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Abstract Introduction: Large variability among Alzheimer’s disease (AD) cases might impact genetic dis-

coveries and complicate dissection of underlying biological pathways.
Methods: Genome Research at Fundacio ACE (GR@ACE) is a genome-wide study of dementia and
its clinical endophenotypes, defined based on AD’s clinical certainty and vascular burden. We as-
sessed the impact of known AD loci across endophenotypes to generate loci categories. We incorpo-
rated gene coexpression data and conducted pathway analysis per category. Finally, to evaluate the
effect of heterogeneity in genetic studies, GR@ACE series were meta-analyzed with additional
genome-wide association study data sets.
Results: We classified known AD loci into three categories, which might reflect the disease clinical
heterogeneity. Vascular processes were only detected as a causal mechanism in probable AD. The
meta-analysis strategy revealed the ANKRD31-rs4704171 andNDUFAF6-rs10098778 and confirmed
SCIMP-rs7225151 and CD33-rs3865444.
Discussion: The regulation of vasculature is a prominent causal component of probable AD.
GR@ACE meta-analysis revealed novel AD genetic signals, strongly driven by the presence of clin-
ical heterogeneity in the AD series.
� 2019 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
Keywords: Alzheimer’s disease; Vascular pathology; Cerebral amyloid angiopathy; GWAS; Biological pathway
1. Background

Dementia is an age-related clinical syndrome that devas-
tates cognitive abilities and interferes in elderly people’s
daily activities. Although its incidence is decreasing due to
improvements to public health systems and control of cardio-
vascular risk factors [1], its prevalence is steadily increasing
due to rising life expectancy of human populations [2].

Dementia is linked to many underlying pathologies, with
Alzheimer’s disease (AD) being the most common condi-
tion. Clinical AD is a heterogeneous syndrome. Brain au-
topsies have shown that roughly 80% of clinical AD
patients present with brain vascular pathology [3] in addition
to the common neuropathological AD hallmarks: amyloid-
osis, neurofibrillary tangles, and cerebral amyloid angiop-
athy (CAA) [4]. In fact, brain vascular pathology has been
shown to be an important risk factor for AD that accelerates
cognitive decline [5] and lowers the threshold for clinical
diagnosis of AD [6]. In that context, it has been suggested
that dementia is represented by a gradient of neurodegener-
ative and vascular components [7], from pure AD forms,
with a strong neurodegenerative component, to pure vascular
dementia (VaD) cases and in-between mixed pathologies,
representing the coexistence of both neurodegenerative
and vascular components [7]. Despite that, whether there
are differential biological routes operating under different
levels of vascular burden in clinical AD patients remains
mostly unknown.

In the search for the etiology of AD, genetic factors play a
pivotal role. Two forms of the disease can be differentiated ac-
cording to individual genetic background. The Mendelian
form is an uncommon disorder that mainly affects families
with early-onset AD (,65 years), whereas the polygenic
form is a complex disordermainly appearing in sporadic cases
with late-onset AD (LOAD) (.65 years). Highly penetrant
mutations detected in families with early-onset AD have
been pinpointed to three genes: APP [8], PSEN1 [9], and
PSEN2 [10], leading to the establishment of the amyloid
hypothesis as a potential causal mechanism for the disease
[11].

LOAD heritability falls in the range of 13%‒80% [12,13].
Although APOE ε4 was the first to be discovered and still
remains the strongest genetic risk factor for AD [14], almost
40 additional genetic variants have been identified [15–17]
using genome-wide association studies (GWAS) and large
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sequencing projects. Among the biological pathways underly-
ing genetic hits, the roles of the immune system, cholesterol,
amyloid, and tau metabolism have been highlighted [18].
Despite these, current genetic findings account for 31% of
LOAD heritability [19], and the biological picture of AD is
still poorly understood. Several reasons can explain this.
Among them, the presence of clinical and neuropathological
heterogeneity between AD cases in genetic studies, as
recently demonstrated [12], might compromise the power to
detect genuine genetic associations and decrease the estimates
of risk attributed to genetic variation.

Theneuropathological variability in clinicalADcases com-
prises a wide spectrum, from those with concomitant vascular
brain disease to thosewith a pureADphenotype, as previously
proposed by Viswanathan et al. [7]. This large heterogeneity
might hamper the identification of functional categories of
genes underlying differential biological routes to dementia
and might impact AD genetic studies. To gain insight into
the causality networks behind AD clinical subgroups and to
explore their impact in large GWAS, we conducted the
Genome Research at Fundacio ACE (GR@ACE) study. This
is a GWAS of dementia and its clinical endophenotypes
defined based on AD’s clinical certainty and the burden of
vascular comorbidity. The GR@ACE is a unique genomic
resource comprising the largest number of dementia cases
diagnosed in a single memory clinic to date. First, we deter-
mined whether we could identify categories of known
LOAD genes linked to clinical subgroups of AD cases. Next,
we explored whether these categories suggested different bio-
logical routes. Finally, to assess the impact of these clinical
subgroups of AD cases in GWAS findings, we meta-
analyzed the GR@ACE data with independent GWAS series.
2. Methods

2.1. Subjects

2.1.1. GR@ACE cohort and phenotype definitions
The GR@ACE study comprises 4120 AD cases and 3289

control individuals (Table 1). Cases were recruited from
Fundaci�o ACE, Institut Catal�a de Neuroci�encies Aplicades
(Catalonia, Spain). Diagnoses were established by a
multidisciplinary working group, including neurologists, neu-
ropsychologists, and social workers, according to the Diag-
nostic and Statistical Manual of Mental Disorders–IV criteria
for dementia and to the National Institute on Aging and Alz-
heimer’sAssociation’s (NIA-AA) 2011 guidelines for defining
AD[20] (seeSupplementaryMaterial). In the present study,we
considered AD cases as dementia individuals diagnosed with
probable or possibleADat anymomentof their clinical course.

We took advantage of this wide clinical definition to
refine AD cases. Considering the dementia spectrum pro-
posed by Viswanathan et al. [7], we classified Gr@ACE
AD patients according to the degree of clinical certainty
for AD phenotype and the presence of vascular comorbidity,
from “pure” clinical AD cases to mixed and vascular en-
riched cases. This approach was feasible due to Fundaci�o
ACE’s endorsement of a primary and a secondary etiologic
diagnosis as well as routine follow-up evaluations [21]
(Supplementary Methods). Using the entire clinical chart
of each subject, we differentiated five clinical subgroups
of patients representing the GR@ACE endophenotypes:
(1) the AD111 endophenotype comprises individuals with
a last clinical diagnosis of probable AD in both primary
and secondary diagnoses (n5 1854); (2) the AD11 includes
individuals diagnosed with probable AD in the primary diag-
nosis and probable or possible AD in the secondary diag-
nosis (n 5 2611); (3) the AD1 encompasses patients
diagnosed with probable or possible AD either in the pri-
mary diagnosis or in the secondary diagnosis (n 5 3797);
(4) the VaD1 includes patients diagnosed with VaD or
possible AD in the primary diagnosis (n 5 1168); and (5)
the VaD11 comprises patients diagnosed with probable or
possible vascular dementia in the primary diagnosis
(n 5 373) (Table 1) (Supplementary Fig. 1). Patients with
VaD were defined according to the Neuroepidemiology
Branch of the National Institute of Neurological Disorders
and Stroke and the Association Internationale pour la Re-
cherche et l’Enseignement en Neurosciences criteria [22].

Control individuals were recruited from three centers:
Fundaci�o ACE (Barcelona, Spain), Valme University Hospi-
tal (Seville, Spain), and the Spanish National DNA Bank
Carlos III (University of Salamanca, Spain) (www.
bancoadn.org). Written informed consent was obtained
from all participants. The Ethics and Scientific Committees
have approved this research protocol (Acta 25/2016. Ethics
Committee. H. Clinic i Provincial, Barcelona, Spain).

2.1.2. Replication sample
With the objective to successfully replicate novel GWAS

findings, we used an independent Spanish sample of 1943
AD cases (mean age 5 79.2; standard deviation
[SD] 5 7.6; 66.3% women) and 3016 controls (mean
age 5 52.8; SD 5 15.2; 46% women) presenting similar
characteristics to the GR@ACE cohort and with available
genetic data. All AD cases were examined at a single site,
Fundaci�o ACE, Institut Catal�a de Neuroci�encies Aplicades
(Catalonia, Spain), and were assessed by applying the
same criteria previously explained. The sample composition
of dementia cases comprised 30.1% of AD111 (n 5 584),
53.9% of AD11 (n 5 1048), 91.9% of AD1 (n 5 1783),
23.0% of VaD1 (n 5 447), and 4.6% of VaD11 (n 5 89)
cases. Control individuals were selected from the Spanish
population available at three centers, previously described.
2.2. GWAS genotyping, quality control, imputation, and
statistical analysis

Participants were genotyped using the Axiom 815K
Spanish Biobank Array (Thermo Fisher). Genotyping was
performed in the Spanish National Center for Genotyping

http://www.bancoadn.org
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Table 1

GR@ACE demographic characteristics and endophenotype definitions

Phenotype Primary diagnostic Secondary diagnostic N Mean age 6 SD Women % APOE ε4 %

Controls – – 3289 54.3 6 14.4 48.9 21.4

VaD11 VaD Pss AD 373 80.1 6 5.5 54.9 25.0

VaD1 VaD/Pss AD VaD/Pss AD 1168 80.4 6 6.3 65.0 32.8

AD Pr/Pss AD at any time in medical history 4120 79.0 6 7.5 69.6 40.1

AD1 Pr/Pss AD Pr/Pss AD 3797 79.2 6 7.5 70.6 41.2

AD11 Pr AD Pr/Pss AD 2611 78.8 6 7.9 72.8 44.6

AD111 Pr AD Pr AD 1854 79.0 6 8.0 74.6 47.0

Abbreviations: AD, Alzheimer’s disease; SD, standard deviation; VaD, vascular dementia; Pss AD, possible AD; Pr AD, probable AD.
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(CeGEN, Santiago de Compostela, Spain) (Supplementary
Methods).

We removed samples with genotype call rates ,97%,
excess heterozygosity, duplicates, samples genetically
related to other individuals in the cohort, or sample
mix-up (PIHAT .0.1875). If a sex discrepancy was de-
tected, the sample was removed unless the discrepancy
was safely resolved. To detect population outliers of
non-European ancestry (.6 SD from European popula-
tion mean), principal component analysis was conducted
using SMARTPCA from EIGENSOFT 6.1.4 (Fig. 1)
(Supplementary Methods).

We excluded variants with a call rate ,95% or that
grossly deviated from Hardy-Weinberg equilibrium in con-
trols (P value � 1 ! 1026); we also excluded markers
with a different missing rate between case and control (P
value , 5 ! 1024 for the difference) or a minor allele fre-
quency (MAF) , 0.01. Imputation was carried out using
the Haplotype Reference Consortium panel in the Michigan
Imputation Server (https://imputationserver.sph.umich.edu).
Only commonmarkers (MAF.0.01) with a high imputation
quality (R2 . 0.30) were selected for downstream analyses.

The GWAS was performed for GR@ACE as a whole
and for each endophenotype, ([N AD111 5 5143];
[N AD11 5 5900]; [N AD1 5 7086]; [N AD

dementia 5 7409]; [N VaD1 5 4487]; and [N

VaD11 5 3662]). The GWAS was conducted for genotype
dosages using an additive genetic model with PLINK 1.9.
A model including the top four PCs as covariates was used
for the discovery stage because it exhibited the lowest infla-
tion and optimal power compared with alternative tested
models (Supplementary Fig. 2). Further description is pro-
vided in Supplementary Methods. Power analysis was per-
formed using QUANTO software v1.2.4 [23] to model the
impact on statistical power at different MAFs and effect
sizes in available case-control cohorts. Results were de-
picted using the ggplot2 package in R. Analyses were per-
formed for a GWAS experiment that would meet criteria
for genome-wide significance (P , 5 ! 1028) and for a
replication experiment that would meet P , .05
(Supplementary Fig. 3). Calculations were performed
considering a disease prevalence of 1.73%, according to reg-
isters in the Spanish population.
GR@ACE GWAS data have been deposited into the Eu-
ropean Genome-phenome Archive (https://ega-archive.org),
which is hosted by the European Bioinformatics Institute
and the Center for Genomic Regulation, under the accession
number EGAS00001003424.

2.3. Genetic exploration of GR@ACE clinical
endophenotypes and enrichment analysis

With the objective to explore whether different biological
routes operate under different levels of vascular burden in
clinical AD patients, first, we classified GR@ACE dementia
cases to cover the dementia spectrum previously proposed
by Viswanathan et al. [7] (see Section 2.1). Second, we ex-
tracted the effect (odds ratio [OR]) for known LOAD genetic
variants (MAF .1%). See included variants in
Supplementary Table 1. Then, we explored whether previ-
ously identified LOAD variants were more strongly associ-
ated with a specific subgroup of AD patients. We
quantified the strength of the association for each variant
across endophenotypes, named henceforth global effect
change. It was calculated as the absolute difference between
variant OR for extreme endophenotypes (VaD11 vs.
AD111). According to the global effect change and direc-
tion of the enrichment, i.e., from VaD11 to AD111 or
from AD111 to VaD11, we classified LOAD genetic vari-
ants into three categories. Thus, category A includes variants
with an increase in the association effect from VaD11 to
AD111 endophenotypes and a global effect change
.0.05, and category B includes variants with an increase
in the association effect from AD111 to VaD11 and a
global effect change .0.05. Category C comprises variants
not fulfilling criteria for categories A or B (Supplementary
Table 1). Finally, we assessed the biological pathways un-
derlying each category. We incorporated data from gene co-
expression for each specific gene category using the
GeneFriends tool (http://genefriends.org/) and performed
pathway analysis of top coexpressed genes using the over-
representation enrichment method in WebGestalt (http://
www.webgestalt.org/option.php) (see Supplementary
Methods). With the objective to further explore potential
additional trends in category C, we performed a specific sub-
analysis in this category, widely described in Supplementary
Methods. To validate previous gene classification, which
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Fig. 1. Results of genome-wide association analysis for the GR@ACE data set (n5 7409). (A) Principal component analysis; (B) principal component analysis

centered in European population; (C) QQplot for the discovery model, adjusted for first four PCs; (D) Manhattan plot for genome-wide results. Abbreviations:

AFR, African; AMR, Admixed American; EAS, East Asian; EUR, European; SAS, South Asian.
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strongly determines the pathway analysis results, we con-
ducted a stringent subanalysis (see Supplementary
Methods and Supplementary Fig. 4).
2.4. Meta-analysis: Data sets and association analysis

To explore the impact of the different clinical endopheno-
types in GWAS findings, we combined the whole GR@ACE
GWAS data set, which represents a dementia set of samples
and its endophenotypes with (1) genotype-level data from
nine additional GWAS series (N 5 13,826), available
through dbGaP (https://www.ncbi.nlm.nih.gov/gap) that
we processed by applying identical quality control and
imputation procedures to those described for the GR@ACE
cohort (Supplementary Table 2) and (2) aggregated sum-
mary statistics available from the International Genomics
Alzheimer’s Project (IGAP) (http://web.pasteur-lille.fr/en/
recherche/u744/igap/igap_download.php) [24], including
IGAP stages I (N final 5 61,571) and IGAP I and II (N
final 5 81,455) (Supplementary Methods). Meta-analyses
were conducted using the inverse variant method in METAL
software (https://genome.sph.umich.edu/wiki/METAL).
The linkage disequilibrium (LD) score calculations, clump-
ing, and conditional analysis are described in Supplementary
Methods.
2.5. Replication of genome-wide significant findings

We then explored genome-wide significant (GWS) signals
in an independent cohort of Spanish ancestry (N5 4959).We
extracted variants of interest from GWAS data, which were
genotyped and processed applying similar methods to those
explained for the GR@ACE study (Section 2.3). Finally,
meta-analysis including the discovery stage, named stage I,
and the replica data set, stage II, was performed as previously
described. Results were interpreted according to the Amer-
ican Statistical Association guidelines [25,26].
2.6. Biological interpretation of meta-GWAS signals

Gene expression quantitative trait locus (eQTL) analysis
was conducted to link meta-GWAS top signals to genes.
Markers with moderate-to-high LD (r2� 0.6) with the novel
lead markers were identified using LDlink [27] for European
population and were included in this analysis. We used brain
(n5 11) and whole-blood (n5 1) tissues from the GTEx v7
repository (https://www.gtexportal.org/home) for mapping
cis-eQTLs (Supplementary Table 3). As an extension of
GTEx tissue eQTL mapping, we explored brain eQTLs for
GWS genomic regions using additional databases available
via Functional Mapping and Annotation of Genome-Wide
Association Studies (FUMA) [28]. We also performed

https://www.ncbi.nlm.nih.gov/gap
http://web.pasteur-lille.fr/en/recherche/u744/igap/igap_download.php
http://web.pasteur-lille.fr/en/recherche/u744/igap/igap_download.php
https://genome.sph.umich.edu/wiki/METAL
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functional annotation for GWS markers, chromatin
interaction, and gene-based analysis using similar criteria
to those previously described by Jansen et al. [17] (see
Supplementary Methods).
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3. Results

3.1. GR@ACE genome-wide association study

After quality control and imputation, the GR@ACE
study encompassed 7409 unrelated individuals from the
Spanish population and 7.7 million variants
(lGC 5 1.03). The APOE-rs429358 marker was the only
one to have a GWS association (OR 5 2.27 [2.06–2.50];
P 5 1.25 ! 10262) (Fig. 1). Four additional LOAD
variants displayed statistically significant evidence of
replication (BIN1-rs6733839, MAPT-rs2732703, MS4A2-
rs983392, and PICALM-rs10792832) and nine additional
markers presented a consistent direction for the effect
(Supplementary Table 1). MAPT marker association
remains significant in APOE ε4 noncarriers, but the effect
size was stable in both strata (Supplementary Table 4).
GWAS of clinical endophenotypes showed that
CNTNAP2-rs117834366 was associated with the VaD11

endophenotype (Table 2). This marker is in complete
linkage equilibrium with CNTNAP2-rs114360492
(r2 5 0), previously reported in GWAS of AD by
proxy [17]. See results in Supplementary Results
(Supplementary Figs. 5 and 6; Supplementary Table 5).

3.2. Genetic exploration of GR@ACE clinical
endophenotypes and enrichment analysis

To explore whether clinical AD subgroups, representing
GR@ACE endophenotypes, reflected variations in the
underlying biological pathways driving dementia, we
classified LOAD genetic variants into three categories.
Category A comprised variants strongly related to the purest
form of clinical AD (i.e., subjects with probable AD in
primary and secondary diagnoses). The most prominent
locus of this category was APOE-rs429358 (AD111

OR 5 2.92 [2.60–3.27], P value 5 9.26 ! 10275; VaD11

OR [95% confidence interval] 5 1.27 [1.02–1.59], P
value 5 .04). Other loci included in category A were CR1,
BIN1, MEF2C, MS4A2, PICALM, MAPT, and CD33. In
contrast, category B comprised variants with the strongest
effect observed in subjects with AD mixed with vascular
disease (SORL1, ADAM10, CASS4, ATP5H, and ACE)
(Supplementary Table 1). Further description is provided
in Supplementary Results. Category C comprised a group
of variants with effects in all clinical endophenotypes
(Fig. 2). Subanalysis for category C is shown in
Supplementary Results and Supplementary Table 6.

Next, we explored biological pathways for each gene
category. Note that the regulation of vasculature develop-
ment and blood vessel morphogenesis were only detected
for genes in category A, which is more closely related to



Fig. 2. (A) Enrichment trend per genetic marker and gene category across GR@ACE endophenotypes. (B) Graph centered in effect change range 0–0.5. Effect

change per endophenotype5Variant Odds ratio–variant null effect; Enrichment trend per category was obtained applying a linear regression using ggplot2 in R.

Abbreviations: AD, Alzheimer’s disease; VaD, vascular dementia.
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pure AD (P5 2.03! 1027, P5 1.90! 1026, respectively)
(Table 3). Additional categories indicated immune system
pathways (category B, P 5 2.07 ! 1027; category C,
P 5 5.77 ! 10215) (Table 3). Finally, with the aim of
validating previous results, we conducted a subanalysis by
classifying LOAD genetic variants with more stringent
classification criteria (Supplementary Methods). Again,
APOE,CR1,MEF2C,MS4A2, and PICALM loci were found
in category A; SORL1 and CASS4 were in category B; and
additional AD loci were in category C (Supplementary
Fig. 4). Regulation of vasculature development was
exclusively identified as the top pathway in category A
(P 5 2.14 ! 1027) when we restricted the analysis to
include those loci coexpressing with at least 4 LOAD genes
(Supplementary Table 7). Further replication in cohorts with
available neuropathological data would be recommended.
3.3. Meta-analysis of GR@ACE study with other data sets

To assess the impact of sample composition in AD
GWAS, and look for new AD loci, we first combined
the GR@ACE data set with nine additional genomic
databases that had genotypic level data available. Subtle
genomic inflation was detected, mainly explained
by polygenicity (lGC 5 1.10; LD score
intercept 5 1.04). Five regions were associated with
LOAD (Fig. 3); of these, four (APOE-rs429358,
PICALM-rs10792832, MS4A2-rs983392, and BIN1-
rs6733839) have been previously linked to AD
(Supplementary Table 8), and one is a new GWAS
finding (ANKDR31-rs4704171; OR 5 1.19 [1.12–1.27];
P 5 2.78 ! 1028) (Table 2).

Then, we conducted a genome-wide meta-analysis
combining the GR@ACE study with IGAP stage I. We
identified 12 LOAD genomic regions reaching GWS.
CD33-rs3865444, which did not reach GWS in the IGAP
meta-analysis, was significantly associated with LOAD
(OR 5 0.92 [0.89–0.95]; P 5 3.61 ! 1028)
(Supplementary Fig. 7). Among the top suggestive signals,
we detected HBEGF-rs4150233 (OR 5 0.92 [0.90–0.95];
P 5 5.10 ! 1028) previously identified by a transethnic
GWAS [29].

Next, meta-analysis of the whole GR@ACE data set with
IGAP I and II enabled the identification, for the first time,
of NDUFAF6-rs10098778 as a GWS signal (OR 5 0.94
[0.91–0.96]; P 5 2.54 ! 1028). When we combined
GR@ACE AD111 endophenotype with IGAP I and II, we
also detected SCIMP-rs7225151 (OR 5 1.11 [1.07–1.15];
P 5 1.12 ! 1028) (Table 2) (Supplementary Fig. 8). It
was previously reported as a genome-wide suggestive signal
by IGAP [24]. Recently, SCIMP-rs113260531, which is in
complete LD with our lead marker (r2 5 1), was associated
with AD [17].
3.4. Replication of genome-wide significant findings

Finally, we tested for replication of the new signals in an
independent sample of 4959 Spanish individuals. The
CNTNAP2-rs117834366, detected in the GWAS of
GR@ACE VaD11 endophenotype, had a P value of 0.79
with a similar effect direction to that reported previously
but strongly deflated in the entire replica sample
(OR 5 1.09 [0.66–1.78]; P 5 .79) (Table 3). Analysis of
the subspecific VaD phenotype in the replica (N5 89) would
be highly inaccurate.

In the exploration of meta-GWAS findings, we observed
that the ANKDR31-rs4704171-C marker increased the risk
of AD (OR 5 1.10 [0.98–1.25]; P 5 .09; power 5 33%).



Table 3

Top ten biological pathways per gene category

Gene ontology

pathway

Top 10 coregulated pathways

for category A P value

GO:1901342 Regulation of vasculature

development

2.03 ! 1027

GO:0060326 Cell chemotaxis 2.59 ! 1027

GO:0048771 Tissue remodeling 6.77 ! 1027

GO:0050865 Regulation of cell activation 1.14 ! 1026

GO:0007159 Leukocyte cell-cell adhesion 1.21 ! 1026

GO:0048514 Blood vessel morphogenesis 1.90 ! 1026

GO:0003012 Muscle system process 2.54 ! 1026

GO:0002764 Immune response-regulating

signaling pathway

3.48 ! 1026

GO:0032103 Positive regulation of response

to external stimulus

3.91 ! 1026

GO:0010959 Regulation of metal ion transport 4.36 ! 1026

Gene ontology

pathway

Top 10 coregulated pathways

for category B P value

GO:0009620 Response to fungus 2.02 ! 1027

GO:0050886 Endocrine process 3.58 ! 1027

GO:0002443 Leukocyte mediated immunity 5.47 ! 1027

GO:0050865 Regulation of cell activation 1.52 ! 1025

GO:0031349 Positive regulation of

defense response

8.42 ! 1025

GO:0032103 Positive regulation of

response to external stimulus

1.00 ! 1024

GO:0002250 Adaptive immune response 1.30 ! 1024

GO:0098542 Defense response to

other organism

2.00 ! 1024

GO:1901568 Fatty acid derivative

metabolic process

2.24 ! 1024

GO:0050900 Leukocyte migration 2.57 ! 1024

Gene ontology

pathway

Top 10 coregulated pathways

for category C P value

GO:0007159 Leukocyte cell-cell adhesion 5.77 ! 10215

GO:0050865 Regulation of cell activation 4.37 ! 10214

GO:0002764 Immune response-regulating

signaling pathway

1.33 ! 10212

GO:0002253 Activation of immune response 3.96 ! 10212

GO:0002443 Leukocyte mediated immunity 4.34 ! 10212

GO:0002274 Myeloid leukocyte activation 7.78 ! 10212

GO:0002250 Adaptive immune response 1.24 ! 10211

GO:0002263 Cell activation involved

in immune response

7.07 ! 10211

GO:0022407 Regulation of cell-cell

adhesion

5.40 ! 1029

GO:0070661 Leukocyte proliferation 1.22 ! 1028
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Although the expected effect is in linewith previous data, the
precision of the estimate in this replica differs, ranging from
a 2% decrease (a small negative association) to a 25%
increase. Of note, the result emerging from the
meta-analysis of the replica with the discovery sample
(n5 26,194) is compatiblewith its potential role in dementia
(OR 5 1.18 [1.11–1.24]; P 5 1.15 ! 1028) (Table 3). See
forest plot in Supplementary Fig. 9.

We observed a similar effect direction in the NDUFAF6-
rs10098778 marker to that reported in the discovery stage,
with interval estimates ranging from a risk decrease of
11% to a risk increase of 5% (OR 5 0.96 [0.89–1.05];
P 5 .40; power 5 16%). This signal had a
P 5 2.32 ! 1028 in the final meta-analysis, including the
whole GR@ACE data set, the replica, and IGAP I and II
(n 5 91,373) (Supplementary Fig. 9).

SCIMP-rs7225151 showed a risk effect in the whole
replica. Limits of the interval were consistent with a positive
association (OR 5 1.14 [1.01–1.29]; P 5 .047;
power5 39%; n cases5 1943). In the AD111 endopheno-
type, the marker presented the same positive risk effect
direction (OR 5 1.07 [0.88–1.30]), although had P 5 .49,
which could be mainly explained by a reduction of the
sample size (power 5 19%; n cases 5 584). Our results
for both meta-analyses, the final meta-analysis of the whole
GR@ACE data set (n5 91,373) and the final meta-analysis
of GR@ACE AD111 endophenotype, (n 5 85,055) were
compatible with a potential effect of this marker in AD
(Table 3). See forest plots in Supplementary Fig. 9.
3.5. Biological interpretation of meta-GWAS signals

To identify candidate genes and potential causal variants
within novel meta-GWAS regions, we conducted cis-eQTL
mapping. The rs2335107 marker located in the ANKRD31
locus (chr5:74,451,693) was associated with the cortical
expression of the long noncoding RNA (lncRNA) CTD-
2235C13.3 (P 5 1.26 ! 1025). This variant is located
83.4 kb from the meta-GWAS lead single nucleotide
polymorphism (rs4704171, chr5:74,368,254), and both are
in complete LD (r2 5 1). The CTD-2235C13.3 gene is
located 1.6 kb from the HMGCR locus, and its function is
unknown. The NDUFAF6 region mapped for NDUFAF6
RNA cortical expression (P 5 5.56 ! 1026) and for
TP53INP1 RNA blood expression (P 5 1.17 ! 10210).
Finally, rs73976325 (chr17:5,123,227), located in the
SCIMP locus, to 13.8 kb from the meta-GWAS top signal
(rs7225151, chr17:5,137,047), mapped to brain cis-acting
eQTL for AC012146.1 lincRNA (P 5 2.15 ! 1027). Two
additional markers were pinpointed to blood eQTLs,
SCIMP-rs6502851 (P 5 3.89 ! 10208) and RABEP-
rs59277121 (P 5 3.89 ! 1028) (Supplementary Table 3).
In an additional prioritization strategy, combining informa-
tion from positional mapping, eQTL, chromatin interaction,
and gene-based genome-wide association analysis via
FUMA, results pointed to ANKDR31 and POLK for the
ANKDR31 genomic region, as well as NDUFAF6 and
TP53INP1 for the NDUFAF6 region (Supplementary
Table 9). Further description is provided in Supplementary
Information and Supplementary Table 9.
4. Discussion

We present a comprehensive GWAS of AD dementia
cases. This represents the first pilot study exploring the
genetics and underlying biological pathways of subgroups
of patients with AD, defined based on vascular burden. We



Fig. 3. A) Results of genome-wide association analysis for GR@ACEmeta-analysis with nine additional databases (n5 21,235). (B) QQplot. (C) Associations

of the region centered on rs4704171 located in the ANKRD31 locus and containing the HMGCR locus.
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showed differential biological routes underlying clinical en-
dophenotypes and demonstrated how these differential sub-
groups of patients with AD impact GWAS discoveries. The
GR@ACE study represents a unique genomic resource
because all affected cases were diagnosed in a single mem-
ory clinic using the same screening and diagnostic tech-
niques. This might limit potential sources of clinical
variation between study participants, recently demonstrated
in a large meta-GWAS [12].

Based on the increase in evidence suggesting that
vascular brain pathology can act concomitantly with AD
to produce a more rapid cognitive decline [5], we explored
the effect of known LOAD loci across different levels of
vascular burden in dementia patients using only clinical def-
initions. Our basic idea was to dissect, from a molecular
point of view, the model previously proposed by Viswana-
than et al. [7]. We observed three categories of loci, which
might reflect the disease’s clinical heterogeneity, from
vascular and mixed forms to a “purer” AD phenotype.
Intriguingly, we detected vascular processes to be the main
causal mechanism in clinically pure AD and found the im-
mune system pervasively detected across the three cate-
gories. Although both pathways have been previously
associated with LOAD by network analysis [30], this is the
first study to show that the association with the vascular sys-
tem is conducted by AD-specific clinical subgroup.

It should be noted that the present study used clinical
criteria to define the AD cases [20], but recently the
classification of AD has evolved. In 2018, the NIA-AA pro-
posed a novel research framework for the biological classi-
fication of AD based on the presence in vivo of biomarker
evidences for amyloid (A), tau (T), and neurodegeneration
(N), as surrogate of the neuropathological state of an individ-
ual [31]. The AT(N) biomarker system allows the classifica-
tion of individuals into three categories: those with a normal
biomarker profile, those with biomarkers compatible with
AD change, and those with biomarkers compatible with
non-AD pathological changes [31]. Using the NIA-AA
approach, the generation of subgroups of AD patients
considering vascular pathology would be unfeasible, as
nowadays the ATN classification does not integrate mea-
sures of vascular dysfunction. Taking into account that
most of dementia cases are caused by mixed pathologies,
the current system seems deeply incomplete to study the
probable interaction between neurodegeneration and
vascular dysfunction. This idea has also been claimed by
others [32,33]. Thus, we encourage other groups to
contrast the proposed loci classification, which was based
on the GR@ACE clinical endophenotypes, but using well-
powered GWAS cohorts with available neuropathological
data.

Silent changes occur in brain microvasculature during
AD progression. In fact, CAA is a well-recognized AD path-
ological feature characterized by the accumulation of amy-
loid proteins in the walls of small cerebral vessels. CAA
has been proposed to compromise the perivascular drainage
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of Ab from the brain to the peripheral system [34]. Almost
all AD brains harbor CAA pathology to some extent,
although in vivo most CAA cases remain undiagnosed,
even using the validated Boston criteria [35]. Mendelian mu-
tations of the APP gene have been found in CAA and AD
[8,36]. APOE ε4 and CR1 have been associated with an
increased risk of CAA [37,38]. In particular, distinct AD
loci have been associated with capillary and noncapillary
CAA [39]. Between them, APOE ε4 was strongly related
to capillary CAA [39]. These links make it conceivable
that a potential genetic overlap exists between CAA and
AD and suggest that CAA pathology could represents an un-
derlying process for AD. In that context, we think that
intrinsic alterations to the vasculature could contribute to
disease pathogenesis in more pure forms of AD, explaining
our results. Conversely, in AD individuals with evident cere-
brovascular lesions comprising mixed forms, the additional
role of cardiovascular risk factors such as hypertension,
atherosclerosis, or arteriosclerosis should be considered, as
these could point to a systemic pathological state leading
to vascular damage and dementia. This would agree with
the limited genetic correlation between neurodegenerative
and other neurologic disorders [12], as well as with the re-
sults obtained from heterochronic parabionts in aging
models [40].

Understanding the role of vasculature pathology in AD
seems to be a pertinent step. In that scenario, CAA would
be a key AD hallmark. CAA represents the unique identified
link between the vascular and amyloid hypotheses, but it has
been completely neglected in the original hypothesis
formulation.

From a clinical point of view, placing each patient some-
where along the disease spectrum proposed by Viswanathan
et al. [7] is complex. A deep understanding of heterogeneity
in AD seems necessary to design better genetic studies,
which must drive the discovery of novel loci and, ultimately,
innovative targets for AD therapies. In this study, we
explored how clinical heterogeneity might impact GWAS
findings by integrating distinct GWAS data sets with either
the GR@ACE cohort as a whole or its endophenotypes.
We found several new GWS signals that seem strongly
dependent on the sample composition. For example, after
combining IGAP stages I and II with the entire GR@ACE
data set, we identified genetic signals in the NDUFAF6
genomic region but not in the SCIMP region. When this ex-
ercise was conducted using GR@ACE endophenotypes, the
SCIMP signal was detected using the clinically “pure” AD
GR@ACE endophenotype. It should be noted that the power
to detect SCIMP signal in the meta-analysis with
GRA@ACE dementia and GR@ACE AD111 was 75 and
70%, respectively.We tried to replicate this finding in a purer
AD data set without clinical mixed dementia cases, but the
available number of clinical AD111 cases might be
compromising the statistical power to replicate (N
cases 5 584; power 5 19%). Despite that, we think that us-
ing specific clinical subgroups of the AD population might
empower genetic studies to detect genes associated with spe-
cific disease axes.

An alternative strategy is taking advantage of clinical het-
erogeneity. Specifically, heterogeneity might play a dual role
in genetic studies. Although it might decrease the power to
detect genes associated with more specific clinical sub-
groups, incorporating detailed clinical AD definitions can
also promote identifying genes shared with other conditions
or copathologies such as small vessel disease (SVD). In fact,
this was the case for the ATP5H locus, which was previously
found to be associated with AD [41] andmore recently found
in relation to SVD [42]. We think that the same could
apply to the ANKRD31 finding. ANKRD31 encodes a
protein containing ankyrin repeats, which is linked with
neurodevelopmental disorders [43]. Of note, ANKRD31
GWAS signal mapped to the brain eQTL of a lncRNA,
located 1.6 kb from the HMGCR locus and residing in the
COL4A3BP gene. The HMGCR locus is one of the most
important coregulators of cholesterol biosynthesis, and it is
the therapeutic target of statins. The COL4A3BP gene is
involved in lipid transport [44]. Several studies have linked
HMGCR polymorphisms and AD risk or age at onset for
AD [45], and the cholesterol pathway has been identified
to be a biological route shared between AD and SVD.
Interestingly, markers in the POLK locus, associated by
gene-based genome-wide association analysis on this study
and located in the same disequilibrium block of ANKDR31
(Fig. 3), jointly conferred risk for AD and plasma levels of
LDL [46]. Considering prior findings, our results are
consistent with this genomic region having a role in mixed
dementia. The reported genetic signal should be considered
a highly probable finding, although independent replications
are still required.

In the present work, NDUFAF6 signals reached GWS for
the first time. This finding presented the same effect direc-
tion in the independent sample (power5 16%) and remains
as GWS after the final meta-analysis. Our lead GWAS
marker is in high LD with NDUFAF6-rs4735340, the top
suggestive signal reported by Kunkle et al. [18] at this region
(r2 5 0.95, for Utah residents of European ancestry popula-
tion). Despite that, there are subtle differences in LD esti-
mates for the Iberian population (r2 5 0.87), suggesting
that the genetic architecture of the Spanish population could
be helping to pinpoint the region of interest. This region is in
the close vicinity of TP53INP1, previously associated with
AD by a gene-based approach [47]. TP53INP1 is involved
in mitochondrial function. Considering these findings and
results emerging from eQTL analysis, it would be feasible
that a regulatory element for NUDFAF6 resides upstream
of the TP53INP1 locus. We also detected that the SCIMP
signal was mainly conducted by a specific group of AD
cases. This signal was reported to be a suggestive signal
by IGAP [24], and a proxy of it (SCIMP-rs113260531)
reached GWS recently [17]. SCIMP regions has been
involved in several eQTLs, from uncharacterized cortical
lncRNA to blood eQTLs in SCIMP and RABEP1 loci, both
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associated with immune system function [48,49]. The CD33
locus remains a controversial LOAD locus because large
meta-GWAS were unable to replicate this signal [24], but
here it reached GWS. We previously proposed that cryptic
population substructure could explain the divergent observa-
tions for this locus [50].

Note that the lack of definitive neuropathological data for
AD cases is a severe limitation of the present study. Clinical
definitions have important uncertainties, and diagnosis mis-
classifications sometimes occur. Hence, some AD individ-
uals included in enriched AD endophenotypes may present
concomitant vascular brain disease. The generation of large
histopathological GWAS cohorts with associated quantita-
tive data on each pathological hallmark is the ultimate solu-
tion to tackling the intrinsic heterogeneity in AD.
Unfortunately, there are few examples of neuropathological
cohorts: only one GWAS has investigated the genetics of
CAA, with APOE being the unique GWS signal [37]. In
this study, a small number of AD cases evolved to vascular
dementia during follow-up. Large cross-sectional clinical
GWAS cannot control diagnostic changes occurring in clin-
ical practice. Clinical diagnosis is a dynamic variable, so un-
derstanding the genetic profiles of subgroups of patients
evolving to other pathologies would provide powerful infor-
mation.

It should be considered that there is a limitation in
reducing the sample size by splitting the cohort into different
endodophenotypes, instead of combining them. Despite that,
spanning the spectrum of dementia individuals to generate
clinical endophenotypes provided us a versatile design,
which let us explore the effect of heterogeneity in GWAS
and replicate the main findings of pathway analysis using
an alternative strategy. The limited number of VaD cases
in subgroup analysis limits the accuracy of gene categoriza-
tion and pathway analysis. Finally, the exact effector genes
for LOAD genetic findings remain unclear. This is a severe
limitation to pathway analysis that can only be circumvented
by isolating the causativemutations. Independent replication
will be needed to corroborate our new GWS signals. In that
sense, the selection of specific patient groups might lead to
successful replication studies.

The assessment of heterogeneity has important implica-
tions for gene discovery, the development of treatments,
and their appropriate use in individual patients. The
GR@ACE cohort provides useful genomic information, as
it accounts for potential sources of variability and contains
different subgroups of cases. This enabled us to analyze
the LOAD genetic landscape in terms of clinical endopheno-
types. Our efforts to disentangle the mechanistic pathways
operating under clinical subgroups of patients revealed that
vasculature regulation may be an essential part of the caus-
ative mechanism of LOAD. Finally, our exploration of AD
genetics highlights the relevance of sample composition in
genetic discoveries. Considering sample composition in
the design of genetic studies might lead to the identification
of genetic profiles, which can help clinicians distinguish
subsets of patients within the disease spectrum and promote
novel therapy targets for AD.
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RESEARCH IN CONTEXT

1. Systematic review: Recent literature search, con-
ducted using PubMed database, revealed that the
presence of Alzheimer’s disease (AD) with vascular
brain pathology is the most common form of demen-
tia. Regardless, it is unclear whether subgroups of
AD patients present differential genetic profiles or
develop dementia through differential biological
routes.

2. Interpretation: Our findings showed three gene cate-
gories operating differently across subgroups of pa-
tients with AD and highlighted the role of vascular
pathways in pure forms of AD. We identified novel
genome-wide significant signals, which seem
strongly dependent on the AD subset used for meta-
analysis.

3. Future directions: Our findings suggest the impor-
tance of investigating the role of cerebral amyloid an-
giopathy, a unique identified AD hallmark that
connects both the vascular and amyloid hypotheses
for AD. Accounting for sample composition in the
design of genetic studies might lead to the identifica-
tion of genetic profiles, which help clinicians to
distinguish subsets of patients and establish novel
therapy targets.
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