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ARTICLE

Polygenic Risk Scores for Prediction of Breast Cancer
and Breast Cancer Subtypes

Nasim Mavaddat,1,* Kyriaki Michailidou,1,2 Joe Dennis,1 Michael Lush,1 Laura Fachal,3 Andrew Lee,1

Jonathan P. Tyrer,3 Ting-Huei Chen,4 Qin Wang,1 Manjeet K. Bolla,1 Xin Yang,1 Muriel A. Adank,5
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Daniele Campa,19,47 Brian D. Carter,48 Jose E. Castelao,49 Stephen J. Chanock,6 Rowan Chlebowski,50

Hans Christiansen,27 Christine L. Clarke,51 J. Margriet Collée,52 Emilie Cordina-Duverger,53

Sten Cornelissen,54 Fergus J. Couch,55 Angela Cox,40 Simon S. Cross,56 Kamila Czene,57

(Author list continued on next page)

Stratification of women according to their risk of breast cancer based on polygenic risk scores (PRSs) could improve screening and pre-

vention strategies. Our aimwas to develop PRSs, optimized for prediction of estrogen receptor (ER)-specific disease, from the largest avail-

able genome-wide association dataset and to empirically validate the PRSs in prospective studies. The development dataset comprised

94,075 case subjects and 75,017 control subjects of European ancestry from 69 studies, divided into training and validation sets. Samples

were genotyped using genome-wide arrays, and single-nucleotide polymorphisms (SNPs) were selected by stepwise regression or lasso

penalized regression. The best performing PRSs were validated in an independent test set comprising 11,428 case subjects and 18,323

control subjects from 10 prospective studies and 190,040 women from UK Biobank (3,215 incident breast cancers). For the best PRSs

(313 SNPs), the odds ratio for overall disease per 1 standard deviation in ten prospective studies was 1.61 (95%CI: 1.57–1.65) with

area under receiver-operator curve (AUC) ¼ 0.630 (95%CI: 0.628–0.651). The lifetime risk of overall breast cancer in the top centile

of the PRSs was 32.6%. Compared with women in the middle quintile, those in the highest 1% of risk had 4.37- and 2.78-fold risks,

and those in the lowest 1% of risk had 0.16- and 0.27-fold risks, of developing ER-positive and ER-negative disease, respectively. Good-

ness-of-fit tests indicated that this PRS was well calibrated and predicts disease risk accurately in the tails of the distribution. This PRS is a

powerful and reliable predictor of breast cancer risk that may improve breast cancer prevention programs.
Introduction

Breast cancer is themost common cancer diagnosed among
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breast cancer, these account for only a small proportion

of breast cancer cases in the general population. Multiple

common breast cancer susceptibility variants discovered
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summarized as a polygenic risk score (PRS), can be substan-

tial.3–5 Such genomic profiles can be used to stratify women

according to their risk of developing breast cancer.6 This in

turn holds the promise of improved breast cancer preven-

tion and survival, by targeting screening or other preventa-

tive strategies at those womenmost likely to benefit.
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phisms (SNPs) and reported levels of risk stratification

achieved by this PRS.7 Based on our findings, several

studies have investigated the potential for combining

PRSs and other known risk factors for risk stratification

and evaluated the impact of risk reduction strategies across

risk strata defined by the PRS.8–10 Preliminary studies

investigating the use of the PRS to inform targeted breast

cancer screening programs are underway (see CORDIS
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linical Trials Unit, Faculty of Medicine, University of Southampton, South-

, University of Southampton, Southampton SO17 6YD, UK; 65School of Life

an Genetics, University Hospital Erlangen, Friedrich-Alexander University

91054, Germany; 67Channing Division of Network Medicine, Department

, MA 02115, USA; 68Department of Epidemiology, Harvard TH Chan School

gy, Clinical Sciences, Lund University, Lund 222 42, Sweden; 70Institute for

04107, Germany; 71LIFE - Leipzig Research Centre for Civilization Diseases,

nomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine

entre, Manchester M13 9WL, UK; 73North West Genomic Laboratory Hub,

versity NHS Foundation Trust, Manchester Academic Health Science Centre,

Medicine Division of Hematology and Oncology, University of California at

lth Sciences and Informatics, The University of Edinburgh Medical School,

EH4 2XR, UK; 77The Breast Cancer Now Toby Robins Research Centre, The

gery, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev

r Research Center (DKFZ), Heidelberg 69120, Germany; 80Center for Primary

02, Sweden; 81School of Public Health, Curtin University, Perth, WA 6102,

(Affiliations continued on next page)

019



Milena Jakimovska,111 Anna Jakubowska,94,112 Wolfgang Janni,113 Esther M. John,114 Nichola Johnson,77

Michael E. Jones,115 Arja Jukkola-Vuorinen,116 Audrey Jung,19 Rudolf Kaaks,19 Katarzyna Kaczmarek,94

Vesa Kataja,18,117 Renske Keeman,54 Michael J. Kerin,118 Elza Khusnutdinova,23,89 Johanna I. Kiiski,119

Julia A. Knight,120,121 Yon-Dschun Ko,122 Veli-Matti Kosma,18,123,124 Stella Koutros,6
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Christopher Scott,105 Rodney J. Scott,167,168,169 Caroline Seynaeve,107 Mitul Shah,3 Mark E. Sherman,170

(Author list continued on next page)
Here, we used data from 79 studies conducted by the

Breast Cancer Association Consortium (BCAC) to optimize

PRSs for overall and subtype-specific disease, and we vali-

date their performance in independent datasets.1,13–15
Material and Methods

Study Subjects and Genotyping
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of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Cen
136Unit ofMedical Genetics, Department of Medical Oncology and Hematology
137Department of Clinical Science and Education, Södersjukhuset, Karolinska
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of European ancestry from 69 studies in the BCAC (Tables S1

and S2). Data collection for individual studies is described

previously.1 Samples were genotyped using one of two arrays:

iCOGS13,14 and OncoArray.1,15 The dataset was divided into a

training and validation set. The validation set was randomly

selected (approximately 10% of case and control subjects) from

studies that had been genotyped with the OncoArray, after

excluding studies of bilateral breast cancer, studies or sub-studies

oversampling for family history, and individuals with in situ can-

cers or case subjects with unknown ER status.

The best PRSs were evaluated in an independent test dataset

comprising 11,428 invasive breast cancer-affected case subjects
ter, Vanderbilt University School of Medicine, Nashville, TN 37232, USA;

, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Milan 20133, Italy;

Institutet, Stockholm 118 83, Sweden; 138Department of Oncology, Söders-
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and 18,323 control subjects from ten studies nested within pro-

spective cohorts, all genotyped using the OncoArray (Tables S3

and S4). The overall breast cancer PRS was also evaluated among

190,040 women of European ancestry from the UK Biobank

cohort who had not had any cancer diagnosis or mastectomy prior

to recruitment. A total of 3,215 incident registry-confirmed inva-

sive breast cancers developed over 1,381,019 person years of

prospective follow-up. Follow-up started 6 months after age of

baseline questionnaire. The primary endpoint was invasive breast

cancer. Follow-up was censored at the earliest of: risk-reducing

mastectomy, diagnosis of any type of cancer, death, or January

15, 2017.

Genotype calling, quality control, and imputation for iCOGS

and OncoArray were performed as previously described.1,14

Briefly, imputation was performed for the iCOGS and

OncoArray datasets separately using the Phase 3 (October

2014) release of the 1000 Genomes data as reference.16 We fol-

lowed a two-stage approach using SHAPEIT for phasing17 and

IMPUTE2 for the imputation.15 Where samples were genotyped

with iCOGS and OncoArray, the OncoArray calling was used.

SNPs with MAF > 0.01 and imputation r2 > 0.9 for OncoArray

and r2 > 0.3 for iCOGS were included in this analysis

(�7 million SNPs); a higher threshold was imposed for

OncoArray to ensure accurate determination of the PRS in the

validation and test datasets.

UK Biobank samples were genotyped using Affymetrix UK

BiLEVE Axiom array and Affymetrix UK Biobank Axiom array

and imputed to the combined 1000 Genomes Project v.3 and

UK10K reference panels using SHAPEIT3 and IMPUTE3.18 The

lowest imputation info score for the SNPs used in these analyses
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The Am
was 0.86. Samples were included on the basis of female sex

(genetic and self-reported) and ethnicity filter (Europeans/White

British ancestry subset). Duplicates, individuals with high degree

of relatedness (>10 relatives), and one of each related pair of first

degree relatives were removed. Samples were also excluded using

standard quality control criteria.

Participants provided written informed consent, all studies

were approved by the relevant ethics committees, and procedures

followed were in accordance with the ethical standards of these

committees.
Statistical Analysis
The general aim was to derive a PRS of the form:

PRS ¼ b1x1 þ b2x2 þ.þ bkxk.þ bnxn

where bk is the per-allele log odds ratio (OR) for breast cancer

associated with SNP k, xk is the allele dosage for SNP k, and n is

the total number of SNPs included in the PRS. Previous analyses

found no evidence for statistically significant interactions between

SNPs19,20 and little evidence for departures from a log-additive

model for individual SNPs. Assuming this is true in general,

the PRS summarizes efficiently the combined effects of SNPs on

disease risk.

The main challenge is how to determine which SNPs to include

and the weighting parameters bk to assign. Inclusion of only those

SNPs reaching a stringent significance threshold (‘‘genome-wide

significant,’’ p < 5 3 10�8) threshold ignores information from

larger numbers of SNPs that are likely, but not certain, to be

associated with the risk of breast cancer. We used two general
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approaches for model selection: ‘‘hard-thresholding,’’ based on a

stepwise regression model that retained SNPs significantly associ-

ated with overall or subtype-specific disease at a given threshold,

and penalized regression using lasso.21,22 A schema for the ana-

lyses is shown in Figure S1.

To prioritize SNPs for analysis, single SNP association tests were

first conducted in the training set. Per-allele ORs and standard er-

rors were estimated separately in the iCOGS and OncoArray data-

sets, adjusting for study and nine ancestry informative principal

components (PCs) in the iCOGS dataset and by country and ten

PCs in the OncoArray dataset, using a purpose-written program.1

Combined p values were then derived using a fixed-effects

meta-analysis with the software METAL.23 SNPs were sorted by

p value and filtered on LD, such that uncorrelated SNPs (correla-

tion r2 < 0.9) with lowest p value for association with overall

breast cancer in the training set were retained (more rigorous

pruning, for example at r2 < 0.2, would have removed from

consideration informative SNPs from regions with multiple corre-

lated signals24,25).

In the hard thresholding approach, a series of stepwise forward

regression analyses were first carried out in 1 Mb regions centered

on SNPs significant at a pre-specified threshold for association

with either overall and/or subtype-specific disease in the training

set. Only SNPs passing the specified p value thresholds were

included in each 1 Mb region. Two analyses were performed in

parallel: for overall breast cancer and ER-negative disease. At

each stage the SNP with the smallest (conditional) p value for

any analysis was added to the model, the threshold for the step-

wise regression being the same as that for pre-selection. The pro-

cess was repeated until no further SNPs could be added at the

pre-defined threshold. A second stage of stepwise regressions

were then carried out across all regions in each chromosome, to

take into account correlated SNPs in different regions. Finally,

the effect sizes for the selected SNPs were jointly estimated in a

single logistic regression model.

For the best-performing PRSs, SNPs associated with ER-positive

at p < 10�6 but not with overall breast cancer (at p < 10�5) were

added at the end of the final SNP list. A third round of stepwise

forward regression was then carried out with p value for selection

of p < 10�6 for ER-positive disease. For completeness we added to

this final PRS two rarer variants (BRCA2 p.Lys3326X and CHEK2

p.Ile157Tyr) which are established to confer a moderate risk of

breast cancer and were genotyped on the OncoArray but did

not pass the allele frequency threshold in the PRS development

phase.

For the penalized regression using lasso, we used the program

glmnet 21. SNPs with p< 0.001 in overall BC or ER-negative disease

in the training set were pre-selected for inclusion in the lasso, and

BRCA2 p.Lys3326X and CHEK2 p.Ile157Thr were added. Covari-

ates for 19 PCs (9 for iCOGs and 10 for Oncoarray) and country

were included in eachmodel. For overall breast cancer, the penalty

parameter (lambda) giving the best overall breast cancer PRS in the

validation set was selected.

To construct subtype-specific PRSs, we evaluated four different

methods: (1) using effect sizes for overall breast cancer (for each

of the subtypes), (2) using effect sizes for subtype-specific (ER-pos-

itive or ER-negative) disease, (3) using a hybrid method, in which

effect sizes were estimated in the relevant subtype for SNPs passing

a certain optimal significance threshold in a case-only logistic

regression (ER-positive versus ER-negative disease), and otherwise,

using effect sizes estimated for overall breast cancer, or (4) by esti-

mating case-only ORs using lasso and combining these with the
26 The American Journal of Human Genetics 104, 21–34, January 3, 2
overall breast cancer ORs to derive subtype-specific estimates,

using the formulae:

bERpositive ¼ boverall þ h � bcase�only

bERnegative ¼ boverall � ð1� hÞ � bcase�only

where h ¼ 0.27 was the proportion of ER-negative tumors in the

validation set.

For the lasso analysis, effect sizes for subtype-specific disease were

estimated using method 4 above, combining the estimates from

a case-only lasso analysis with the coefficients for overall breast

cancer from the lasso analysis. The lambda for the case-onlymodel

giving the best subtype-specific PRS in the validation set was

selected.

To evaluate the performance of each potential PRS, we standard-

ized the PRSs to have unit standard deviation (SD) in the valida-

tion set of control subjects. The association of the standardized

PRSs was evaluated in the validation and test (prospective studies)

datasets, by logistic regression. We used a Cox proportional haz-

ards regression model to assess the association with risk of breast

cancer in UK Biobank. Models were also compared in terms of

the area under the receiver operator characteristic curves (AUC),

adjusted for study, calculated using the Stata command comproc.

Meta-analysis of study-specific effects was carried out using the

Stata command metan.

The goodness of fit of the continuous model (i.e., assuming a

linear association between log(OR) and risk) was tested using the

Hosmer-Lemeshow (HL) test to compare the observed and pre-

dicted risks by quantile and using the tail-based test proposed by

Song et al.26 In addition, we considered specifically the risks in

the highest and lowest 1% of the distribution.

Effect modification of the PRS by age and family history of

breast cancer in first-degree relatives was evaluated by fitting

additional interaction terms in the model. The validation and

prospective test datasets were combined for this analysis.

The absolute risks of developing breast cancer (overall and

subtype-specific disease) were calculated taking into account the

competing risk of dying from causes other than breast cancer, as

described previously,7 with the PRS modeled as a continuous

covariate and including a linear ‘‘age 3 PRS’’ interaction term.

The absolute risk of developing subtype-specific disease was

obtained constraining to the incidence of overall incidence of

ER-negative and ER-positive disease in the UK. Women are at

risk of developing both ER-negative and ER-positive disease, so

the absolute risks were calculated given that the individual has

been free of breast cancer of any subtype.

Analyses were carried out in R v.3.0.2 and Stata v.14.2. All tests

of statistical significance were two-sided. Further details are pro-

vided in the Supplemental Material and Methods.
Results

Development of the PRS

We tried several approaches to develop PRSs; here we

report results for models giving the highest prediction

accuracy. Using stepwise forward selection, the best PRS

for prediction of overall breast cancer was obtained at a

p value threshold for pre-selection and stepwise regression

of p < 10�5 (Table 1). The OR per unit standard deviation

(SD) for this 305-SNP PRS with overall breast cancer in
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Table 1. Comparison of Methods for Deriving the PRS: Results for Overall Breast Cancer in the Validation Set

p Value Cutoffa SNPs Entering Model (n) SNPs Selected (n) ORb 95% CI AUC

Published PRS7

77 77 1.49 1.44–1.56 0.612

Hard-Thresholding Stepwise Forward Regression

<5 3 10�8 1,817 123 1.59 1.52–1.66 0.626

<10�6 2,603 197 1.62 1.55–1.68 0.634

<10�5 3,818 305 1.65 1.58–1.72 0.637

<10�4 6,743 669 1.62 1.56–1.69 0.631

<10�3 14,760 1,707 1.55 1.49–1.62 0.623

Penalized Regression

Lasso 15,032 3,820 1.71 1.64–1.79 0.647

aThe p value cut off refers to the SNPs considered based on their marginal associations in the training set; the same p value threshold was used in each case in the
stepwise regression. Parameter selection and effect size estimation for derivation of the PRS was carried out in the training set as described in the Material and
Methods.
bOR per 1 SD for the PRS. OR for association with breast cancer in the validation set was derived using logistic regression adjusting for country and ten PCs. AUCs
were adjusted for country. The lasso was carried out after pre-selecting SNPs at p < 10�3 based on their marginal association in the training set. For the lasso
l ¼ 0.003 gave the optimal PRS in the validation set.
the validation set was 1.65 (95%CI: 1.58–1.72), compared

with 1.59 (95%CI: 1.52–1.66) using a ‘‘genome-wide’’

(p < 5 3 10�8) threshold (123 SNPs).

Using lasso regression, the best PRS (OR ¼ 1.71, 95%CI:

1.64–1.79) was more predictive than the best PRS devel-

oped using the stepwise regression model. In the best

model (l ¼ 0.003), 3,820 SNPs were selected (Table 1).

Optimizing the PRS for Prediction of Subtype-Specific

Disease

For evaluation of subtype-specific models following step-

wise regression, SNP effect sizes were estimated, in the first

instance, in each disease subtype. The best subtype-specific

PRSs using this method were also obtained at a p value

threshold of p < 10�5 (Table S5). The 305-SNP PRS was

supplemented with 6 additional SNPs associated with

ER-positive at p value < 10�6 and, in addition, by two

known rare breast cancer susceptibility variants in the

BRCA2 and CHEK2 genes, bringing the total number of

SNPs included to 313 (PRS313).

The optimum subtype-specific PRS was obtained when a

subset of these 313 SNPs (196 SNPs with a case-only p value

for association with ER-negative versus ER-positive disease

of p < 0.025) were given subtype-specific weights, while

the remaining SNPs were given overall breast cancer

weights. For ER-negative disease, the OR improved from

OR ¼ 1.45 (95%CI: 1.35–1.56) to OR ¼ 1.47 (95%CI:

1.37–1.58) using the hybrid method compared with using

only subtype-specific estimates, while for ER-positive dis-

ease the results were similar (OR¼ 1.74) (Tables S6 and S7).

Subtype-specific prediction using the lasso analysis

was optimized using case-only lasso analysis. The OR

per 1 SD in the validation set was 1.81 (95%CI: 1.73–

1.89) for ER-positive and 1.48 (95%CI: 1.37–1.59) for ER-

negative disease (Tables 2 and S8).
The Am
Validation of the PRS in the Prospective Test Dataset

The final PRSs were evaluated using data from 11,428 inva-

sive breast cancer-affected case subjects and 18,323 control

subjects from ten prospective studies. The ORs for both the

overall and subtype-specific PRSs were slightly lower in the

prospective test set compared to the validation set (Table 2).

The difference between validation and test set may reflect

some overfitting due to choosing the optimum p value

threshold and for the lasso, the optimum lambda, in the

validation set, but could also be due to somewhat different

characteristics of the prospective studies. The ORs for over-

all and ER-positive, but not ER-negative, breast cancer were

slightly higher for the 3,820-SNP PRS (PRS3820) compared

with PRS313.

The odds ratio (OR) for overall disease per 1 standard de-

viation (SD) of the PRS313 in the prospective studies was

1.61 (95%CI: 1.57–1.65) while for the 77-SNP PRS (PRS77)

derived previously OR ¼ 1.46 (95%CI: 1.42–1.49). For ER-

negative disease the difference was OR ¼ 1.45 (95%CI:

1.37–1.53) versus 1.35 (95%CI: 1.27–1.43) (Table 2).

The associations between the PRS and overall, ER-

positive, and ER-negative breast cancer by percentiles of

the PRS313 are shown in Figure 1 and Table S9. Compared

with women in the middle quintile (40th to 60th percen-

tile), those in the highest 1% of risk for the subtype-specific

PRS313 had 4.37 (95%CI: 3.59–5.33)- and 2.78 (95%CI:

1.83–4.24)-fold risks, and those in the lowest 1% had

0.16 (95%CI: 0.09–0.30)- and 0.27 (95%CI: 0.09–0.86)-

fold risks of developing ER-positive and ER-negative dis-

ease, respectively. The ORs by percentile of the PRS3820
were similar (Table S10).

Goodness of Fit of the PRS

The remaining analyses concentrated on PRS313. The

associations between the PRS and breast cancer risk by
erican Journal of Human Genetics 104, 21–34, January 3, 2019 27



Table 2. Association between PRS and Breast Cancer Risk in the Validation Set and Prospective Test Datasets

Validation Set Prospective Test Set

ORa 95% CI AUC ORa 95% CI AUC

77 SNP PRS (PRS77)

Overall BC 1.49 1.44–1.56 0.612 1.46 1.42–1.49 0.603

ER-positive 1.56 1.49–1.63 0.623 1.52 1.48–1.56 0.615

ER-negative 1.40 1.30–1.50 0.596 1.35 1.27–1.43 0.584

313 SNP PRS (PRS313)

Overall BC 1.65 1.59–1.72 0.639 1.61 1.57–1.65 0.630

ER-positive 1.74 1.66–1.82 0.651 1.68 1.63–1.73 0.641

ER-negative 1.47 1.37–1.58 0.611 1.45 1.37–1.53 0.601

3,820 SNP PRS (PRS3820)

Overall BC 1.71 1.64–1.79 0.646 1.66 1.61–1.70 0.636

ER-positive 1.81 1.73–1.89 0.659 1.73 1.68–1.78 0.647

ER-negative 1.48 1.37–1.59 0.611 1.44 1.36–1.53 0.600

Parameter selection and effect size estimation for derivation of the PRS was carried out in the training set as described in the Material and Methods. The optimal
subtype-specific PRS was obtained by carrying out case-only logistic regression and estimating effect sizes in the relevant subtype for SNPs passing a p value of
0.025 in case-only ordinary logistic regression (ER-positive versus ER-negative disease). OR for association with breast cancer in the validation set derived using
logistic regression adjusting for country and ten PCs. AUCs were adjusted for by country. In the prospective test set, logistic regression models were adjusted
for study and 15 PCs. AUCs were adjusted for by study.
aOR per 1 SD for the PRS.
percentiles of the risk score were compared with those

predicted under a simple polygenic model with the PRS

considered as a continuous covariate. The effect sizes

did not differ from those predicted, and in particular

the estimates for the highest and lowest centile were

consistent with the predicted estimates (Table S9).

Further tests for goodness of fit and tail-based tests (see

Material and Methods) were not statistically significant

at p < 0.05.

There was no evidence of heterogeneity in the effect

sizes among studies (Figure 2). All studies showed a signif-

icant association with similar effect sizes for overall and

ER-positive breast cancer, and all but one study (FHRISK,

based on only six case subjects) showed a significant effect

for ER-negative breast cancer.

In the UK Biobank, the estimated hazard ratio (HR) for

overall breast cancer per unit PRS (including 306 of the

313 SNPs) was HR ¼ 1.59 (95%CI: 1.54–1.64) (Figure 2).

By way of comparison, we also evaluated a PRS based on

177 previously published susceptibility loci.1,2 The effect

size for this PRS (OR ¼ 1.61, 95%CI: 1.57–1.65) in the

ten prospective studies was similar to the PRS313. However,

this estimated effect size is biased because the validation

and test datasets used here contributed to the GWAS

discovery datasets; in the UK Biobank this PRS (based on

174 of 177 available SNPs) performed worse (HR ¼ 1.53,

95%CI: 1.48–1.58).
PRS Effects by Age

Aweak decline in the ORwith age was observed for ER-pos-

itive disease (p ¼ 0.001, for the combined validation and
28 The American Journal of Human Genetics 104, 21–34, January 3, 2
test set). There was some evidence that the decline in PRS

OR was not linear, driven by a lower estimate below age

40 years (Table S11, Figure S2). There was no evidence

of a decline in the OR by age for ER-negative disease

(p ¼ 0.39).
Combined Effects of PRS and Breast Cancer Family

History

The association between PRS and disease risk was observed

for women with and without a family history (Table 3).

However, there was some evidence that for ER-positive dis-

ease, the PRS OR was smaller in women with a family his-

tory (interaction OR ¼ 0.91, p ¼ 0.004). The log OR for

family history was attenuated by 21% (1.59 to 1.44) and

12% (1.66 to 1.56) for ER-positive and ER-negative disease,

respectively, after adjusting for the PRS (Tables 3 and S12).
Absolute Risk of Developing Breast Cancer According to

the PRS

Estimated lifetime and 10-year absolute risks for UK

women in percentiles of the PRS are shown in Figure 3.

For ER-positive disease, the estimated lifetime absolute

risk by age 80 years ranged from 2% for women in the

lowest centile to 31% in the highest centile, while for

ER-negative disease, the absolute risks ranged from 0.55%

to 4%. The average 10-year absolute risk of breast cancer

for a 47-year-old woman (i.e., the age at which women

become eligible to enter the UK breast cancer screening

program) in the general population is 2.6%. However,

the 19% of women with the highest PRSs will attain this

level of risk by age 40 years.
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Figure 2. Prospective Validation for the 313 SNP Polygenic Risk
Score
Prospective validation for the 313 SNP polygenic risk score (PRS)
by study for (A) overall breast cancer, (B) ER-positive disease, and
(C) ER-negative disease. Association between the 313 SNP PRS
and breast cancer risk in women of European origin. Odds ratios
and 95% confidence intervals are shown. I-squared and p value
for heterogeneity were calculated using fixed effect meta-analysis.

Figure 1. Association between the 313 SNP Polygenic Risk Score
and Breast Cancer Risk
Association between the 313 SNP polygenic risk score (PRS) and
breast cancer risk in women of European origin for (A) overall
breast cancers, (B) estrogen receptor (ER)-positive disease, and
(C) ER-negative disease, in the validation (dashed line) and test
(solid line) sets. Odds ratios are for different quantiles of the PRS
relative to the mean PRS. Odds ratios and 95% confidence inter-
vals are shown.
Discussion

We report development and independent validation of

polygenic risk scores for breast cancer, optimized for pre-

diction of subtype-specific disease and based on the largest

available GWAS dataset. The best PRS based on a hard

thresholding approach included 313 SNPs and was signifi-
The Am
cantly more predictive of risk than the previously reported

77-SNP PRS7 (OR per 1 SD in the prospective test set:

1.61 versus 1.46; Table 2). The effect sizes were remarkably
erican Journal of Human Genetics 104, 21–34, January 3, 2019 29



Table 3. Associations between the 313-SNP PRS (PRS313) and Breast Cancer Risk by First-Degree Family History of Breast Cancer in the
Combined Validation and Prospective Test Dataset

Model

ER-Positive Disease ER-Negative Disease

ORa 95% CI ORa 95% CI

Association of PRS and Breast Cancer Risk by Family History

PRS unadjusted 1.67 1.62–1.72 1.44 1.37–1.54

PRS in women without family history 1.71 1.65–1.78 1.45 1.36–1.57

PRS in women with family history 1.55 1.48–1.65 1.40 1.27–1.55

Interaction between PRS and family history 0.91 0.85–0.97 (p ¼ 0.004) 0.96 0.85–1.09 (p ¼ 0.53)

Association between Family History and Breast Cancer Risk (Adjusted and Unadjusted for PRS)

Family history unadjusted for PRS 1.59 1.46–1.72 1.66 1.41–1.95

Family history adjusted for PRS 1.44 1.33–1.57 1.56 1.32–1.83

Association with breast cancer risk was tested for using logistic regression adjusting for study and ten PCs. For these analyses the validation and test datasets were
combined. Analyses were restricted to women with known age and family history information. For ER-negative disease, 4,440 women with and 13,132 women
without a family history of breast cancer were included in these analyses. For ER-positive disease, 6,787 women with and 17,351 women without a family history of
breast cancer were included in these analyses.
aOR per 1 SD for the PRS.
consistent among the 10 cohorts in the prospective test

set, and also consistent with that in the UK Biobank cohort

(HR ¼ 1.59, 95%CI: 1.54–1.64).

Recently, Khera et al.27 derived a PRS using our publicly

available summary statistics based on analysis of the BCAC

data.1 We were able to construct a PRS based on 5,194 of

their 5,218 listed SNPs and compared this to our 313-SNP

PRS. In our analysis of this PRS in the prospective UK Bio-

bank data, we obtained a HR of 1.49 (95%CI: 1.44–1.54),

substantially lower than that for our PRS313. The corre-

sponding AUCs were 0.613 (95%CI: 0.603–0.623) for their

5,194-SNP PRS versus AUC 0.630 (95%CI: 0.620–0.640) for

PRS313. Similarly, PRS313 performed better than the Khera

et al. PRS in a Biobank dataset consisting of 7,113 case sub-

jects diagnosed before entry and 183,536 control subjects

(AUC ¼ 0.642 versus AUC ¼ 0.627). Khera et al. report a

much higher AUC (0.68), perhaps reflecting the inclusion

of predictors other than SNPs in their model (for example

age or principal components).

We specifically aimed to improve prediction for ER-nega-

tive breast cancer as to date prediction of this more aggres-

sive disease has been poor. SNP selection was based on

association with either ER-negative or overall breast can-

cer, and the optimum subtype-specific PRSs were derived

by weighting a subset of SNPs according to subtype-specific

effect sizes, with overall breast cancer weights used for the

remaining SNPs. These results are consistent with the

observation from genome-wide analyses that the heritabil-

ity of ER-positive and ER-negative disease are partially

correlated.2 The performance of the PRS313 in predicting

ER-negative disease was considerably improved over the

PRS77 reported previously (OR ¼ 1.45 versus 1.35). Never-

theless, the prediction is still better for ER-positive than

ER-negative disease, reflecting the fact that ER-negative

disease is more infrequent and hence the GWAS data are

less powerful. The estimated heritability of ER-negative dis-
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ease is similar to that of overall breast cancer,1,2 suggesting

that more powerful ER-negative PRSs should be achievable

with larger sample sizes.

The best PRS developed using lasso was more predictive

for ER-positive disease but slightly less predictive for

ER-negative disease in the prospective studies. Given the

small differences between the models, we focused on

PRS313 since this should be more straightforward to imple-

ment in diagnostic laboratories using next generation

sequencing. However, this will change with developing

technology, and the cost effectiveness of using a large

marker panel should be further investigated.

From a clinical viewpoint, an important consideration

is the performance of the PRS in the tails of the distribu-

tion. According to the standard polygenic model, under

which the effects of variants combine multiplicatively,

the relationship between the PRS and the log-OR should

be linear. The PRS was well calibrated at different quan-

tiles. Even in this large study, we observed no deviation

from this model, and in particular the observed risks in

the highest and lowest centile were consistent with the

predicted risk. The sample sizes in the extreme tails, how-

ever, were still relatively small, particularly for ER-negative

disease.

While the AUC may appear modest, the predicted risk

differences in the tails of the distribution are large. For

the new PRS313, the women in the top 1% of the distribu-

tion have a predicted risk that is approximately 4-fold

larger than the risk in the middle quintile. The lifetime

risk of overall breast cancer in the top centile of the PRSs,

based on UK incidence and mortality data, was 32.6%.

Women in the top centile would therefore meet the UK

NICE definition of high risk (see Web Resources). In the

general population, an estimated 3.6%, 12%, 21%, and

35% of all breast cancers would be expected to occur in

women in the highest 1%, 5%, 10%, and 20% of the new
019



Figure 3. Cumulative and 10-Year Absolute Risk of Developing Breast Cancer
Cumulative and 10-year absolute risk of developing breast cancer for (A) overall breast cancer, (B) ER-positive disease, and (C) ER-nega-
tive disease by percentiles of the 313 SNP polygenic risk scores (PRSs). Note different scales and PRS categories in the different panels. The
red line shows the 2.6% risk threshold corresponding to the mean risk for women aged 47 years. Absolute risks were calculated based on
UK incidence and mortality data and using the PRS relative risks estimated as described in the Material and Methods.
PRS313, respectively, compared to only 9% of breast cancers

in women in the lowest 20% of the distribution.

We observed a decline in the relative risk with age for

ER-positive disease but not ER-negative disease. Even for

ER-positive disease, however, the predicted relative risk,

under a linear model, only declined from 1.89 at age 40

to 1.67 at age 70. While there was some indication of a

lower relative risk below age 40 (estimated as 1.63 in the

test set; Figure S2), these results indicate that PRS313 is

broadly applicable at all ages. We observed an attenuation

of the association between breast cancer family history and

breast cancer risk after adjustment for the PRS (�21% for
The Am
ER-positive, �12% for ER-negative disease). This finding

is broadly in line with the predicted contribution of the

PRS to the familial relative risk of breast cancer. The PRS

was predictive in women with and without a family his-

tory of breast cancer, but the OR was slightly lower in

women with a family history, at least for ER-positive dis-

ease. This might reflect a weaker relative effect of the PRS

in carriers of BRCA1 or BRCA2mutations.28 We note, how-

ever, that the absolute differences in risk by PRS will be

larger in women with a family history. These results indi-

cate that the joint effects of family history and PRS need

to be considered in risk prediction.
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Although we used the largest training dataset available

to date for development of the PRS, further improvement

should still be possible. We previously estimated using

GWAS data that the theoretically best PRS, if the effect sizes

of all common SNPs were known with certainty, would

explain �41% of the familial risk of breast cancer, corre-

sponding to a standardized OR�2.1: the PRS313 explains

�45% of this ‘‘chip’’ heritability.1 This implies that larger

GWASs, coupled with penalized approaches for subtype-

specific disease, should further improve the predictive

value of the PRS. Certain genomic features, notably tran-

scription factor binding sites, are enriched among suscep-

tibility loci.1 Preliminary analyses incorporating these

features into the analysis did not improve the predictive

value, presumably because the enrichment effect was too

small to overcome the increased complexity of the model.

Better definition of genomic features to predict causal

variants, and more sophisticated methods for integrating

external biological information into prediction models,

may improve the PRS.29,30

The PRS has the potential to improve stratification for

screening,while ER-specific PRSsmaybe informative for pre-

ventionwith endocrine therapies. Previous studieshave sug-

gested that the earlier PRS77 was more predictive for screen-

detected breast cancers than interval cancers, and that breast

cancers arising among women with a low PRS are more

aggressive compared with those arising in women with a

high PRS, perhaps reflecting the stronger associations with

ER-positivedisease.31,32 Itwill thereforebe important toeval-

uate carefully the associations between the new PRS313 and

other tumor characteristics. Clinical translational studies

are required to assess the risks and benefits of including the

PRS in the context of current screening protocols.

While the PRS provides powerful risk discrimination,

better risk discrimination will be obtained by combining

the PRS with family history and other risk factors.10 This

can be accomplished by incorporating the PRS into risk

prediction models, in particular BOADICEA, which can

allow for the explicit effects of family history, age, genetic,

and other risk factors33,34 (see Supplemental Material and

Methods). However, further studies to validate risk models

for individualized risk prediction based on the combined

effects of genetic and lifestyle risk factors will be needed.

In addition, it is important to note that the PRSs generated

in this study were developed and validated in white Euro-

pean populations and need to be validated and potentially

adapted for other populations.
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