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Abstract

Background: Thirty to forty percent of patients with Diffuse Large B-cell Lymphoma (DLBCL) have an adverse
clinical evolution. The increased understanding of DLBCL biology has shed light on the clinical evolution of this
pathology, leading to the discovery of prognostic factors based on gene expression data, genomic rearrangements
and mutational subgroups. Nevertheless, additional efforts are needed in order to enable survival predictions at the
patient level. In this study we investigated new machine learning-based models of survival using transcriptomic and
clinical data.

Methods: Gene expression profiling (GEP) of in 2 different publicly available retrospective DLBCL cohorts were
analyzed. Cox regression and unsupervised clustering were performed in order to identify probes associated with
overall survival on the largest cohort. Random forests were created to model survival using combinations of GEP
data, COO classification and clinical information. Cross-validation was used to compare model results in the training
set, and Harrel’s concordance index (c-index) was used to assess model’s predictability. Results were validated in an
independent test set.

Results: Two hundred thirty-three and sixty-four patients were included in the training and test set, respectively.
Initially we derived and validated a 4-gene expression clusterization that was independently associated with lower
survival in 20% of patients. This pattern included the following genes: TNFRSF9, BIRC3, BCL2L1 and G3BP2. Thereafter,
we applied machine-learning models to predict survival. A set of 102 genes was highly predictive of disease
outcome, outperforming available clinical information and COO classification. The final best model integrated
clinical information, COO classification, 4-gene-based clusterization and the expression levels of 50 individual
genes (training set c-index, 0.8404, test set c-index, 0.7942).
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Conclusion: Our results indicate that DLBCL survival models based on the application of machine learning
algorithms to gene expression and clinical data can largely outperform other important prognostic variables such
as disease stage and COO. Head-to-head comparisons with other risk stratification models are needed to compare
its usefulness.
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Background
Diffuse Large B-cell Lymphoma (DLBCL) is the most
frequent type of lymphoma, accounting for 25% of all
cases of non-Hodgkin lymphoma (NHL). DLBCL has
an estimated incidence in the United States of 6.9
new cases per 100,000 people/year [1]. Despite its ag-
gressivity, 60–70% of patients achieve curation after
first-line immunochemotherapy with R-CHOP (rituxi-
mab, cyclophosphamide, doxorubicin, vincristine, pred-
nisone) [2]. Nevertheless, the remaining 30–40% of
cases exhibit relapsed or refractory disease which fre-
quently precludes a dismal prognosis [3].
Improved biological characterization of DLBCL has

led to the identification of new disease subtypes with
prognostic implications. DLBCL cases with dual re-
arrangement of MYC and BCL2 and/or BCL6, frequently
named “double-hit” lymphomas, are associated with sig-
nificantly shorter survival and have been reclassified as a
new group of lymphomas by the World Health
Organization [4, 5]. Similarly, using gene expression pro-
filing (GEP), DLBCL can be classified in two broad
groups by their cell-of-origin (COO) status, namely ger-
minal center B-cell (GCB)-like and activated B-cell
(ABC)-like. Those among the latter show an adverse
prognosis with respect to the GCB-like DLBCLs [6].
More recently, different groups reported the identifica-
tion of new DLBCL subgroups based on co-occurrent
genomic alterations [7, 8], paving the path towards a
more individualized approach to this disease.
In the meantime, the emergence of artificial

intelligence has brought new expectations to the field of
medicine, particularly for disease diagnosis and prognos-
tication. Classical models such as cox proportional haz-
ard model and the log-rank test assume that patient
outcome consists of a linear combination of covariates,
and do not provide decision rules for prediction in the
real-world [9]. On the contrary, machine learning (ML)
is a field of artificial intelligence that performs outcome
prediction based on complex interactions between mul-
tiple variables. ML makes little assumptions about the
relationship between the dependent and independent
variables [10]. In ML, a model is trained with examples
and not programmed with human-made rules [11]. In
the case of survival data, ML needs to take into account
the time to event and censoring of the data.

ML has been applied to predict survival in different
clinical scenarios with encouraging results. The imple-
mentation of ML-based survival models is increasingly
popular in order to provide patient-centered risk infor-
mation that can assist both the clinician and the patient.
Kim et al. [12] recently published a deep-learning model
that uses clinical parameters to predict survival of oral
cancer patients with high concordance with reality. Simi-
larly, random forest-based models have been created to
predict 30-day mortality of spontaneous intracerebral
hemorrhage [13] and overall mortality of patients with
acute kidney injury or in renal transplant recipients [14,
15].
In this study, we used gene expression data from

DLBCL cases in order to create new models of survival
based on retrospective data. Initially, we sought to iden-
tify transcripts and gene expression patterns associated
with prognosis. Afterwards, we used this information in
order to fit a random forest model capable of predicting
overall survival with high-concordance. Comparisons
with clinical data and COO classification are provided.
We believe that our results will facilitate the establish-
ment of individualized survival predictions in DLBCL.

Methods
Data origin and normalization
The gene expression database GSE10846 was used for
training and the gene expression database GSE23501
was used as an independent test set (Table 1). GSE10846
contains gene expression data from whole-tissue biopsies
of 420 patients diagnosed with DLBCL according to
World Health Organization (WHO) 2008 criteria [16],
of which we selected 233 cases treated with R-CHOP-

Table 1 Patient characteristics

Cohort GSE10846 GSE23501

N. of cases 233 64

Sex (% male) 57.50 71.87

Median Age 61.0 63.5

Median follow-up time (years) 2.12 2.24

COO GCB 45.90% 57.81%

ABC 39.90% 29.69%

NC 14.20% 12.50%
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like regimens in the first line. GSE23501 contains 69
DLBCL whole-tissue biopsies of patients treated with R-
CHOP-like regimens as a first line [17]. Both studies
used Affymetrix HG U133 plus 2.0 arrays for gene ex-
pression quantification. As the data from GSE23501 de-
pends from British Columbia biobanks and part of the
data from GSE10846 also originated from the same loca-
tion, we used Spearman correlation to rule out duplicate
samples. Indeed we detected 4 samples with almost per-
fect correlation (> 0.99) which we treated as duplicates
and were removed from downstream analysis. A case
treated with rituximab, doxorubicin, bleomycin, vinblast-
ine and dacarbazine was also discarded, making a final
validation set of 64 cases. No other pairs of samples
were strongly correlated at the gene expression level (>
0.9). COO classification was originally deposited with
gene expression data, and in both cases this classification
was inferred exclusively from gene expression data.
Log2-transformed expression data for both cohorts were
obtained from the Gene Expression Omnibus (GEO)
database [18]. Rank normalization was applied to the
data in order to make the results comparable.

Clusterization
The Mclust algorithm [19] was used in order to detect
the 2 most likely clusters of patients according to the ex-
pression of each probe (Mclust function, parameter G =
2). Briefly, the Mclust algorithm determines the most
likely set of clusters according to geometric properties
(distribution, volume, and shape). An expectation-
maximization algorithm is used for maximum likelihood
estimation, and the best model is selected according to
Bayes information criteria. The association of each of
these probe-level clusters with overall survival was calcu-
lated using cox regression. Thereafter, those probes
whose clusterization was significantly associated with
survival (Bonferroni adjusted p-value < 0.05) were se-
lected for multivariate clusterization using the same
Mclust algorithm. Cluster prediction was performed on
the test set using parameters estimated in the training
cohort, and cox regression was used to verify the associ-
ation of this clusterization with overall survival. The
Shoenfeld’s test was used to assess the proportional haz-
ards assumption.

Random forest survival analysis
We initially tested the association of each probe with
overall survival in the training set using multivariate cox
regression. The Schoenfeld’s method was used to assess
the proportional hazards assumption. Those probes
which violated this assumption (p-value < 0.05) were dis-
carded from further analysis.
Random forest survival models were created with the

rfsrc function implemented in the randomForestSRC

package in R [20]. We decided to use this type of model
because, in contrast with deep networks, random forest
can quantify the relative importance of each variable,
and thus enable the filtering of low-importance variables
for model reduction and performance improvement.
Parameter tuning was performed using the tune.rfscr
function, which optimizes the mtry and nnodes variables.
Random forests were implemented on survival data of
the training cohort. Bootstrapping without replacement
was performed with the default by.node protocol. Con-
tinuous rank probability score (CRPS) was calculated as
the integrated Brier score divided by time, and repre-
sents the average squared distances between the ob-
served survival status and the predicted survival
probability at each time point. CRPS is always a number
between 0 and 1, being 0 the best possible result. Sur-
vival prediction on the test cohort was performed using
the predict.rfsrc function with default parameters. Har-
rel’s concordance index (c-index) was used to assess
model discriminative power on the bootstrapped train-
ing set and on the test set. C-index reflects to what ex-
tent a model predicts the order of events (e.g., deaths) in
a cohort [21]. C-indexes below 0.5 indicate poor predic-
tion accuracy, c-indexes near 0.5 indicate random guess-
ing and c-indexes of 1 represent perfect predictions.
Variable reduction was performed by iteratively re-

moving those variables with low importance. Variable
importance was calculated with the vimp function, and
we iteratively removed those samples with negative or
low weight (importance < 1 × 10− 4). The number of ran-
dom splits to consider for each candidate splitting vari-
able (“nsplit”) was optimized by testing the performance
of the algorithm in the training set with values in the
range of 1 to 50 splits. Finally, we chose the best model
in terms of c-index for replication in the validation set.

Results
Gene expression-based clusterization
Single probe clusterization revealed the existence of four
probes strongly associated with overall survival (Bonfer-
roni p-value < 0.05). These probes corresponded to the
following genes: TNFRSF9, BIRC3, BCL2L1 and G3BP2.
Two of these genes were significantly associated with
survival in the test set, namely TNFRSF9 (p-value 0.04)
and BCL2L1 (p-value 8.59 × 10− 3).
Multivariate clusterization using the 4 genes identified

a cluster of 21.46% of patients with a significantly worse
surivival (p-value 1.95 × 10− 6, Hazard Ratio (HR) 3.53,
95% confidence interval (CI) HR 2.01–5.93; Figs. 1a and
2a). Furthermore, multivariate association evidenced a
significant effect independently of patient sex, age, Ann
Arbor stage (I-IV) and COO classification (p-value
2.06 × 10–9, HR 6.93, 95% CI HR 3.68–13.06). Cluster
prediction on the independent test set classified a group
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Fig. 1 Kaplan-Meier plots of both 4-gene expression based clusters in the training (a) and test (b) cohorts. The blue line represents patients in
the high-risk cluster (cluster 1), and the red line represents the remaining group of patients (cluster 2). Survival probability is represented in the y
axis. Time scale (in years) is represented in the x axis

Fig. 2 Scatterplot matrix representing the distribution of patients according to the expression of TNFRSF9, BIRC3, BCL2L1 and G3BP2. Separate
plots are provided for the training (a) and test (b) cohorts. Red dots represent patients in the high-risk cluster (cluster 1), whereas black dots
represent the remaining patients (cluster 2)
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of 20.31% of the patients in this cluster, and multivariate
cox regression confirmed a significant and independent
association with adverse outcome (p-value 5.43 × 10− 3,
HR 6.80, 95% CI HR 1.76–26.26, Figs. 1b and 2b). Pa-
tient characteristics for botch clusters in the two cohorts
can be consulted in Table 2.

Survival Prediction Using Random Forests
Clinical and molecular biology parameters were used to
predict survival using random forests survival models.
Initially, we tested the accuracy of the model using clin-
ical data (patient sex, age and Ann Arbor stage), render-
ing C-indexes of 0.6340 and 0.6202 in the training and
test cohorts, respectively (Table 3). Adding COO classifi-
cation to the model improved concordance moderately
(training c-index = 0.6761, test c-index = 0.6837). Not-
ably, the inclusion of the previously described 4-gene
expression-based clusterization increased discrimination
capacity furhter (training c-index, 0.7059; test c-index,
0.7221).
Afterwards, we studied survival predictability using ex-

pression data of those genes associated with overall sur-
vival (Supplementary Table 1). We initially analyzed
different sets of genes in order to select the best combin-
ation. Survival prediction with those genes associated
with survival at 3 different significance thresholds were
selected: univariate cox q-value below 0.01 (GEP_0.01),
0.05 (GEP_0.05) and 0.1 (GEP_0.1), respectively. GEP_
0.01 (3 genes) performed poorly (training c-index =
0.5934, test c-index = 0.6301). GEP_0.05 (12 genes) im-
proved predictability (training c-index 0.7530, test c-
index 0.6649). Notwhistandintly, the best prediction ac-
curacy was achieved using GEP_0.1 (102 genes, Supple-
mentary Table 2). This model achieved a high
concordance with survival in the bootstrapped training
cohort (c-index 0.7783) and in the test cohort (0.7415).
Interestingly, only 6 of the genes included in this pattern
match those of the Nanostring COO assay [22].
Finally, we tested several combinations of GEP-based

variables and clinical information (Table 3). The best
model included clinical data, GEP_0.1, 4-gene expression

clusterization and COO classification (c-indexes of
0.8051 and 0.7615 after parameter optimization in the
training and test sets, respectively). By iteratively remov-
ing variables with negative or low importance values (<
1 × 10− 4) and tuning the “nsplit” parameter in the train-
ing cohort, an improved model was constructed based
on 54 items (Supplementary Table 3), which achieved
concordance indexes of 0.8404 in the training set and
0.7942 in the test set. Predicted individual survival
curves according to this model for patients in both co-
horts are represented in Fig. 3. Out-of-bag CRPS in the
training set reached low values (∿0.1) even at 4 years of
follow-up (Supplementary Fig. 1), and an stratified ana-
lysis by predicted mortality indicates a higher survival
prediction accuracy for those patients with better prog-
nosis. Notably, the importance of MS4A4A expression
(probe id: 1555728_s_at) was the highest of all variables,
followed by that of 4-gene expression clusterization. Fur-
thermore, the expression of SLIT2 (probe id: 230130_at),
NEAT1 (probe id: 220983_s_at), CPT1A (probe id:
203633_at), IGSF9 (probe id: 229276_at) and CD302
(probe id: 205668_at) were superior to that of COO
classification.

Discussion
In this study we present a new random forest model to
predict survival in DLBCL based on clinical and gene ex-
pression data. Using cox regression and unsupervised
clustering we identified a set of transcripts and a 4-gene
expression cluster associated with overall survival. This
information was used to fit predictive models of survival
using random forests. The best model outperformed
some of the most important prognostic factors known in
the field of DLBCL. Moreover, its combination with clin-
ical information and COO classification rendered sur-
vival predictions that show high concordance with
reality.
The importance of gene expression biomarkers in

DLBCL has been known for a long time. The COO clas-
sification was described almost two decades ago, linking
DLBCL cellular ontogeny with clinical outcome [6].
Similarly, the prognostic role of double-expressor
DLBCLs (DLBCLs with high expression of MYC and
BCL2 or BCL6 but no accompained by their genomic re-
arrangement) was described several years ago [23]. Re-
cent studies have reported interesting prognostic
patterns using GEP in this field. For example, Ciavarella
et al. [24] presented a new prognostic classification of
DLBCL based on computational deconvolution of gene
expression from whole-tissue biopsies, and detected
transcriptomic prints corresponding to myofibroblasts,
dendritic cells and CD4+ lymphocytes that were associ-
ated with improved survival [25]. Similarly, Ennishi et al.
[26] used gene expression data to demonstrate the

Table 2 Patient characteristics by subgroups using 4-gene
based clusterization

Cohort GSE10846 GSE23501

Cluster Cluster 1 Cluster 2 Cluster 1 Cluster 2

N. of cases 184 49 51 13

Sex (% male) 60.32 46.94 74.51 61.53

Median Age 61 63 62 71

COO GCB 41.30% 63.26% 27.45 38.46

ABC 42.93% 28.57% 56.86 61.54

NC 15.76% 8.16% 15.69 0
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existence of a clinical and biological subgroup of GCB-
DLCBLs that resemble double-hit lymphomas [24],
whereas Sha et al. [27] identified a gene expression sig-
nature that characterizes a group of molecular high
grade DLBCLs. Our results add to the growing evidence
indicating that an improved transcriptome-based risk
stratification beyond classical biomarkers is possible. Im-
portantly, the 4-gene expression clusterization described
here includes important driver genes of lymphomagene-
sis, such as TNFRSF9 [26], BIRC3 [28] and BCL2L1 [29].

Other interesting studies have reported notable ad-
vances in DLBCL risk stratification. Reddy et al [30] used
exome-sequencing data to create a genomic profile that
improved state-of-the-art prognostic models. Neverthe-
less, their study was centered in prognostic groups rather
than individualized predictions. In the same line, the ac-
curacy of gene expression classifiers [24, 25, 27] for mak-
ing personalized predictions was not tested. Recently,
machine learning techniques were used by Biccler et al.
[31] for individualized survival prediction in DLBCL.

Fig. 3 Predicted individual survival curves according to the most accurate random forest model (see text). a) Out-of-bag survival curves predicted
for patients within the training cohort (discontinuous black lines). The thick red line represents overall ensemble survival and the thick green line
indicates the Nelson-Aalen estimator. b) Individual survival curves predicted for patients within the test cohort (discontinuous black lines). The
thick red line represents overall ensemble survival. Time scale is in years

Table 3 Random Forest models for overall survival prediction. C-index results are presented for each combination of variables in the
training and test cohorts

Training Cohort Test Cohort

GEP_0.01 0.5934 0.6301

GEP_0.05 0.7530 0.6649

GEP_0.1 0.7783 0.7415

Age, Gender, Stage 0.6340 0.6202

Age, Gender, Stage, COO 0.6761 0.6837

Age, Gender, Stage, 4-gene expression cluster 0.6725 0.6971

Age, Gender, Stage, COO, 4-gene expression cluster 0.7059 0.7221

GEP_0.1, 4-gene expression cluster 0.7792 0.7558

GEP_0.1, COO 0.7784 0.7487

Age, Gender, Stage, GEP_0.1 0.7788 0.7522

Age, Gender, Stage, GEP_0.1, 4-gene expression cluster 0.7889 0.7416

Age, Gender, Stage, GEP_0.1, COO 0.7854 0.7538

Age, Gender, Stage, COO, GEP_0.1, 4-gene expression cluster 0.7896 0.7596

Age, Gender, Stage, COO, GEP_0.1, 4-gene expression cluster
(parameter optimized)

0.8051 0.7615

Age, Stage, COO, 4-gene expression cluster, 50 genes
(variable reduction, parameter optimization)

0.8404 0.7942
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They reported a stacking approach that incorporated
clinical and analytical variables in order to predict sur-
vival in DLBCL patients from Denmark and Sweden,
achieving high performance (training cohort cross-
validated c-index, 0.76; test cohort c-index, 0.74). In com-
parison, the results of our GEP-based random forest
model suggest superior concordance indexes, and future
head-to-head studies are needed to compare their pre-
dictive accuracies in an unbiased fashion. Surprisingly,
we observed that transcriptomic data alone outperforms
the combination of COO classification and limited clin-
ical data. Another advantage of random forests is the
quantification of variable importance. In this case, it is
notable that variable importance for 6 individual tran-
scripts was superior to that of COO classification.
This is the first approach to our knowledge that com-

bines GEP with artificial intelligence for survival predic-
tion of DLBCL patients. Machine learning models come
along with substantial benefits in the area of survival
prediction. Firstly, there is no prior assumption about
data distribution, and complex interactions between the
variables can be modelled. Secondly, they do not simply
rely on pre-defined assumptions about the pathology
(for example, COO status). Finally, gathered information
is used to directly predict patient outcome, and individu-
alized survival curves are obtained. These personalized
approaches overcome the imperfect patient subgrouping
derived from classical studies, and thus they are more
useful in clinical practice. Our results might be particu-
larly useful in order to select high-risk patients for inclu-
sion in clinical trials.
This study, like many others in the field of disease

prognostication, has some limitations. Firstly, some im-
portant prognostic features were not available for this
study, such as fragility scores, International Prognostic
Index (IPI), NCCN-IPI and “double-hit” status. Although
the IPI has proven to improve prognostic stratification
of gene expression arrays [16], there is still room for im-
provement of its predictive accuracy. In this line, the
suboptimal performance of IPI and NCCN-IPI must be
highlighted (c-indexes of 0.66 and 0.68 for IPI and
NCCN-IPI, respectively; Biccler et al. [31]). Furthermore,
comorbidities and cause of death were not reported in
any of the two studies. Finally, competing variables such
as the type of salvage therapy and/or having undergone
an autologous stem cell transplantation were unknown.
Additionally, some heterogeneity related to the inclusion
of different high grade lymphoma subtypes (for example,
double and triple-hit lymphomas) and the variability of
techniques for COO classification used should be con-
sidered as potential limitations. Therefore, it is tempting
to speculate that the combination of GEP with improved
histopathological and clinical profiles will provide even
better predictive models of DLBCL survival.

Conclusion
This study presents a machine learning-based model for
survival prediction of DLBCL patients based on GEP
data and clinical information. The results of our model
are superior to those described with current risk stratifi-
cation scores (IPI, NCCN-IPI, COO status), and head-
to-head comparisons with other published machine
learning approaches in the field of DLBCL are needed in
order to compare their predictive utility. We believe that
our results will pave the way towards the establishment
of individualized survival predictions that will be useful
in clinical practice and might prompt the development
of novel first-line therapeutic interventions for selected
patients.
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