversible + Gamma
distributed + Invariable sites) that was selected as best
model by applying the Akaike information criterion (AIC),
as implemented in MEGA. The reliability of the tree
topology was tested by bootstrap support (500 replicates).

Pollen sampling
In order to obtain a representative pollen samples from
each colony, stored pollen (3 squares of approximately
10 × 10 cm each) collected from the brood chamber combs
were extracted aseptically from five colonies of each apiary
[20,22]. Each pollen sample was divided in two aliquots.
One aliquot of 100 g was used for neonicotinoid screening,
while the other aliquot of 5–10 g was used for palinological
analysis. Samples were stored at −20°C until further use.

Neonicotinoids analysis
Seven neonicotinoid insecticides (acetamiprid, clothianidin,
dinotefuran, imidacloprid, nitenpyram, thiacloprid, and
thiamethoxam) were analyzed pollen with a previous
methodology developed by Yáñez et al. [63]. It should be
mentioned that the equipment, methods and reagents were
the same than the described in this previous research. The
sample treatment consisted of a solid–liquid extraction of
the neonicotinoids from pollen with dichloromethane,
followed by evaporation and reconstitution. Briefly, 2 g
pollen sample and 10 mL of dichloromethane were trans-
ferred to a centrifuge tube. The mixture was mechanically
shaken for 10 min at 800 oscillations per minute in a
Vibromatic and then centrifuged for 10 min at 25°C and
10,400 × g. Following this, the supernatant was collected,
filtered through paper filter, transferred to a 25-mL conical
flask, and then evaporated until dry in a rotary evaporator
at 40°C. The dry extract was reconstituted with 1 mL of a
water and acetonitrile mixture (50:50, v/v) and the resulting
solution was passed through a syringe filter, after which a
15-μL aliquot was injected into a liquid chromatograph
(LC) coupled to an electrospray ionization mass
spectrometry detector (ESI-MS). Once the neonicoti-
noids were extracted, they were determined using an
optimized LC-ESI-MS method, which was validated in
terms of selectivity, linearity, precision and recovery. The
limits of detection (LOD) and quantification (LOQ) were
0.4–2.8 μg/kg and 1.2–9.1 μg/kg, respectively, and the ex-
traction recoveries were between 86 and 106% in all cases.
Palinological analysis
The palinological analysis was performed as described
previously [20,22]. Briefly, pollen grains were isolated from
each sample and cleaned up by the Erdtman method [64].
Species identification was performed using a photographic
atlas [65,66] and the pollen slides reference collection at the
CAR. Briefly, pollen were extracted by diluting 0.5 g in
10 ml of acidulated water (0.5% sulphuric acid) and then
centrifuged at 2,500 rpm for 15 min. The pellet was washed
with double-distilled (dd) water, centrifuged and resus-
pended in ddH2O. 200 μl of this suspension was placed
onto a glycerin jelly slide and examined microscopically in
order to identify the pollen.
Ethics statement
In Europe, the EU Directive 2010/63/EU on the protection
of animals used for scientific purposes laid the down the
ethical framework for the use of animals in scientific experi-
ments. The scope of this directive also includes specific
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according to European legislation no specific permits were
required for the described studies.
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