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Abstract: High mobility group box B (HMGB) proteins are pivotal in the development of cancer.
Although the proteomics of prostate cancer (PCa) cells has been reported, the involvement of HMGB
proteins and their interactome in PCa is an unexplored field of considerable interest. We describe
herein the results of the first HMGB1/HMGB2 interactome approach to PCa. Libraries constructed
from the PCa cell line, PC-3, and from patients’ PCa primary tumor have been screened by the yeast
2-hybrid approach (Y2H) using HMGB1 and HMGB2 baits. Functional significance of this PCa
HMGB interactome has been validated through expression and prognosis data available on public
databases. Copy number alterations (CNA) affecting these newly described HMGB interactome
components are more frequent in the most aggressive forms of PCa: those of neuroendocrine origin or
castration-resistant PCa. Concordantly, adenocarcinoma PCa samples showing CNA in these genes
are also associated with the worse prognosis. These findings open the way to their potential use as
discriminatory biomarkers between high and low risk patients. Gene expression of a selected set
of these interactome components has been analyzed by qPCR after HMGB1 and HMGB2 silencing.
The data show that HMGB1 and HMGB2 control the expression of several of their interactome
partners, which might contribute to the orchestrated action of these proteins in PCa
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1. Introduction

Human high mobility group box B (HMGB) proteins HMGB1, 2, and 3 are differentially expressed
in many different tissues and cell types, whereas HMGB4 expression is restricted to the testis [1]. HMGB2
has 82.3% sequence similarity with HMGB1, and both proteins have common or redundant functions
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in inflammation [2], chromosome remodeling activity [3], V (D) J recombination [4], and embryonic
development [5].

HMGB1 has been related to the onset and progression of cancer, being involved in events
such as replenishing telomeric DNA and maintaining cell immortality [6], autophagic increase,
evasion of apoptosis [7,8], as well as cell proliferation and invasion [9,10]. HMGB1 is also involved
in dedifferentiation during epithelial to mesenchymal transition (EMT) [11] via the receptor for
advanced glycation endproducts RAGE/ nuclear factor kappaB NF-κB signaling pathways [12] and in
angiogenesis [13]. The role of HMGB2 in these processes, although less well studied, has also been
related to cell viability and invasion [14], EMT [10], and angiogenesis [15].

The majority of the prostate cancers (PCa) are adenocarcinomas characterized by glandular
formation and the expression of androgen receptor (AR) and prostate-specific antigen (PSA). Hormonal
inhibition of AR signaling is the therapeutic choice for patients with adenocarcinomas, but unfortunately,
the disease usually progresses as it becomes independent of exogenous AR induction, leading
to castration-resistant prostate cancer (CRPC) with a worse prognosis. In prostatic small cell
neuroendocrine carcinoma (SCNC), the tumor cells are negative for AR and PSA expression and do not
respond to hormonal therapy [16]. Among the most frequently used PCa cell lines, PC-3 characteristics
are considered closer to a SCCN PCa model and those of DU145 (ATCC® HTB-81™) or LNCaP (lymph
node carcinoma of the prostate) are considered closer to adenocarcinoma models [16]. PC-3 and DU145
are AR-independent, and LNCaP is AR-dependent [16,17]. Interestingly, upregulation of HMGB1
mRNA and protein have been detected in PCa tumors [12,18] and PCa cell lines (including PC-3
and DU145 or LNCaP) compared to the non-transformed immortalized prostate cell line RWPE-1
(prostate epithelial transformed by HPV)) [18]. Silencing of HMGB1 in LNCaP cells inhibits cell
growth [19]. HMGB1 expression is notably high in PCa metastasis [12] and is positively correlated
with some clinical-pathological parameters, such as Gleason score or preoperative PSA concentration,
being associated with a worse prognosis [18].

Proteomic studies in relation to PCa have been reported [20–22], with interactome strategies
being outstanding in recent developments [23–25]. The purpose of our study was to analyze proteins
interacting with HMGB1 and HMGB2 by the yeast 2-hybrid approach (Y2H), using HMGB1 and
HMGB2 baits. Results from the screening of libraries constructed from the PC-3 line, as a model of
metastatic AR-independent PCa, and of libraries obtained from PCa adenocarcinoma primary tumor
are presented. Analyses of copy number alterations (CNA) and mRNA levels of detected targets in
public PCa databases are discussed showing that dysregulation of some HMGB1/2 targets is associated
with clinical prognosis. Considering that HMGB proteins are known regulators of gene expression,
we also tested whether HMGB1 and HMGB2 silencing affects the expression of their Y2H detected
partners and found that this regulatory mechanism is functional in PC-3 cells.

2. Results

2.1. HMGB1 and HMGB2 Y2H Interactomes in the PCa PC-3 Cell Line and in Adenocarcinoma
Primary Tumor

Human PCa cDNA libraries were constructed using total RNA from PC-3 cells and PCa
adenocarcinoma primary tumor. Y2H assays were carried out as described in the Materials and
Methods section, using HMGB1 and HMGB2 as baits and triple screening by 3 independent selection
markers (Supplementary Figure S1). The panel of proteins interacting with HMGB1 or HMGB2 in
these libraries is summarized in Tables 1–4. The interactions of identified proteins with HMGB1 or
HMGB2 have not previously been reported on Biogrid, String, or other public databases, although we
have previously reported that Cytokeratin-7, the human complement subcomponent C1q (C1QPB),
and zinc finger p rotein 428 (ZNF428) interact with HMGB1 and that (high density lipoprotein-binding
protein (HDLBP) and ZNF428 interact with HMGB2 in noncancerous epithelial cells [26].
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Table 1. Proteins identified in the high mobility group box B 1 (HMGB1) yeast 2-hybrid (Y2H) approach
interactome in PC-3 cells.

Gene (Aliases) Uniprot Code N A Biological Function Previous References to Prostate
Cancer (PCa)

DLAT (DLTA) P10515 1 221–420

Dihydrolipoamide- acetyltransferase
(DLAT) in pyruvate dehydrogenase

complex control of mitochondrial energetic
metabolism [27].

Enzymatic activity at the basal level is
significantly higher in prostate cancer

cells compared to benign prostate
cells [28].

DNAAF2
(KTU) Q9NVR5 1 436–621 Cytoskeletal component [29]. Not previously reported

HDLBP (HBP,
VGL) Q00341 1 152–374 HDLBP drives cell proliferation [30]. Not previously reported

HOXA10
(HOX1H) P31260 1 * Transcriptional control

HoxA10 is highly expressed in PCa
cells and tissues and is involved in

cancer cell proliferation [31,32].

KRT7 (SCL) P08729 11 109–301 Cytoskeletal component
KRT7 circulating mRNA was

identified in blood samples from a
cohort of metastatic PCa patients [33].

MNAT1 P51948 1 *

MAT1, encoded by MNAT1, binds to p53
and mediates p53 ubiquitin-degradation

through MDM2, increases cell growth, and
decreases cell apoptosis [34].

Not previously reported

SPIN1 Q9Y657 1 130–337 Chromatin reader; promotes the expression
of rRNA [35] Not previously reported

UBE2E3 Q969T4 5 25–111 Control of transcription factor activity [36]. Not previously reported

UBXN1
(SAKS1) Q04323 1 57–238 NF-κB can be negatively regulated by

UBXN1 [37]. Not previously reported

UHRF2 (NIRF,
RNF107) Q96PU4 4 157–284

UHRF2 encodes a nuclear protein involved
in cell-cycle regulation, and it is an

important mediator of E2F1-induced cell
death [38].

Not previously reported

ZNF428
(C19orf37) Q96B54 1 109–188 Unknown Not previously reported

N: redundancy in clone isolation; A: Sequenced region in clones, Aa relative to ATG; * noncoding sequence.

Table 2. Proteins identified in the the high mobility group box B 2 (HMGB2) Y2H interactome in
PC-3 cells.

Gene (Aliases) Uniprot Code N A Biological Function Previous References to
Prostate Cancer (PCa)

C1QBP
(GC1QBP,
HABP1,
SF2P32)

Q07021 3 1–187

Control of mitochondrial
energetic metabolism.

Promotes cell proliferation,
migration, and resistance to

cell death. [39].

Highly expressed in prostate
cancer and is associated with

shorter prostate-specific
antigen relapse time after

radical prostatectomy [40].

SNAPIN
(BLOC1S7,

SNAP25BP)
O95295 1 54–136

A SNARE-associated protein
which binds Snap25

facilitating the vesicular
membrane fusion process [41].

Involved in developing
prostate adenocarcinoma in

mice [41].

U2AF1
(U2AF35,) Q01081 1 31–104 RNA splicing [42]. Highly expressed in PCa [43].

UHRF2 (NIRF,
RNF107) Q96PU4 1 20–169

UHRF2 encodes a nuclear
protein involved in cell-cycle
regulation and is an important
mediator of E2F1-induced cell

death [38].

Not previously reported

ZNF428
(C19orf37) Q96B54 3 100–188 Unknown Not previously reported

N: redundancy in clone isolation; A: Sequenced region in clones, Aa relative to ATG.
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Table 3. Proteins identified in the HMGB1 Y2H interactome in primary tumor adenocarcinoma.

Gene (Aliases) Uniprot Code N A Biological Function Previous References to
Prostate Cancer (PCa)

c-FOS P01100 2 27–184
Transcriptional regulation and

control of cell growth and
apoptosis. [44].

Expression is elevated in the
prostate upon

castration-mediated androgen
withdrawal [44].

GOLM1 Q8NBJ4 1 236–376 PI3K-AKT-mTOR
signaling [45].

Upregulated in PCa has
oncogenic functions [45].

HNRNPU Q00839 1 91–296 DNA and RNA binding [46]. Not previously reported

MAP1B P46821 2 2187–2409 Vesicle formation; it can
interact with p53 [47]. Not previously reported

MAPKAPK5 Q8IW41 1 1–95

Involved in mTOR signaling
[48]; MAPKAPK5 has diverse

roles in cell growth,
programmed cell death,

senescence, and motility [49].

Not previously reported

MIEN1 Q9BRT3 3 24–204 Regulator of cell migration
and invasion [50].

MIEN1 increases invasive
potential of PCa cells by

NF-κβ-mediated downstream
target genes [50].

MT2A P02795 1 8–61 Binding to heavy metals [51].

MT2A is upregulated under
hypoxia in PCa cell lines, PCa

tissue, and residual cancer
cells after androgen ablation

therapy [52].

PSMA7 (PTPT) O14818 1 173–248

PSMA7, a proteasome subunit,
enhances AR transactivation
in a dose-dependent manner

[53] and inhibits the
transactivation function of

HIF-1A [54].

Proposed biomarker in
PCa [55]

PTPN2 P17706 3 1–221

Tyrosine-specific phosphatase
(TCPTP) negatively regulates
STAT3 that is involved in cell

growth and proliferation,
differentiation, migration, and

cell death or apoptosis [56].

Not previously reported

RASAL2 Q9UJF2 1 97–334 Tumor suppressor via
RAS [57] Not previously reported

RSF1 Q96T23 1 572–795

Chromatin remodeling factor
necessary for p53-dependent

gene expression in response to
DNA damage [58].

RSF1 is overexpressed in PCa
and contributes to prostate

cancer cell growth and
invasion [59].

SRSF3 P84103 2 1–164 Oncogenic splicing factor [60].
SRSF3 expression is induced

by hypoxia in prostate
cancerous cells [61].

TAF3 Q5VWG9 5 2–222
Transcriptional regulation;

interacts with and
inhibits p53 [62].

Not previously reported

TGM3 Q08188 1 480–693

Catalyze the irreversible
cross-linking of

peptide-bound glutamine
residues to lysines or primary

amines; involved in
apoptosis [63].

Not previously reported

N: redundancy in clone isolation; A: Sequenced region in clones, Aa relative to ATG.
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Table 3. Cont.

Gene (Aliases) Uniprot Code N A Biological Function Previous References to
Prostate Cancer (PCa)

UBC P0CG48 1 28–181

Unanchored-polyubiquitin
has several roles in activation

of protein kinases,
and signaling

Not previously reported

WNK4 Q96J92 4 9–208

Regulates STE20-related
protein kinases that function

upstream of the MAPK
pathways. [64].

Not previously reported

YY1 P25490 1 27–223 Transcriptional
regulation [65]. Involved in PCa [65–70]

ZNF428 Q96B54 2 89–188 Unknown Not previously reported

N: redundancy in clone isolation; A: Sequenced region in clones, Aa relative to ATG.

Table 4. Proteins identified in the HMGB2 Y2H interactome in primary tumor adenocarcinoma.

Gene (Aliases) Uniprot Code N A Biological Function Previous References to
Prostate Cancer

C1QBP
(GC1QBP,
HABP1,
SF2P32)

Q07021 10 57–282

Control of mitochondrial
energetic metabolism;

promotes cell proliferation,
migration, and resistance to

cell death. [39].

Highly expressed in PCa and
associated with shorter

prostate-specific antigen
relapse time after radical

prostatectomy [40].

COMMD1 Q8N668 1 1–180

Regulates oxidative stress,
NF-κB-mediated transcription,
DNA damage response, and

oncogenesis [71].

Degradation of COMMD1 and
I-kappaB induced by clusterin

enhances NF-κβ activity in
prostate cancer cells. [72].

FLNA P21333 5 106–366

A C-terminal fragment of
FLNA co-localizes with the

androgen receptor AR to the
nucleus and downregulates

AR function. [73].

FLNA has been clinically
validated for better diagnosis

of PCa [74]; regulated by
miRNA205 [75].

MIEN1 Q9BRT3 4 1–116 Regulates cell migration and
apoptosis [50].

Overexpressed in PCa cells.
MIEN1 overexpression
functionally enhances

migration and invasion of
tumor cells via modulating the

activity of AKT [50].

MYL6 P60660 2 1–150

Regulatory light chain of
myosin II; myosin II,

expressed in non-muscle
tissues, plays a central role in
cell adhesion, migration, and

division [76].

Not previously reported

NOP53
(GLTSCR2) Q9NZM5 35 163–428

Cell cycle control; NOP53
translocates to the

nucleoplasm under ribosomal
stress, where it interacts with
and stabilizes p53 and inhibits

cell cycle progression [77].

Not previously reported

RPS28 P62857 1 8–52

Ribosome component; its
decrease blocks pre-18S

ribosomal RNA processing,
resulting in a reduction in the

assembly of 40S ribosomal
subunits [78].

Not previously reported

N: redundancy in clone isolation; A: Sequenced region in clones, Aa relative to ATG
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Interestingly, 43% of detected HMGB1 interactome targets (10 of a total of 28, referenced in
Tables 1 and 3) as well as 64% of HMGB2 (7 of a total of 11, referenced in Tables 2 and 4) have
previously been related to PCa, supporting the functional significance of our Y2H interactome data in
PCa research. Furthermore, the detected proteins are remarkably associated with cancer hallmarks.
Indeed, the oncogenic capacities of several identified proteins in our Y2H interactome had been already
reported in PCa or other cancerous models by wide-ranging functional approaches, which are reviewed
in Supplementary Table S1. Figure 1 summarizes the frequency distribution of the identified proteins in
relation to cancer hallmarks (Figure 1a) as well as the number of references of each protein functionally
related to cancer progression in diverse models (Figure 1b).
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Figure 1. Relationship between identified proteins and cancer hallmarks: (a) Distribution of HMGB1
and HMGB2 interactome targets according to cancer hallmarks and (b) number of references that
associate these proteins with cancer hallmarks according to PubMed (7-31-2019).

The interaction of HMGB1 with Cytokeratin-7 was validated in PC-3 cells by co-immunoprecipitation
and western blot (Figure 2a). Immunodetection of HMGB1 using a green fluorescent antibody
(Figure 2b,c) and of Cytokeratin-7 using a red fluorescent antibody (Figure 2c) was also assayed in
PC-3 cells. Confocal microscopy showed that co-localization of HMGB1 and Cytokeratin-7 occurred
principally in the perinuclear area (Figure 2c), with a Meander’s correlation coefficient of 0.87 ± 0.3.
Three other interactions were also validated in PC-3 cells by immunoprecipitation and MS identification
(Figure 2d).

2.2. Mutations and Copy Number Alterations in HMGB1 and HMGB2 Interactome Targets in PCa

The frequency of mutations and copy number alterations (CNA) in genes encoding HMGB1 and
HMGB2 proteins were analyzed as well as in those genes encoding proteins detected in the Y2H search
associated with PCa, using the open platform for exploring cancer genomics data, c-Bioportal [79,80].
We included 14 PCa studies available at cBioPortal (https://www.cbioportal.org/), of which their
characteristics are summarized in Supplementary Table S2. From these, 10 were adenocarcinoma
studies [81–91], with 3218 samples; the other 3 studies corresponded to metastatic PCa [92–94], including
655 samples; and finally, one study corresponded to neuroendocrine PCa, which was carried out with
114 samples [95]. The data show that mutations and CNA affecting HMGB1, HMGB2, and the proteins
identified in the corresponding Y2H interactome are more frequently present in neuroendocrine PCa
and castration-resistant PCa than in adenocarcinoma (Figure 3). Since neuroendocrine PCa is an
aggressive PCa [16], we tested whether CNA of these genes was also related to the poor prognosis in
patients diagnosed with adenocarcinoma. With amplification as the most frequently detected CNA
in Figure 3, we compared disease/progression-free Kaplan–Meier estimate rates calculated from the
study of Taylor et al. [86] among the group of samples having gains or amplifications of these genes
and the group integrated by the rest of samples. Figure 4 shows that gain or amplification of HMGB1
and HMGB2 interactome targets results in a notorious decrease of the median of months disease-free,
with high significant p-values in the Logrank test.

https://www.cbioportal.org/
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Figure 2. Validation of HMGB1-interactions: (a) Cytokeratin-7 co-immunoprecipitation with HMGB1.
PC-3 lysates were immunoprecipitated with anti-HMGB1 antibody or normal mouse IgG and
immunoblotted with antibodies to Cytokeratin-7 and HMGB1; complete membranes provided
as Supplementary Materials Imagen S1. Protein G horseradish peroxidase (HRP)-labelled was
used as a secondary antibody to minimize the signal given by the light and heavy chains of
the immunoprecipitation antibody. (b) Immunofluorescent localization of HMGB1 in PC-3 cells
and comparison to Hoechst-stained nuclei. (c) Immunofluorescent co-localization of HMGB1 and
Cytokeratin-7 by confocal microscopy in PC-3 cells. HMGB1 is shown in green, and Cytokeratin-7 is in
red. Co-localization is seen in yellow by merging. (d) Validation of interactions with HNRNPU, SRSF3,
and UBC after HMGB1 immunoprecipitation and MS peptide identification.
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Figure 3. Copy number alteration frequency of HMGB1, HMGB2, and their targets in prostate cancer: (a)
HMGB1, (b) HMGB1 interactome targets from PC-3 library, (c) HMGB1 interactome targets from prostate
adenocarcinoma tissue library, (d) HMGB2, (e) HMGB2 interactome targets from PC-3 library, and (f)
HMGB2 interactome targets from prostate adenocarcinoma tissue library. PA, prostate adenocarcinoma;
PNC, Prostate Neuroendocrine Carcinoma; CRPC, Castration Resistant Prostate Cancer. Data source:
combined study from data available through c-Bioportal (detailed in Supplementary Table S2).
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adenocarcinoma study [86], including 194 patients/samples.

2.3. Expression of HMGB1 and HMGB2 Interactome Targets in PCa

According to published data [12,18], HMGB1 expression increases in PCa cell lines and tissues
from PCa, especially in metastases. With published data of RNA levels in PCa samples [86] retrieved
from Geen Expression Omnibus (GEO Accession: GSE21032), the change fold expression of HMGB1
and HMGB2-interactome targets in PCa cell lines versus noncancerous cells was calculated, from which
a heat map was constructed (Figure 5a). Using the same source, data was retrieved from 181
adenocarcinoma primary tumors, which were distributed in 3 groups clinically classified by Gleason
scores, and in a 4th group integrated by 37 metastatic tumors. The change fold expression of HMGB1
and HMGB2-interactome targets in each group versus noncancerous cells from healthy tissues were
calculated, from which the heat map shown in Figure 5b was constructed. The classification of each
gene in the main clusters of the heat maps proved to be unrelated to the experimental library origin
of the clone (PC-3 cell line or PCa adenocarcinoma primary tumor). The results reveal that genes
encoding 11 proteins interacting with HMGB1 (Figure 4a top panel) are also upregulated in the 3 PCa
cell lines (PC-3 and DU145 or LNCaP), and 8 more are upregulated in one or two PCa cell lines. Among
the detected HMGB2 partners, 2 are upregulated in the 3 PCa cell lines: 1 in 2 and 3 in at least one
(Figure 4a, bottom). In both HMGB1 and HMGB2 interactomes, the targets upregulated in metastatic
tissue (Figure 5b) are a subset of those upregulated in one or more of the PCa cell lines. Analyzing
expression in reference to Gleason score, the genes TMG3 and GOLM1 are upregulated in all the
groups, whereas the others are only upregulated in groups classified with a Gleason score of less
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than or equal to 7 (PTPN2, HDLBP, SRF3, FOS, and WNK4). Regarding a pattern associated with
the existence of metastasis, 3 genes that are not upregulated in samples from primary tumors are
upregulated in metastasis: PSMA7, UBE2E3, and MIEN1 (Figure 5b).
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from Gene Expression Omnibus (GEO ) Accession: GSE21032.

2.4. Silencing of HMGB1 and HMGB2 Reveals Regulation of the Expression of Genes Encoding Their
Interactome Targets

To test whether changes in HMGB1/2 protein levels in PCa cells could also be influencing the
expression of their interactome targets, HMGB1 and HMGB2 in PC-3 cells were silenced by iRNA
(Figure 6a). Levels of mRNA from 14 partners analyzed by qPCR and changes (siHMGB/HMGB) are
summarized in the Figure 6b. This analysis also included HMGB1, HMGB2, and well-known PCa
biomarkers: PSA (encoded by KLK3); PMEPA1, which is involved in downregulation of the androgen
receptor, thus promoting androgen receptor-negative prostate cell proliferation [96]; and RAGE,
one of the membrane receptors in the extracellular signaling function of HMGB1 [97]. Silencing of
HMGB1 causes overexpression of the larger cluster of the Y2H interactome, whereas siHMGB2 has the
opposite effect (Figure 6c). HMGB1 downregulates the expression of the majority of targets analyzed,
and conversely, HMGB2 upregulates them. Therefore, the expression level of each regulated target
would depend on the relative imbalance of HMGB1 and HMGB2 and on the differential effect of both
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HMGB proteins on the expression of each partner. PMEPA1 and PSA, well-known PCa biomarkers,
are also oppositely regulated by HMGB1 and HMGB2 (Figure 6).
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3. Discussion

High mobility group box B (HMGB) proteins are pivotal in the development of cancer [6,8,10],
and HMGB1 overexpression has been related to principal cancer hallmarks [7]. Interactome targets
of HMGB1 or HMGB2 that have been identified in our Y2H study were previously found to be
related to cancer hallmarks (Table S1 and Figure 1), and are also dysregulated in PCa, as confirmed
by detection of changes in mRNA or protein levels. DNAAF2 [98], U2AF1 [43], C1QBP [40], Snapin,
or HDLBP [99] are upregulated in prostate tumors or PCa cell lines. Others increase their expression
after androgen-deprivation therapy, such as KRT7 or NOP53 [100]. Functional studies interfering the
expression of several of the proteins revealed by our study also directly associated them to PCa. In this
sense, selective knockdown of C1QBP through iRNA decreased cyclin D1, increased p21 expression,
led to cell cycle arrest (G1/S transition) in PCa cells, and had no effect on a noncancerous cell line [40].
NOP53 acts as a tumor suppressor, and knockdown of the gene in the PCa LNCaP cell line increased
the invasiveness of these cells as measured in a xenograft animal model [101].

Two already known regulatory factors have been found among the HMGB1 interactome targets,
YY1 and HOXA10, and both are associated with PCa. YY1 is upregulated in human prostate cancer
cell lines and tissues [66]. Inhibition of YY1 reduces expression of genes related to the Krebs cycle and
electron transport chain in PCa cell lines [67], and YY1 depletion correlates with delayed progression
of PCa [68]. Overexpression of YY1 can promote epithelial-mesenchymal transition by reducing
hnRNPM expression [69]. YY1 can also silence tumor suppressor genes, such as XAF1 in PCa [70].
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In summary, YY1 is a recognized prostate cancer driver [66] and different complexes in which YY1
takes part can induce activation or repression of gene expression, including also AR-YY1-mediated
PSA transcription [102], which we found is also regulated by HMGB1 and HMGB2 silencing. HOXA10
is upregulated in PCa [31], and inverse correlations between HOXA10 expression and Gleason pattern,
Gleason score, and pathological stage are found [32], although downregulation of HOXA10 gene
expression may enhance lipogenesis to promote PCa cell growth and tumor progression to the
castration-resistant stage [103]. Silencing of HOXA10 expression in PC-3 cells by iRNA decreased
proliferation rates, whereas HOXA10 overexpression had the opposite effect [31]. Physical interaction
between these PCa-associated proteins and HMGB proteins has not previously been described, and our
results therefore show that there is a connection between HMGB1 and HMGB2 functions and those of
their binding partners in PCa.

Considering that HMGB1, HMGB2, and a subset of their interactome partners are upregulated in
PCa, we silenced HMGB1 and HMGB2 and analyzed the mRNA levels of a group of randomly selected
partners in PC-3 cells (Figure 6). The data show that HMGB1 and HMGB2 control the expression of
them, which might contribute to the orchestrated action of all these proteins in PCa. HMGB2 activates
many of the tested targets, but unexpectedly, HMGB1 has the opposite effect. One can propose several
reasons to explain upregulation of targets in these circumstances. Data from the genotype-tissue
expression (GTEx) project [104] indicates that, although both HMGB1 and HMGB2 are upregulated in
PCa versus noncancerous cells, the relative increase is higher for HMGB2 (×1.5) than HMGB1 (×1.3);
this could explain the increased expression of several of their targets, assuming that positive regulation
caused by HMGB2 predominates over negative regulation caused by HMGB1 during the onset of
PCa. Alternatively, differential interaction of HMGB1 or HMGB2 with their different nuclear partners,
the transcript factors detected in our Y2H analysis being among them, might condition their positive
or negative regulatory roles on the expression of specific genes.

Clinically, a high frequency of CNA of the genes encoding the identified proteins is associated with
the most aggressive forms of PCa: small cell neuroendocrine carcinoma (SCNC) or castration-resistant
PCa (Figure 3). Their gain or amplification in the genome of the cancerous cells are positively correlated
to a lesser disease-free period for PCa patients (Figure 4). The mRNA levels of a subset of these
proteins are also higher in metastases than primary tumors (Figure 5). In conclusion, the set of proteins
detected though our HMGB1-HMGB2 Y2H analysis are associated with the most aggressive cases
of PCa. Although the PSA-based test is routinely employed for screening of PCa, it has resulted in
overdiagnosis and overtreatment of nonaggressive cancers, thus reducing the quality of life of patients.

Consequently, an improvement is necessary in the initial stages to discriminate between high-risk
from low risk cancers. Our data on HMGB1 and HMGB2 interactome targets, considering their
correlation to high aggressiveness and bad prognosis, is a good starting point to develop new
serum protein panels for improvement of PCa diagnosis. Indeed, FLNA has already been proposed
in a clinical validated PCa biomarker panel in serum [74]. PSMA7 was also proposed as a PCa
biomarker [55], and KRT7 is included in a whole blood mRNA 4-gene androgen regulated panel for
PCa diagnosis [33]. Considering the relative expression levels of our HMGB1 and HMGB2 interactome
targets in noncancerous cells or in blood of health subjects differ quite notably (Figure 7), one might
anticipate that more sensitive analyses could be carried out using as biomarkers those proteins that
are usually lowly expressed in noncancerous cells; thus, their levels are also low in the blood of
healthy individuals. For instance, FLNA reported as a possible biomarker [74] is one of the 50 proteins
most strongly expressed in normal prostate, and high levels are also detected in the blood of healthy
individuals, whereas other detected HMGB1 or HMGB2 interactome targets in our study, e.g., DNAAF2,
GOLM1, or TGM3, are in the lowest rank of detection in noncancerous samples and their increase
should become more discriminatory.
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Expression of HMGB1 and HMGB2 interactome targets in prostate tissue and whole blood in healthy
men. Data were directly obtained and processed from the GTEx Project through Expression Atlas,
an integrated database of gene and protein expression in humans, animals, and plants [105], accessed
through https://www.ebi.ac.uk/gxa/experiments/E-MTAB-5214/Results.

4. Materials and Methods

4.1. Biological Materials

PC-3 is an androgen-independent cell line derived from a bone metastasis [106]. The human PCa
PC-3 cell line, regularly validated by DNA typing, was obtained from the American Type Culture
Collection ATCC and grown in Roswell Park Memorial Institute RPMI-1640 media, supplemented
with 10% heat-inactivated fetal bovine serum and 1% penicillin-streptomycin (Thermo Fisher Scientific,
Inc. Waltham, MA, USA). Cells were cultured at 37 ◦C in 5% CO2 in air in a humidified incubator.
RNA from PCa tissue, isolated after radical prostate resection of a 66-year-old man diagnosed with
adenocarcinoma (Gleason score 6) and not previously treated with radiotherapy or chemotherapy,
was obtained from Biobanco de Andalucía (SPAIN).

4.2. Yeast Two Hybrid Methodology

Sacchacomyces cerevisiae strains were Y187 (MATα, ura3-52, his3-200, ade2-101, trp1-901, leu2-3, 112,
gal4∆, gal80∆, met-, and URA3::GALuas-GAL1TATA-LacZ MEL1) and Y2HGold (MATa, trp1-901, leu2-3,
112, ura3-52, his3-200, gal4∆, gal80∆, LYS2::GAL1uas-GAl1TATA-His3, GAL2uas-Gal2TATA-Ade2 URA3::
MEL1UAS-Mel1TATA, and AUR1-C MEL1).

Total RNA from the PC-3 cell line obtained from the supplier (Sigma-Aldrich, Saint Louis, MO,
USA) and RNA from PCa tissue (Biobanco de Andalucía, Spain) were used to construct cDNA libraries.
HMGB1 and HMGB2 interacting partners were identified using Matchmaker Gold Yeast 2-Hybrid
System (Clontech, Fremont, CA, USA). Library construction, bait construction, and Yeast 2-Hybrid
library screening were done according to the Takara Bio USA Matchmaker® Gold Yeast 2-Hybrid
System manual. In brief, the baits were cloned as fusions to the GAL4 activation domain in the
plasmid pGBKT7-AD and used to transform the yeast haploid strain, Y187. cDNA libraries prepared
from RNA extracted from PC-3 cells and PCa cancerous tissue were included as fusions to the GAL4
DNA-binding domain in the plasmid pGBKT7-BD and were used to transform the yeast haploid
strain, Y2HGold. RNAs from human samples used to prepare the Y2H libraries were obtained from
Biobanco de Andalucía (Spain). RNA was extracted from frozen tissue sections in OCT (Optimal
Cutting Temperature) compound, using the Qiacube robot from QIAGEN, based on ion-exchange
columns with a silica membrane. RNA was obtained with the miRNeasy mini-kit from QIAGEN that
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allows recovery of both total RNA and miRNAs. The samples were finally treated with RNase-free
DNAase from QIAGEN. The RNA was quantified at 260 nm and 280 nm by spectrophotometry using
Infinite F200 equipment of TECAN with a Nanoquant plate. Finally, the integrity of the samples was
evaluated by AGILENT 2200 Tape Station apparatus, with the RIN (RNA Integrity Number) parameter
being >8. Efficiency in the constructions of libraries was in the range recommended in the kit (all
libraries guaranteed to have >1 × 106 independent clones). As a previous control, we confirmed that
our baits (HMGB1 and HMGB2) do not autonomously activate the reporter genes in Y2HGold in
the absence of a prey protein. Bait and prey fusion proteins are each expressed in different haploid
yeast strains that can form diploids. The diploid yeast cell expresses both proteins, and when fusion
proteins interact, the transcriptional activator GAL4 is reconstructed and brought into proximity to
activate transcription of the reporter genes. For diploid formation, 1 mL of concentrated bait culture
was combined with 1 mL of library culture and incubated overnight with slow shaking. A drop of
the culture was checked under a phase-contrast microscope (40×) to confirm the existence of zygotes
before plating on diploid-selective media. Diploids were tested for expression of the reporter genes
in selective media. To reduce the appearance of false positives, a screening based on three different
independent markers (ADE2, HIS3, and MEL1) was selected. pGBKT7-BD plasmids carrying the preys
were rescued from confirmed positive diploids, and DNA was used to transform E. coli. The inserts
were sequenced with primer T7 (5′-TAATACGACTCACTATAGGG-3′). Sequences were used for
homology searches with BlastN and BlastX at the National Center for Biotechnology Information
NCBI (https://blast.ncbi.nlm.nih.gov/) and proteins in the database matching the queries annotated
as positives.

4.3. Expression Analysis by Quantitative Polymerase Chain Reaction (RT-qPCR)

Individual analyses of gene expression were carried out as follows. RNA samples were
retro-transcribed into cDNA and labeled with the KAPPA SYBR FAST universal one-step qRT-PCR kit
(Kappa Biosystems, Inc, Woburn, Massachusetts, USA). The primers for qPCR are shown in Table S3.
Reaction conditions for thermal cycling were 42 ◦C for 5 min, 95 ◦C for 5 s, 40 cycles of 95 ◦C for 3 s,
and finally 60 ◦C for 20 s. ECO Real-Time PCR System was used for the experiments (Illumina, Inc.,
San Diego, California, USA), and calculations were made by the 2−∆∆Ct method [107]. Student’s test
was used to check the statistical significance of differences between samples (p < 0.05). The relative
mRNA levels of the experimentally selected genes (target genes) were calculated by referring to
the mRNA levels of the housekeeping gene, encoding glyceraldehyde phosphate dehydrogenase
(GAPDH), which had been verified as being expressed constitutively under the assay conditions.
For valid quantification using the 2−∆∆Ct method, it is crucial that target and housekeeping PCR
amplification efficiencies are approximately equal: we therefore verified that the efficiencies of the 2
PCR reactions differed by <10%. At least 2 independent biological replicas and 3 technical replicas of
each of them were made for all the experiments.

4.4. Immunoprecipitation

One hundred µl of Protein G Plus-Agarose immunoprecipitation-reagent (Santa Cruz
Biotechnology, Dallas, TX, USA) were coupled with 4 µg of anti-HMGB1 antibody (sc-74085; Santa
Cruz Biotechnology) or anti-mouse antibody (Molecular Probes, A10534) in phosphate buffered saline
(PBS) for 1 h at 4 ◦C with rotation. PC-3 cells were lysed in 20 mM Tris/HCl, 150 mM, 1% Triton X-100,
1× phenylmethylsulfonyl fluoride (PMSF), and protease inhibitor cocktail (Sigma-Aldrich, Saint Louis,
MO, USA) and incubated for 30 min at 4 ◦C with rotation. Total protein (500 µg) was incubated with
the antibody agarose beads overnight and eluted by incubation in 1× lithium dodecyl sulfate LDS
loading buffer containing 350 mM β-mercaptoethanol at 95 ◦C for 10 min. Mass spectrometry and data
analysis were done as previously described [26].

https://blast.ncbi.nlm.nih.gov/
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4.5. Western Blot Analysis

Protein samples were run on 10% SDS-PAGE gels at 80 V for 20 min followed by 200 V for
45–60 min. Proteins were transferred onto a polyvinylidene fluoride (PVDF) membrane at 0.2 A for
1 h. Membranes were blocked by incubating with 5% non-fat dry milk for 1 h at room temperature
(RT) and then incubated with primary antibodies, anti-HMGB1 (sc-74085; Santa Cruz Biotechnology)
or anti-Cytokeratin 7 (ab181598; Abcam, Cambridge, UK) in phosphate-buffered saline with 0.1%
Tween 20® detergent PBST overnight at 4 ◦C. After incubation with the corresponding horseradish
peroxidase-conjugated secondary antibody, enhanced chemiluminescence for high sensitivity and
long-lasting signal (ECL) Anti-mouse IgG (NXA931 from GE Healthcare Sciences, Chicago, IL, USA) or
ECL Anti-rabbit IgG (NA934 from GE Healthcare Sciences, Chicago, IL, USA), protein bands were
detected using LuminataTMCrescendo Western HRP Substrate (Millipore Corporation, Burlington,
MA, USA) and a ChemiDocTM imager (Bio-Rad laboratories Hercules, CA, USA).

4.6. Immunofluorescence and Confocal Microscopy

Cells were plated in 6-well plates, each containing 4 sterile 13-mm glass coverslips. When 80%
confluent, cells were fixed in 4% paraformaldehyde in PBS for 15 min at RT. Cells were washed 3
times with PBS (137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, and 2 mM KH2PO4) and finally
treated with 0.1% Triton/PBS for 15 min at RT. They were then blocked in 1% bovine serum albumin
(BSA) in PBS for 1 h at RT. Primary antibodies, anti-HMGB1 (sc-74085; Santa Cruz Biotechnology) or
anti-Cytokeratin 7 (ab181598; Abcam, Cambridge, UK) were diluted in 1% BSA in PBS. Cells were
incubated with the corresponding primary antibodies overnight at 4 ◦C, followed by 3 washes with
PBS and staining with the secondary antibodies, modified with Alexa Fluor 488 and 568 (Invitrogen,
Carlsbad, CA, USA) previously diluted in 1% BSA in PBS for 1 h at RT in the dark. For nuclear
staining, after secondary antibody incubation, wells were washed 3 times and stained with Hoechst
(Life Technologies, Carlsbad, CA, USA) for 5 min at RT in the dark. Cells were washed once with PBS
and once with sterile distilled water. Each coverslip was mounted on a clean slide using ProLong™
Gold Antifade Mountant (Invitrogen). After drying, the slides were stored at 4 ◦C in the dark until they
were examined by confocal microscopy (Nikon A1R). Meander’s correlation coefficient was calculated
using Nis Elements software from Nikon.

4.7. HMGB1 and HMGB2 Silencing by siRNA

The PC-3 cell line was transfected with small interfering (si)RNA oligonucleotides using
Lipofectamine 2000 (Invitrogen). siRNA and Lipofectamine 2000 were each diluted separately
with Opti-MEM (Gibco), mixed together, and incubated for 5 min at RT. The mixture was added to
cells plated in 3 mL RPMI 1610 medium (final concentration of siRNA, 50 nM). Cells were collected at
48 h post transfection for further analysis. The following siRNAs (Life Technologies) were used for the
silencing of each gene: s20254 Silencer Select for HMGB1, s6650 for HMGB2, and AS02A5Z3 for the
siRNA negative control.

Total RNA was extracted from different conditions (siHMGB1, siHMGB2, and siCtrl#2) of the
PC-3 cell line using GeneJET RNA Purification Kit (#K0731, Thermo Scientific). The remaining DNA
was removed by incubating with DNase I, RNase-free (#EN0521, Thermo Scientific). DNA-free RNA
was finally purified using GeneJET RNA Cleanup and Concentration Micro Kit (#K0842, Thermo
Scientific). qPCR reactions were run in triplicate in an Eco Real-Time PCR System (Illumina) using
1 ng per reaction. PC-3 lysates of each condition were extracted with lysis buffer (50 mM Tris-HCl pH
8, 150 mM NaCl, 0.1% NP40, 1 mM ethylenediaminetetraacetic acid disodium salt (EDTA), and 2 mM
MgCl2), and protein concentration was quantified using Bradford Reagent (Bio-Rad). Protein samples
of 25–40 µg were loaded for western blotting. PVDF membranes were incubated overnight at 4 ◦C with
primary antibodies, anti-HMGB1 (ab18256, Abcam), anti-HMGB2 (ab67282, Abcam), or anti-α-tubulin
(sc53646, Santa Cruz Biotechnology).
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4.8. Heat Maps

Heat maps from change-fold ratios (Figures 5 and 6) were drawn with Heatmapper (http:
//heatmapper.ca/expression/), using complete linkage as clustering method and Euclidean distance as
the measurement method [108].

4.9. Statistical Analysis

Analyses were carried out using GraphPad Prism 6 (GraphPad Software, San Diego, CA, USA).
Continuous variables were expressed as mean ± SE. Relative gene expression assays were tested using
independent t-tests. A 2-tailed p-value test was used with p < 0.05 considered significant.

5. Conclusions

We have carried out the first HMGB1/HMGB2 interactome approach in prostate cancer (PCa)
using both the PC-3 cell line and adenocarcinoma tissue. Gene or protein expressions of the majority of
targets are dysregulated in PCa, and functional relationships between these proteins and PCa had also
previously been confirmed by different laboratories using different models and technical approaches.
We have shown by interference analysis that several HMGB1 and HMGB2 partners are regulated
by HMGB1 and HMGB2 themselves, which might contribute to the coordination of their cellular
action in PCa. Copy number alterations in the detected HMGB1 and HMGB2 partners are associated
with aggressive forms of PCa and a poor prognosis. These characteristics can potentially be used as
discriminatory biomarkers between high and low risk patients.
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