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ABSTRACT
Many countries are replacing meningococcal serogroup C (MenC) conjugate vaccines (MCCV) with 
quadrivalent conjugate (MenACWY) vaccines, such as MenACWY-TT (Nimenrix®). This review examined 
eight studies comparing MenC immune responses induced by MenACWY-TT and MCCV to determine if 
these data support these changes. MenC serum bactericidal antibody levels using human (hSBA) or rabbit 
complement (rSBA) were evaluated at ~1 month postvaccination. Overall, ≥98.4% of infants administered 
2 + 1 MenACWY-TT or MCCV schedules had rSBA titers ≥1:8 postprimary and postbooster vaccination; 
hSBA titers ≥1:8 were similar. In toddlers administered single MenACWY-TT or MCCV doses, ≥97.3% had 
rSBA titers ≥1:8 postvaccination; percentages with hSBA titers ≥1:8 were higher post-MenACWY-TT. Of 
children and adolescents receiving primary and booster MenACWY-TT and MCCV, ≥98.6% had rSBA titers 
≥1:8; all children receiving MenACWY-TT or MCCV booster had hSBA titers ≥1:8 postdosing. MenC 
immune responses induced by MenACWY-TT are robust and generally comparable/superior to MCCV, 
supporting changes to recommendations.
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Introduction

Invasive meningococcal disease (IMD) is caused by infection 
with the bacterium Neisseria meningitidis.1 Clinically present
ing most often as meningitis and/or septicemia, IMD is asso
ciated with significant levels of mortality; those who survive can 
experience disabling, long-term sequelae such as neurologic 
and hearing impairments and amputation.2–4 Disease incidence 
is highest in infants and toddlers, with a second peak often 
occurring among adolescents and young adults.1 Because of the 
sudden onset and rapid progression of the disease,2 preventive 
vaccination is considered the most effective strategy to protect 
against IMD.5

Of the 12 identified serogroups of N meningitidis, 5 have 
historically predominated as the main cause of IMD globally 
(i.e., A, B, C, W, and Y); all are currently preventable with 
available monovalent and polyvalent meningococcal vaccine 
formulations (Table 1).20,21 Specifically, several monovalent 
conjugate vaccines have been developed for protection 
against meningococcal serogroup C (MenC) disease, and 
a monovalent conjugate vaccine has been developed against 
serogroup A (MenA) disease.6–11 Vaccines that combine 
Haemophilus influenzae type b (Hib) and meningococcal anti
gens (i.e., serogroups Y and/or C) were/are available in some 
countries.14,15 Two vaccines based on subcapsular antigens are 
also available for the prevention of meningococcal serogroup 
B (MenB) disease.12,13,22 The availability of quadrivalent 

vaccines targeting meningococcal serogroups A, C, W, and 
Y (MenACWY) has led to broader serogroup coverage against 
disease-causing strains.23 The implementation of immuniza
tion programs using these various meningococcal vaccine for
mulations has substantially contributed to reductions in IMD 
disease burden.24,25

Four quadrivalent meningococcal vaccines are currently 
licensed and differ according to carrier protein, posology, 
and availability (Table 1).16–19 One such quadrivalent vac
cine is MenACWY-TT (Nimenrix®, Pfizer Ltd, Kent, UK), 
which is conjugated to tetanus toxoid (TT) and is indicated 
for use in individuals from age 6 weeks.16 MenACWY-TT, 
the focus of this review, is administered to infants as a 2-dose 
(6 weeks–<6 months) or 1-dose (6–<12 months) primary 
series plus a 1-dose booster in the second year of life.16,26 

In individuals aged 12 months and older, MenACWY-TT is 
given as a single dose.16 Booster dosing can be given to 
individuals from age 12 months who were previously vacci
nated with a conjugated or plain polysaccharide meningo
coccal vaccine.

The distribution of meningococcal serogroups causing dis
ease varies geographically and over time.27 Therefore, to ensure 
adequate protection against IMD, national vaccination strate
gies have adapted to temporal changes in epidemiology. This is 
exemplified by the experience with the introduction of MenC 
vaccination programs. During the late 1990s, the incidence of 
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MenC disease increased in many European countries, mainly 
due to a hypervirulent ST-11 clone.28 In response, several 
countries added monovalent MenC vaccination to their rou
tine infant immunization schedule, usually with catch-up pro
grams in toddlers, children, and adolescents and, in some 
countries, young adults.28,29 Subsequent to the implementa
tion of these strategies, decreases in MenC disease were 
observed.24,28 In contrast, during the past decade, the incidence 
of IMD caused by meningococcal serogroup W (MenW) and 
serogroup Y (MenY) has increased across multiple age groups 
in many countries within Europe.30 MenW cases have fre
quently been associated with a hypervirulent ST-11 strain 
and, more recently, an emergent ST-9316 strain predominantly 
affecting children aged <4 years.31–35 A proportion of these 
MenW cases have presented with atypical clinical features, 
such as septic arthritis, gastrointestinal symptoms, and severe 
respiratory tract infections, such as pneumonia, epiglottitis, 
and supraglottitis.31 MenY cases have shown variability in the 
most commonly affected age group; MenY cases have also 
shown increased manifestation as septicemia and decreased 
susceptibility to penicillin.35,36 In response to this serogroup 
shift, several countries introduced quadrivalent MenACWY 

vaccination to their immunization programs, in many 
instances as replacement for the existing monovalent MenC 
vaccine (Figure 1).31,37–59

To ensure optimal protection against MenC disease is main
tained in countries switching to MenACWY vaccines, it is 
important that the immune response elicited to serogroup 
C is comparable to that achieved with monovalent MenC 
vaccines. This article reviews key clinical studies that compared 
MenC immune responses induced by MenACWY-TT with 
those of monovalent MenC conjugate vaccines.

Methods

Clinical studies evaluating the immunogenicity of MenACWY- 
TT were identified by searches of clinical trial registries for 
studies in which MenACWY-TT was compared with a MenC 
vaccine and in which serology was completed for the licensed 
posology. PubMed, ClinicalTrials.gov, and the EU Clinical Trials 
Register were searched using the keywords “MenACWY-TT”, 
“Nimenrix”, “ACWY-TT”, and “GSK134612”, without filters or 
limits. The GSK Study Register was searched using the same 
keywords and the limit of “Meningococcal Infections” as the 

Figure 1. Countries with recent MenACWY vaccine recommendations.31,37–59 *In all provinces apart from Quebec. †Malta is not shown to scale or to shape.
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condition/disease. The inclusion criteria were studies directly 
comparing the immunogenicity of MenACWY-TT with that of 
≥1 monovalent MenC conjugate vaccine (MenC-TT, MenC- 
CRM197/Al(OH)3, or MenC-CRM197/AlPO4 [Table 1]). 
Immune responses in these studies were evaluated in serum 
bactericidal antibody assays using human (hSBA) or baby rabbit 
complement (rSBA).60–67 Immunogenicity assessments evalu
ated in the current review include percentage of subjects with 
rSBA titers ≥1:8, rSBA geometric mean titer (GMT), percentage 
of subjects with hSBA titers ≥1:8, and hSBA GMT at 1 month/ 
42 days after primary or booster vaccination. Only data relevant 
to the licensed MenACWY-TT schedule are presented (i.e., 2 + 1 
schedule in infants aged 6 weeks–<6 months; 1 + 1 schedule in 
infants aged 6–<12 months; single dose in individuals aged 
≥12 months16). Preimmune and persistence data were not con
sidered. This article is based entirely on previously published 
studies and does not contain data from any new studies using 
human or animal subjects.

Results

Studies included

Eight studies met the criteria for inclusion in the review, 
comprising one study in infants, four in toddlers, and three 
in children and adolescents. The designs of these studies are 
summarized in Table 2.60–67 No studies carried out in adults 
met the inclusion criteria.

Studies in infants

Only 1 infant study met the inclusion criteria. Conducted in 
Spain, Germany, and Estonia, this noninferiority study com
pared 1567 infants who received MenACWY-TT, MenC-TT, 
or MenC-CRM197/Al(OH)3 at ages 2, 4, and 12 months.60 All 
subjects also received routine vaccinations as recommended. 
Immunogenicity was assessed at 1 month after the primary 
series and at 1 month after the booster dose.

After primary vaccination, the percentage of subjects with 
rSBA titers ≥1:8 for MenC was high across the 3 vaccine 
groups, ranging from 98.7% (MenACWY-TT) to 100% 

(MenC-TT) (Figure 2A). The percentage of subjects with post
booster MenC rSBA titers ≥1:8 was also consistently high in all 
groups, varying from 98.4% in the MenC-CRM197/Al(OH)3 
group to 99.8% and 100% in the MenACWY-TT and MenC- 
TT groups, respectively (Figure 2A). Comparisons of MenC 
rSBA GMT both after the primary series and the booster dose 
showed a <2-fold difference among vaccine groups (postprim
ary range, 612 − 1188; postbooster range, 1051 − 1960; 
Figure 2B). Postprimary and postbooster, the percentages of 
subjects with MenC hSBA titers ≥1:8 were 100% for the mono
valent vaccines and ≥98.6% for MenACWY-TT (Figure 2C). 
MenC hSBA GMTs after primary vaccination were 1308 
among MenACWY-TT recipients, 3188 among those who 
received MenC-CRM197/Al(OH)3, and 2627 among those 
who received MenC-TT. In contrast, after the booster vaccina
tion, MenC hSBA GMTs ranged from 4992 to 5542 among the 
3 vaccine groups (Figure 2D). These findings confirmed the 
noninferiority of an infant 2-dose primary series of 
MenACWY-TT with that of a 2-dose primary series of MenC- 
CRM197/Al(OH)3 or MenC-TT with respect to the immune 
response against MenC. Additionally, immune responses with 
a MenACWY-TT booster dose supported the induction of 
immune memory after receipt of a 2-dose primary infant series.

Studies in toddlers

Four toddler studies were reviewed, all of which compared the 
immunogenicity of a single dose of MenACWY-TT with that 
of MenC-CRM197/AlPO4 in unprimed subjects.61–63,67 Three 
studies were conducted in toddlers aged 12 to 23 months61,63,67 

and 1 in toddlers aged 12 to 14 months;62 overall, 1246 subjects 
in directly comparable groups were vaccinated with 
MenACWY-TT or MenC-CRM197/AlPO4.61–63,67 In all studies, 
immunogenicity against MenC was measured by the rSBA 
assay at 1 month/42 days postvaccination, whereas hSBA titers 
were assessed in 2 studies.

In 3 studies, the percentage of vaccinated subjects with 
MenC rSBA titers ≥1:8 was higher in the MenACWY-TT 
group compared with that in the MenC-CRM197/AlPO4 
group (99.7%–100% vs 97.5%–98.5%);61,62,67 in the fourth 
study (toddlers aged 12–23 months), the percentages in 

Table 1. Meningococcal conjugate and recombinant protein vaccines used globally.

Vaccine Type Meningococcal serogroups (other antigens) European indication, age*

Monovalent
MenAfricVac (PsA-TT)6,7 TT conjugate A Not licensed in Europe
Menjugate (MenC-CRM197 adsorbed to aluminum hydroxide)8 CRM197 conjugate C ≥2 mo
Meningitec (MenC-CRM197 adsorbed to aluminum phosphate)9,10 CRM197 conjugate C Discontinued in Europe
NeisVac-C (MenC-TT)11 TT conjugate C ≥2 mo
Bexsero (MenB-4C)12 Recombinant protein B ≥2 mo
Trumenba (MenB-FHbp)13 Recombinant protein B ≥10 y

Combination
MenHibrix (HibMenCY-TT)14 TT conjugate C, Y (Hib) Not licensed in Europe
Menitorix (Hib-MenC-TT)15 TT conjugate C (Hib) ≥2 mo

Quadrivalent
Nimenrix (MenACWY-TT)16 TT conjugate A, C, W, Y ≥6 wk
Menveo (MenACWY-CRM197)17 CRM197 conjugate A, C, W, Y ≥2 y
Menactra (MenACWY-D)18 D conjugate A, C, W, Y Not licensed in Europe
MenQuadfi (MenACYW-TT)19 TT conjugate A, C, W, Y Not licensed in Europe

CRM197, diphtheria protein cross-reactive material 197; D, diphtheria toxin; Hib, Haemophilus influenzae type b; TT, tetanus toxoid. 
*For currently available vaccines.
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the MenACWY-TT group were 97.3% and 98.2% in the 
MenC-CRM197/AlPO4 group63 (Figure 3A). Evaluation of 
MenC rSBA GMTs showed that postvaccination levels in 
3 studies were ≥2-fold higher in toddlers vaccinated with 
MenACWY-TT compared with those in the correspond
ing MenC-CRM197/AlPO4 group (range, 212 − 984).61,62,67 

In the remaining study, MenC rSBA GMTs were similar 
across both vaccine groups in toddlers 12 to 23 months of 
age, albeit slightly higher in those who received 
MenACWY-TT (MenACWY-TT recipients, 829; MenC- 
CRM197/AlPO4 recipients, 691; Figure 3B).63 Two of the 
toddler studies also used the hSBA assay to assess MenC 
immunogenicity.61,67 In both studies, the percentage of 
subjects with postvaccination MenC hSBA titers ≥1:8 
was considerably higher in the MenACWY-TT group 
compared with the MenC-CRM197/AlPO4 group (98.5% 
vs 81.9% and 99.1% vs 72.1%, respectively; Figure 3C). 
Correspondingly, hSBA GMTs were approximately 5- and 
10-fold higher in the MenACWY-TT groups compared 
with their MenC-CRM197/AlPO4 counterparts (196 vs 40 
and 190 vs 21, respectively; Figure 3D).

Studies in children and adolescents

Three studies investigating the immune response to 
MenACWY-TT in subjects aged ≥2 years were included in 
the review.64–66 A study conducted in 414 children aged 2 to 
10 years compared a single dose of MenACWY-TT and 
MenC-CRM197/Al(OH)3.64 Two studies assessed the vac
cines as a booster: 501 adolescents aged 10, 12, or 15 years 
who were previously vaccinated with a single dose of MenC- 
TT as toddlers received a booster dose of MenACWY-TT or 
MenC-TT;66 293 children aged 50 to 69 months who had 
previously received 1 primary dose of MenACWY-TT or 
MenC-CRM197/AlPO4 as toddlers were administered the 
same vaccine as a booster dose.65 The percentage of subjects 
with postvaccination MenC rSBA titers ≥1:8 was high across 
all 3 studies (Figure 4A). In both the primary vaccination 
and the booster study conducted in children, all subjects in 
the MenACWY-TT and MenC-CRM197 groups had rSBA 
titers ≥1:8 at 1 month.64,65 In the adolescent study, post
booster rSBA titers ≥1:8 against MenC were observed in all 
subjects aged 12 and 15 years and in 98.6% and 100% of 
subjects vaccinated with MenACWY-TT and MenC-TT, 
respectively, aged 10 years.66 Overall, MenC rSBA GMTs 
were also similar in MenACWY-TT and monovalent vac
cine groups (Figure 4B). In both studies conducted in chil
dren, there was a <2-fold difference in GMT between the 
MenACWY-TT and MenC-CRM197 groups,64,65 and in the 
adolescent study, postbooster GMTs were comparably high 
across all ages and vaccines.66 A single study reported hSBA 
titers.65 All children administered a booster dose of 
MenACWY-TT or MenC-CRM197/AlPO4 after receiving 
the same vaccine as toddlers had MenC hSBA titers ≥1:8 
at 1 month (Figure 4C), whereas the postbooster hSBA 
GMT in subjects vaccinated with MenACWY-TT was 
approximately 2-fold higher than that in subjects vaccinated 
with MenC-CRM197/AlPO4 (Figure 4D).Ta
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Discussion

The current review of clinical studies comparing MenC 
immunogenicity between MenACWY-TT and monovalent 
MenC conjugate vaccines consistently showed that rSBA 
and hSBA immune response to MenC elicited by MenACWY- 
TT is comparable to that of monovalent MenC conjugate 
vaccines. The reviewed studies measured the percentage of 
subjects with rSBA titers ≥1:8 at approximately 1 month 
postvaccination.60–67

The dynamic nature of meningococcal disease, which varies 
geographically and temporally,28 has necessitated that vaccina
tion programs adapt to provide rational recommendations for 
vaccines that address current epidemiologic trends in a given 
region. As shown in several countries, recent changes in the 
recommendations were modified from use of monovalent 
MenC vaccines to MenACWY vaccines in response to 

increased risk of MenW and MenY disease (Figure 1).31,37–59 

Although quadrivalent vaccines provide broader serogroup 
coverage than monovalent vaccines against disease-causing 
strains,23 including against increasingly prevalent MenW and 
MenY disease,30 it is important to confirm that optimal protec
tion against MenC is maintained. This is particularly pertinent 
as vaccination programs using monovalent MenC vaccines 
have shown sizable decreases in the number of cases of MenC 
disease.24,28

In the infant study, criteria based on the percentage of sub
jects with rSBA titers ≥1:8 at 1 month after a 2-dose primary 
schedule showed the noninferiority of MenACWY-TT to the 
monovalent vaccines MenC-TT and MenC-CRM197/Al(OH)3.60 

The booster response after a further MenACWY-TT dose at 
age 12 months was similarly robust, with 99.8% of subjects 
reaching the ≥1:8 threshold. Notably, although hSBA and rSBA 
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Figure 2. Serum bactericidal antibody measurements against serogroup C at 1 month postprimary and postbooster vaccination in infants vaccinated with 
MenACWY-TT, MenC-TT, or MenC-CRM197/Al(OH)3 at 2, 4, and 12 months of age.60 (a) Percentage of infants with rSBA titers ≥1:8, (b) rSBA GMTs, (c) 
percentage of infants with hSBA titers ≥1:8, and (d) hSBA GMTs. Subjects had blood samples collected at 1 month (range, 21–48 days) after the second primary 
dose (primary ATP cohort) and the booster dose (booster ATP cohort). Panel A. Postprimary, n = 455–457; postbooster, n = 446–463. Panel B. Postprimary, n = 455–457; 
postbooster, n = 446–463. Panel C. Postprimary, n = 202–226; postbooster, n = 216–221. Panel D. Postprimary, n = 202–226; postbooster, n = 216–221. ATP = according 
to protocol; GMT = geometric mean titer; hSBA = serum bactericidal antibody using human complement; MenACWY-TT = meningococcal serogroups A, C, W, and 
Y vaccine conjugated to tetanus toxoid as a carrier protein; MenC-CRM197/Al(OH)3 = meningococcal serogroup C vaccine conjugated to the nontoxic form of diphtheria 
protein cross-reactive material 197 and adsorbed onto aluminum hydroxide; MenC-TT = meningococcal serogroup C vaccine conjugated to tetanus toxoid; 
rSBA = serum bactericidal antibody using baby rabbit complement.
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GMTs were lower in the MenACWY-TT group at 1 month 
after primary vaccination, declines during the post-primary 
period were sharper in infants who received MenC-TT or 
MenC-CRM197/Al(OH)3 so that GMTs were similar among 
all 3 vaccine groups by the prebooster time point.

In the 4 toddler studies, the percentage of subjects vacci
nated with MenACWY-TT with rSBA titers ≥1:8 at 1 month 
(42 days for 1 study) after a single primary dose was compar
able to, and in some studies potentially higher than, that 
observed in the corresponding MenC-CRM197/AlPO4 
group.61–63,67 Two of these toddler studies assessed the non
inferiority of MenACWY-TT to MenC-CRM197/AlPO4 for 
MenC immunogenicity based on group differences in the per
centages of subjects with MenC rSBA titers ≥1:8; in both 
studies, noninferiority of MenACWY-TT was confirmed.61,67 

A strong immune response against MenC was observed in 
children aged 2 to 10 years after a single primary MenACWY- 

TT or MenC-CRM197/Al(OH)3 dose, with all subjects reaching 
the ≥1:8 rSBA threshold.64 Noninferiority of MenACWY-TT 
to MenC-CRM197/Al(OH)3 for immunogenicity against MenC 
was confirmed by comparison of a predefined vaccine response 
based on rSBA titer increases.

The booster response to MenACWY-TT in older children 
and adolescents was compared with monovalent MenC vac
cines in two studies.65,66 When children aged 5 years received 
a booster dose with the same vaccine used for primary vaccina
tion as toddlers, 100% of subjects in the MenACWY-TT and 
MenC-CRM197/AlPO4 groups had an rSBA titer ≥1:8 at 
1 month postbooster.65 In the adolescent study, subjects vacci
nated with MenC-TT as toddlers received a booster dose of 
either MenC-TT or MenACWY-TT; booster rSBA responses to 
both vaccines were robust, with 98.6% to 100% of subjects aged 
10 years and all subjects aged 12 and 15 years showing an rSBA 
titer ≥1:8 at 1 month.66
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Figure 3. Serum bactericidal antibody measurements against serogroup C at 1 month/42 days postvaccination in toddlers administered a single dose of 
MenACWY-TT or MenC-CRM197/AlPO4 vaccine.61–63,67 (a) Percentage of toddlers with rSBA titers ≥1:8, (b) rSBA GMTs, (c) percentage of toddlers with hSBA 
titers ≥1:8, and (d) hSBA GMTs. Subjects had blood samples collected at 1 month (range, 21–48 days) after the second primary dose (primary ATP cohort) and the 
booster dose (booster ATP cohort). Panel A. Postprimary, n = 455–457; postbooster, n = 446–463. Panel B. Postprimary, n = 455–457; postbooster, n = 446–463. Panel 
C. Postprimary, n = 202–226; postbooster, n = 216–221. Panel D. Postprimary, n = 202–226; postbooster, n = 216–221. ATP = according to protocol; GMT = geometric 
mean titer; hSBA = serum bactericidal antibody using human complement; MenACWY-TT = meningococcal serogroups A, C, W, and Y vaccine conjugated to tetanus 
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The reviewed studies also reported rSBA GMTs.60–67 Within 
each study, the magnitude of rSBA GMT against serogroup C in 
the MenACWY-TT compared with monovalent MenC vaccine 
groups varied by <3-fold. There was no apparent pattern 
regarding which vaccine type gave rise to higher MenC rSBA 
GMTs: in 5 studies, levels were higher in the MenACWY- 

TT–vaccinated groups (i.e., all toddler studies and the study in 
5-year-olds),61–63,65,67 and in 3 studies, levels were higher in the 
monovalent vaccinated groups (i.e., the infant study, the ado
lescent study, and the study in 2–10-year-olds).60,64,66 The study 
in adolescents used MenC rSBA GMT ratio to assess noninfer
iority of MenACWY-TT to MenC-TT at 1 month; 
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Figure 4. Serum bactericidal antibody measurements against serogroup C at 1 month postvaccination in individuals aged ≥2 years administered a single or 
booster dose of MenACWY-TT, MenC-CRM197/Al(OH)3, MenC-TT, or MenC-CRM197/AlPO4 vaccine.64–66 (a) Percentage of individuals with rSBA titers ≥1:8, (b) 
rSBA GMTs, (c) percentage of individuals with hSBA titers ≥1:8, and (d) hSBA GMTs. *MenC-CRM197 vaccine = MenC-CRM197/Al(OH)3 in Knuf 201364 and MenC- 
CRM197/AlPO4 in Vesikari 2015.65 All analyses were performed on ATP immunogenicity cohorts. Knuf 2013: Subjects aged 2–10 years administered a single vaccine dose; 
MenACWY-TT, n = 293; MenC-CRM197/Al(OH)3, n = 97; blood samples collected at 1 month postvaccination (range, 21–48 days).64 Vesikari 2015: Subjects aged 5 years 
(60–69 months) who had previously received 1 dose of MenACWY-TT or MenC-CRM197/AlPO4 as toddlers were administered a booster dose of the same vaccine. 
MenACWY-TT, n = 209–215; MenC-CRM197/AlPO4, n = 33–43; blood samples collected at 1 month postbooster (range, 21–48 days).65 van Ravenhorst 2017: Subjects 
aged 10, 12, or 15 years who had previously received a primary dose of MenC-TT as toddlers were administered a booster vaccine dose; MenACWY-TT, n = 78–79; MenC- 
TT, n = 78–89; blood samples collected at 1 month postbooster (ATP blood sampling window not available).66 ATP = according to protocol; GMT = geometric mean titer; 
hSBA = serum bactericidal antibody using human complement; MenACWY-TT = meningococcal serogroups A, C, W, and Y vaccine conjugated to tetanus toxoid as 
a carrier protein; MenC-CRM197/Al(OH)3 = meningococcal serogroup C vaccine conjugated to the nontoxic form of diphtheria protein cross-reactive material 197 and 
adsorbed onto aluminum hydroxide; MenC-CRM197/AlPO4 = meningococcal serogroup C vaccine conjugated to the nontoxic form of diphtheria protein cross-reactive 
material 197 and adsorbed onto aluminum phosphate; MenC-TT = meningococcal serogroup C vaccine conjugated to tetanus toxoid; rSBA = serum bactericidal 
antibody using baby rabbit complement.
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noninferiority was shown for the 12-year-olds (GMT ratio, 0.88 
[95% CI: 0.67–1.15]) but not for the 10- (GMT ratio, 0.80 [95% 
CI: 0.54–1.18]) or 15-year (GMT ratio, 0.81 [95% CI: 0.61–
1.06]) age group.66 However, these differences are minor and 
not likely to be of clinical significance.

The hSBA assessments were reported in four of the reviewed 
studies,60,61,65,67 supporting the similar trends observed with 
MenC rSBA assessments. In the infant study, the percentage of 
subjects with MenC hSBA titers ≥1:8 after primary vaccination 
generally reflected the corresponding rSBA percentages, whereas 
that of postbooster hSBA titers ≥1:8 appeared to be slightly more 
uniform across vaccine groups.60 Similarly, the pattern of varia
tion in hSBA GMTs among infant vaccine groups at the post
primary time point was consistent with that observed in rSBA 
GMTs, whereas postbooster hSBA GMTs were more uniform 
than their rSBA counterparts. In both toddler studies that 
assessed hSBA titers, the magnitude of difference between 
MenACWY-TT and MenC-CRM197/AlPO4 in the percentages 
of subjects with titers ≥1:8 was notably larger in hSBA compared 
with rSBA assays (hSBA 16.6% vs rSBA 2.2%, and hSBA 27.0% 
vs rSBA 1.5%, respectively).61,67 However, the ranking of vaccine 
groups did not differ between SBA assay types; in each study, 
both assays consistently resulted in higher percentages for the 
MenACWY-TT cohorts.

Monovalent MenC conjugate vaccines were initially licensed 
based on strong postvaccination immune responses shown in 
the rSBA assay.68,69 Subsequent postlicensure data from the 
United Kingdom indicated that the percentages of subjects 
with rSBA titers ≥1:8 were more consistent with observed 
effectiveness than the percentages with titers ≥1:128.70 

Accordingly, rSBA titers ≥1:8 have been widely accepted as 
correlate of protection for MenC conjugate vaccines.71

Although studies have generally found that higher titers are 
measured by rSBA compared with hSBA assays, reasonable 
correlations between rSBA and hSBA titers have been shown 
for MenC vaccines.68,72 However, the licensure of MenACWY- 
TT was primarily based on rSBA assay results, although some 
hSBA assay data were included.73 Data, including that from 
postlicensure effectiveness studies, support the use of rSBA for 
this vaccine,73–75 and data from recent MenACWY-TT clinical 
studies suggest that hSBA assays may be less relevant.76–78

The strengths of our review include the large number of 
studies, with >4000 subjects, and the range of age groups 
assessed. However, our review was limited to comparing SBA 
assay results within studies. As aspects of the protocols varied, 
comparison of SBA assay results across different laboratories is 
difficult. Even when a standardized method exists, such as the 
widely adopted rSBA assay standard for serogroups A and 
C published in 1997, interlaboratory variation remains 
significant.79 Additionally, this review did not consider the 
immunogenicity of the other serogroups in the vaccine (i.e., 
A, W, and Y). In the included studies, robust immune 
responses to serogroups A, W, and Y were observed following 
primary MenACWY-TT vaccination;60–64,67 similar to the ser
ogroup C response, rSBA and hSBA antibody levels against A, 
W, and Y declined during the post-primary period and 
responded strongly post-booster.60,65 Differences in immune 
responses based on 1- versus 2-dose schedules were also not 
considered. Of note, MenACWY-TT was chosen for this 

comparison because of the availability of clinical data across 
age groups; however, this review did not consider comparative 
MenC responses to other quadrivalent vaccines.

Only short-term MenC antibody responses were considered in 
this current analysis. However, long-term antibody persistence 
following MenACWY-TT and MenC-CRM vaccination has been 
recently reported.80,81 Ten years after primary vaccination with 1 
dose of MenACWY-TT or MenC-CRM as toddlers,67 57% of 
MenACWY-TT recipients and 86% of MenC-CRM recipients 
had MenC rSBA titers ≥1:8.81 In the same study, subjects with 
a suboptimal serogroup C response to primary MenACWY-TT 
or MenC-CRM vaccination received a booster dose of MenC- 
CRM by Year 5; in these subjects, percentages with MenC rSBA 
titers ≥1:8 at Year 10 were 98% and 90%, respectively. Overall, the 
percentage of subjects with a MenC rSBA titer ≥1:8 at Year 10 was 
83% in the MenACWY-TT primary vaccine group and 88% in 
the MenC-CRM primary vaccine group. Notably, all 4 sub- 
groups showed a robust response to booster vaccination with 
MenACWY-TT at Year 10, with 100% of subjects having 
a MenC rSBA titer ≥1:8 at 1 month post-booster. In another 
persistence study,80 6 years after booster vaccination of 5-year-old 
children with MenACWY-TT or MenC-CRM65 (i.e., 10 years 
after primary vaccination with the same vaccine60), 72% of 
MenACWY-TT recipients and 65% of MenC-CRM recipients 
had MenC rSBA titers ≥1:8.80

In conclusion, MenC immune responses induced by 
MenACWY-TT are robust and generally comparable to mono
valent MenC conjugate vaccines, supporting changes from 
monovalent MenC to MenACWY vaccination recommenda
tions. The broad serogroup protection provided by MenACWY- 
TT, as well as its licensure from 6 weeks of age, together suggest 
that MenACWY-TT is a suitable option to provide protection 
against many of the common disease-causing meningococcal 
serogroups across at-risk age-based populations.
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