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Novel Mutation Hotspots within 
Non-Coding Regulatory Regions of 
the Chronic Lymphocytic Leukemia 
Genome
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Mutations in non-coding DNA regions are increasingly recognized as cancer drivers. These mutations 
can modify gene expression in cis or by inducing high-order chormatin structure modifications 
with long-range effects. Previous analysis reported the detection of recurrent and functional non-
coding DNA mutations in the chronic lymphocytic leukemia (CLL) genome, such as those in the 3′ 
untranslated region of NOTCH1 and in the PAX5 super-enhancer. In this report, we used whole genome 
sequencing data produced by the International Cancer Genome Consortium in order to analyze regions 
with previously reported regulatory activity. This approach enabled the identification of numerous 
recurrently mutated regions that were frequently positioned in the proximity of genes involved in 
immune and oncogenic pathways. By correlating these mutations with expression of their nearest 
genes, we detected significant transcriptional changes in genes such as PHF2 and S1PR2. More research 
is needed to clarify the function of these mutations in CLL, particularly those found in intergenic 
regions.

A major part of mutations in the cancer genome occur in non-coding DNA regions, and their function is still 
beginning to be understood1. Non-coding DNA comprises approximately 98% of the human genome, but recent 
research has proven that most of these regions are either part of regulatory motifs or actively transcribed to 
RNA2,3. These mutations can induce functional genomic changes by altering the binding of transcription factors 
or by inducing high-order chromatin structural modifications2,4. For example, mutations in 5′ and 3′ untranslated 
regions (UTRs) may disturb RNA structural conformation, modify microRNA binding sites or disrupt polyade-
nylation signals2. In a similar fashion, mutations affecting non-protein coding genes such as microRNA and long 
intergenic RNA genes (lincRNAs) are known cancer driver events2,5. Different studies have evidenced that the 
expression of genes such as BRCA1, CDH10, CCND1, MALAT1, PAX5, RB1, SDHD, TERT, TOX3, and TAL1 is 
influenced by non-coding DNA mutations in regulatory regions of the cancer genome1,6,7. The Pancancer Analysis 
of Whole Genomes (PCAWG) project has revealed the existence of common and tumor-specific recurrently 
mutated functional elements near known cancer drivers7. Some of these driver mutations can induce long-range 
changes in genome organization and trigger abnormal expression of distant oncogenes and tumor suppressors8. 
Furthermore, the sequence distribution of these driver mutations is not random. Hornshøj et al. (2018) identified 
a significant enrichment in conserved CCCT-binding factor (CTCF) binding sites among recurrently mutated 
non-coding DNA regions with cancer specificity6. Similarly, Line et al. (2019) identified 21 recurrently altered 
CTCF-rich insulator regions in the cancer genome, and elegantly demonstrated that some of these mutations 
drive tumor proliferation9.

Chronic Lymphocytic Leukemia (CLL) is among the most frequent lymphoproliferative disorders, and it is 
characterized by its remarkable clinical heterogeneity. Recent efforts by Puente et al.10 enabled the discovery of 24 
recurrently mutated non-coding genomic regions in the CLL genome, some of which are associated with func-
tional changes such as mutations in the 3′UTR of NOTCH1 and in the PAX5 super-enhancer. Nevertheless, both 

1Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain. 2Complexo Hospitalario 
Universitario de Santiago de Compostela (CHUS), Division of Hematology, SERGAS, Santiago de Compostela, Spain. 
3University of Santiago de Compostela, Santiago de Compostela, Spain. *email: adrian.mosquera@live.com

OPEN

https://doi.org/10.1038/s41598-020-59243-5
http://orcid.org/0000-0003-4838-6750
mailto:adrian.mosquera@live.com


2Scientific Reports |         (2020) 10:2407  | https://doi.org/10.1038/s41598-020-59243-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

the sparsity of annotations in non-coding DNA regions and the difficult functional classification of non-coding 
DNA mutations hinder a better understanding of the non-coding cancer genome, which probably harbors mul-
tiple deregulated elements yet to discover. In this analysis, we analyzed whole genome sequencing (WGS) data 
using a best-practice mutation detection pipeline. Then, we identified signals of positive selection of mutations in 
regulatory regions. Finally, our last attempt was to analyze if any of these recurrent mutations in non-coding DNA 
regions were associated with abnormal expression of the nearest gene. Our results point toward the existence of 
dozens of mutation-enriched regulatory regions near cancer and immune-related genes, some of which influence 
local gene expression.

Methods
Data origin.  Whole genome sequencing files produced by the International Cancer Genome Consortium11 
were obtained from the European Genome-Phenome Archive under accession code EGAD00001001466. Gene 
expression from microarray data of the same set of patients was obtained from EGAD00010000875.

Data analysis.  130 tumor-normal matched CLL whole genomes were processed using the bcbio-nextgen 
pipeline, which provides best practices for analyzing high throughput sequencing data12. Low complexity regions, 
areas with abnormally high coverage, sequences with single nucleotide stretches >50 bp and loci with alternative 
or unplaced contigs in the reference genome were not analyzed. Some polymorphic regions are prone to be classi-
fied as highly mutated due to artifacts or biases in the sequencing process, and suspicious elements were manually 
removed from downstream analysis. Single nucleotide and indel mutation detection was performed with vard-
ict13, varscan14, mutect215 and freebayes16 using default bcbio-nextgen parameters. Only variants with a minimum 
sequencing depth (DP) of 10 and a genotype quality (GQ) above 20 Phred in both tumor and normal samples 
were analyzed. A mutation was reported when detected by at least two different mutation callers. Mutations were 
annotated to the 1000G17, gnomAD18 and ExAc19 databases in order to filter likely germline variants. All muta-
tions with a minimum allele frequency >0.001 in any population were discarded from the analysis.

Region annotation.  Annotations corresponding to promoter regions, 5′UTR, 3′UTR and lincRNAs were 
retrieved from Genecode version 1820. DNAse hypersensitivity (DHS) regions and Transcription Factor Binding 
Sites (TFBS) tracks from the ENCODE21 project were obtained from Lochovsky et al.22. Similarly, we used 
enhancer regions from the GeneHancer database23, and analyzed those that were supported by two or more 
sources of evidence (“elite” enhancers). Regulatory regions within telomeric and centromeric positions were 
discarded.

Two different methods were used to identify areas with evidence of positive selection of mutations: LARVA22 
and OncodriveFML24. LARVA models the mutation counts of each target region as a β-binomial distribution in 
order to handle overdispersion. Furthermore, LARVA also includes replication timing information in order to 
estimate local mutation rate, and provides a β-binomial distribution adjusted for replication timing which is used 
to compute p-values. On the other hand, OncodriveFML is designed to analyze the pattern of somatic mutations 
across tumors in both coding and non-coding genomic regions. OncodriveFML uses functional predictions in 
order to identify signals of positive selection. OncodriveFML was run with CADD v1.3 scores and default param-
eters. TFBS tracks were not analyzed with OncodriveFML due to high computational demands. Regions were 
labeled as significantly mutated if the q-value was <0.05 with any of the two methods.

Gene expression analysis and association with recurrent non-coding DNA mutations.  
Background correction, normalization and log2-transformation of microarray gene expression data was per-
formed with the RMA algorithm25. In the case of genes targeted by multiple probes, the median expression 
was calculated. The Wilcoxon-Rank sum test was used to detect changes in gene expression between mutated 
and wild-type cases. Non-coding regulatory genomic regions cannot be directly ascribed to any gene, and they 
can affect the transcription of virtually any part of the genome. However, this study is underpowered to detect 
long-range interactions due to small sample size and the need of extreme p-values passing multiple-testing cor-
rection. Therefore, we centered our efforts on changes in expression of the nearest gene. We annotated the closest 
gene to each recurrently mutated non-coding genomic region as the nearest transcription start site to the middle 
position of the corresponding region. In the case of multiple overlapping regulatory regions, we selected the most 
significant one for downstream analysis. P-values were adjusted for multiple testing using the FDR method, with 
a significance threshold of 0.05.

Results
Mutation distribution.  397,433 non-coding DNA mutations were detected in the genome of this CLL 
cohort. Most of these were either intergenic (45.46%) or intronic (42.12%). The remaining mutations were located 
in 5′ flanks (5.83%), 3′ flanks (5.30%), RNA genes (0.64%), 3′UTRs (0.52%) and 5′UTRS (0.13%). Most of the 
mutations were single nucleotide variants (92.96%), whereas 4.57% and 2.47% were short deletions and inser-
tions, respectively.

Regions significantly enriched in mutations.  LARVA detected significant mutation enrichments 
(q-value < 0.05) in 120 TFBS, 16 DHS regions, 10 enhancers, 4 promoters, 2 5′UTRs and 1 lincRNA (Table 1, 
Supplementary Tables 1–6). No relevant inflation in p-value distribution was observed. (Supplementary Fig. 1). 
These regions were located in 44 different genomic loci (Fig. 1). The most recurrently mutated promoters 
were those of TCL1A (q-value 3.32 × 10−4), LCN6 (q-value 4.17 × 10−3), ZFP36L1 (q-value 3.25 × 10−2) and 
WDR97 (q-value 0.04); and the most significantly mutated enhancers were GH01J229147 (intergenic region 
chr1:229283343–229284982, q-value 5.79 × 10−6) and GH07J000467 (PDGFA gene, q-value 8.53 × 10−4). The 
DHS regions chr4:184474905–184475055 (ING2/RWDD4 locus, q-value 1.42 × 10−5), chr21:46673965–46674115 
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(C21ORF89/LINC00334 locus, q-value 1.38 × 10−4), chr14:96179960–96180110 (TCL1A locus, q-value 
3.98 × 10−4) and chr9:115161245–115161395 (HSDL2 locus, q-value 3.98 × 10−4) were the most recurrently 
mutated among their class (Supplementary Table 2). Furthermore, up to 120 significantly mutated TFBS regions 
were detected, affecting 19 different genes and 3 intergenic regions. The most recurrently mutated regions were 
located in chr1:155666495–155666977 (DAP3 gene, q-value 3.14 × 10−10), chr14:96179816–96180607 (TCL1A 
gene, 1.38 × 10−4), chr3:186782686–186783907 (BCL6 gene, 3.52 × 10−4), chr7:507220–508145 (PDGFA gene, 
8.15 × 10−4) and chr18:12086057–12086469 (ANKRD62 gene, 8.30 × 10−4) (Supplementary Table 4).

Other significant enhancer regions were located in the proximity of genes involved in apoptosis (BCL2 and 
BIRC3), cell cycle control (WBP2NL), cytoskeleton and extracellular matrix formation (ARPC3 and ITIH5), gene 
expression regulation and chromatin remodelling (BCL7A, PAX5 and PHF2), genome integrity (XRCC5 and 
ZNF506), gene expression regulation (MALAT1 and RBFOX3), intracellular signalling (DACT2, HIPK2, IMPA2, 
KCTD10, ROR2 and S1PR2), immune pathways (BACH2, LTB and MADCAM1) and metabolism (AKR1B15, 
AMPD3, GSTM1/GSTM2, LRP5 and ST6GAL1) (Supplementary Tables 1–6). Recurrent mutations were also 
found near less well-characterized genes such as TMEM54 and CTBP2P5, as well as within intergenic regions 
such chr14:26068671–26069217 and chr1:229283491–229285693.

Finally, OncodriveFML identified 4 regions significantly enriched in likely functional mutations 
(Supplementary Tables 7 and 8). No relevant inflation in p-value distribution was observed (Supplementary 
Fig. 2). These regions were the enhancer GH14J089855 (q-value 2.54 × 10−3) encoded within an intronic region 
of EFCAB11, two DHS regions in the proximity of EGR and WBNPL2 (q-values 0.01 and 0.03, respectively), and 
one intergenic DHS region located in chr8:127155560–127155710 (q-value 1.22 × 10−3).

Mutations associated with changes in gene expression.  We studied the association of regions 
enriched in mutations with changes in the expression of their respective nearest genes. Although this type of 
analysis is limited by low sample size, we detected significant associations in some cases. We tested if patients with 
at least one mutation in these regulatory regions were accompanied by changes in expression of the nearest gene. 
Significant associations were observed in 3 genes, namely PHF2 (q-value 0.02, 95% CI [−0.295, −0.048]), RPL39L 
(q-value 0.04, 95% CI [0.018, 0.217]) and S1PR2 (q-value 0.03, 95% CI [0.033, 0.38]) (Supplementary Table 9).

Discussion
Mutations in the non-coding part of the genome constitute the “dark-matter” of cancer genomics2. Growing 
evidence indicates that many of these mutations occur in conserved motifs and loci under epigenetic control, and 
some of these play fundamental roles in cancer biology and disease prognosis1–3,6–9. Using WGS data produced 
by the ICGC, we identified dozens of recurrently mutated regulatory regions in the CLL genome. Among these, 
10 were previously reported by the original analysis performed by Puente et al.10, namely those near BACH2, 
BLC2, BCL6, BCL7A, BIRC3, S1PR2, PCDH15, ZCCHC7/PAX5 and ZFP36L1. Numerous novel regions were 
also enriched in non-coding DNA mutations, including transcription factor binding sites, DNAse hypersensi-
tivity regions, 5′UTR regions, promoters, enhancers and non-coding RNAs. These events were frequently found 
in the vicinity of genes previously vinculated with oncogenic pathways. Indeed, the most significantly mutated 
regions were a SETB1 binding site within the first intron of DAP3, a GTP-binding protein that participates in 
the apoptosis pathway26; and a DNAse hypersensitivity region downstream to ING2, a well-characterized tumor 
suppressor27. Other highly mutated regulatory regions affected cancer-related genes such as DACT228, ERG29,, 
HIPK230, ITIH531, LRP532, MAF133, MALAT134, PHF235, PDGFA36, RBFOX337, ROR238, ST6GAL139 and XRCC540; 
and others were detected near genes involved in immunity, such as LTB41 and MADCAM142. Overall, only three 
of the novel genes (LTB, MALAT1 and ST6GAL1) were previously defined as targets of somatic hypermutation in 
B cell lymphomas43. Finally, it is worthwhile to mention that recurrent and even highly significant enrichments 
were detected around barely characterized genes (e.g. C21ORF89/LINC0334) and intergenic regions.

Chromosome Start Stop
Mutation 
count p-value (bbd) FDR Gene

SHM 
target

Type of 
Regulator

chr1 155666495 155666977 16 2.20E-16 3.14E-10 DAP3 No TFBS

chr1 229283343 229284982 28 1.58E-10 5.79E-06 Intergenic No ENHANCER

chr3 186782686 186783907 26 1.34E-09 3.52e-04 BCL6 Yes TFBS

chr4 184474905 184475055 13 3.92E-11 1.42E-05 ING2/RWDD4 No DHS

chr7 507064 509696 17 4.65E-08 8.53e-4 PDGFA No ENHANCER

chr7 507220 508145 17 3.85E-09 8.15E-4 PDGFA No TFBS

chr9 115161245 115161395 11 2.98E-09 3.98e-4 HSDL2 No DHS

chr11 65265233 65273940 10 2.04E-08 4.50e-4 MALAT1 Yes lincRNA

chr14 96179060 96180273 25 2.34E-08 3.32E-4 TCL1A Yes PROMOTER

chr14 96179721 96180690 22 1.36E-09 3.52E-4 TCL1A Yes TFBS

chr14 96179799 96180653 21 6.70E-10 2.25E-4 TCL1A Yes TFBS

chr14 96179816 96180607 21 2.67E-10 1.38E-4 TCL1A Yes TFBS

chr14 96179960 96180110 12 3.03E-09 3.98E-4 TCL1A Yes DHS

chr21 46673965 46674115 12 7.33E-10 1.38E-4 C21ORF89/LINC00334 No DHS

Table 1.  Summary of the regions most significantly enriched in mutations according to LARVA.
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The reported mutations can either be bystander or have functional implications related to their potential to 
modify gene expression or to induce high-order chromatin structural changes. Although limited by low sample 
size, we devised significant changes in the expression of PHF2, S1PR2 and RPL39L. These three genes are involved 
in the regulation of important oncogenic processes. PHF2 encodes a histone demethylase with tumor suppressor 
activity35. S1PR2 participates in the TGF-β pathway and acts as a tumor suppressor of B cell lymphomas44. Finally, 
RPL39L45 is involved in cancer stem cell self-renewal and hypoxia response. These results are concordant with 
other reports of non-coding regulatory mutations driving gene expression changes in B-cell lymphomas46–48.

The combination of an optimized mutation detection pipeline with statistical tests specifically designed to 
handle non-coding DNA mutations has enabled the detection of novel putative regulatory driver regions in the 
CLL genome. These regions were mostly located in the vicinity of genes implicated in oncogenic and immune 
pathways, although several recurrently mutated intergenic regions were detected too. Furthermore, we could con-
firm the association of some of these events with altered expression of their respective genes. We expect that our 
results, along with those published by other groups, will promote an improved characterization of the non-coding 
mutational drivers of CLL.

Data availability
There is not data to deposit.

Figure 1.  Chromosomal ideogram representing the different gene affected by recurrent non-coding mutations 
according to LARVA.
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