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Enhanced Localization of Genetic Samples
through Linkage-Disequilibrium Correction

Yael Baran,1 Inés Quintela,2 Ángel Carracedo,2,3 Bogdan Pasaniuc,4,5,8,* and Eran Halperin1,6,7,8

Characterizing the spatial patterns of genetic diversity in human populations has a wide range of applications, from detecting genetic

mutations associatedwith disease to inferring humanhistory. Current approaches, including thewidely used principal-component anal-

ysis, are not suited for the analysis of linked markers, and local and long-range linkage disequilibrium (LD) can dramatically reduce

the accuracy of spatial localization when unaccounted for. To overcome this, we have introduced an approach that performs spatial

localization of individuals on the basis of their genetic data and explicitly models LD among markers by using a multivariate normal

distribution. By leveraging external reference panels, we derive closed-form solutions to the optimization procedure to achieve a compu-

tationally efficient method that can handle large data sets. We validate the method on empirical data from a large sample of European

individuals from the POPRES data set, as well as on a large sample of individuals of Spanish ancestry. First, we show that bymodeling LD,

we achieve accuracy superior to that of existingmethods. Importantly, whereas othermethods show decreased performance when dense

marker panels are used in the inference, our approach improves in accuracy as more markers become available. Second, we show that

accurate localization of genetic data can be achieved with only a part of the genome, and this could potentially enable the spatial local-

ization of admixed samples that have a fraction of their genome originating from a given continent. Finally, we demonstrate that our

approach is resistant to distortions resulting from long-range LD regions; such distortions can dramatically bias the results when unac-

counted for.
Introduction

Discerning the spatial structure of individuals on the basis

of their genetic material has important applications to

medical genetics with regard to finding mutations that in-

crease disease risk,1,2 most notably through facilitating

powerful corrections of stratification.3 This task is also

crucial for population-genetic studies (e.g., studies of selec-

tion,4 migration,5 and recombination6,7), which provide

insights into human demographics and history.8 More-

over, it has recently been shown that ancestry inference

is of critical value in pharmacogenomics.9

Inferring spatial genetic structure has been traditionally

performed via dimensionality-reduction techniques—

typically principal-component analysis (PCA)3–10—which

rely on the similarity between geographic maps of

population locations and the reduced-dimension maps.

Although often successful and conceptually simple, PCA

is a generic method that does not directly model any

properties that are unique to genetic data. Recently,

a method that uses an explicit probabilistic model

to describe genetic variation as a function of spatial

position has been proposed;11 among the advantages of

this model-based approach, named SPA, is its ability to

handle genomes of mixed individuals and detect selection

signals.
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A major drawback of all existing approaches to spatial

localization is that they do not model linkage disequilib-

rium (LD) among markers across the genome. Correlations

among markers in the form of LD violate the inherent as-

sumptions made by both PCA and SPA. Intuitively, in the

presence of linked markers, each marker is assumed to pro-

vide independent evidence of the sample’s origin,

although this is not truly the case (for example, a pair of

two perfectly linked markers should only be counted as

one). The cumulative effect of such unaccounted-for corre-

lations not only decreases accuracy but can also bias the

results, even in the presence of an infinite number of sam-

ples.12 Moreover, in addition to containing local LD, the

genome contains long-range LD regions in which correla-

tions among variants can extend up to megabases as a

result of the suppression of recombination, for instance, af-

ter a chromosomal inversion. The effects of these regions

are strong enough to dominate the top principal compo-

nents (PCs) in some data sets. When the bias is obvious,

a possible remedy is the removal of the problematic

genomic parts;13 in less extreme cases, such biases are

likely to go undetected, as we demonstrate in the Results.

In this work, we introduce LOCO-LD, an approach to

performing spatial localization corrected for LD. LOCO-

LD uses a probabilistic model to describe the allele fre-

quencies and the linkage patterns within short genomic
8, Israel; 2Grupo de Medicina Xenómica, Universidad de Santiago de Com-

tigación Biomédica en Red de Enfermedades Raras, Santiago de Compostela
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windows. Specifically, the genotypes (or haplotypes when

the data are phased) within a window aremodeled as being

sampled from amultivariate normal distribution, and LD is

captured through the pairwise correlations between

markers. Similarly to SPA, we model allele frequencies as

a function of the spatial position. In contrast to existing

methods, LOCO-LD is designed primarily to work in a su-

pervised manner by using training data from individuals

whose origins are known. Such training data sets, which

are becoming widely available, can be leveraged for

improving the localization accuracy, as we show in the Re-

sults. Given the training genotypes and their origins, we

estimate the parameters of the model and localize new in-

dividuals through a maximum-likelihood procedure. We

derive closed-form formulae for the maximum-likelihood

estimators to achieve a fast and robust approach.

We validated our method on large-scale genotype data

from a set of 1,385 European individuals with known

country of origin from the POPRES data set.14 First, we

show that LOCO-LD performs significantly better than

current widely used methods in localizing European indi-

viduals; compared with the commonly used PCA

approach, which has a localization error of ~247 km,

LOCO-LD has a median localization error of ~206 km.

The key to its success is that whereas PCA and SPA deterio-

rate as the marker set becomes denser (and as a result, LD

increases among markers), LOCO-LD keeps improving.

This property is critical, considering recent developments

in genotyping and sequencing technologies, which enable

genotyping samples over increasingly dense SNP panels.

Second, we show that compared with that of PCA,

LOCO-LD’s performance is less sensitive to decreases in

the amount of available genomic information. For

example, whereas PCA’s localization error increases by

~80% when only 20% of the genome is utilized, LOCO-

LD’s error increases by ~30%. This suggests LOCO-LD as

themethod of choice for the localization of single-ancestry

segments extracted from the genomes of admixed sam-

ples.5,15 For example, given the genome of an African

American individual, the African and European haplotype

segments can be accurately retrieved with the use of exist-

ing local-ancestry-inference methods.16,17 Similarly to pre-

vious work,15 LOCO-LD can then be applied to fragments

of different local ancestries in order to estimate the separate

African and European origins, and its accuracy should

remain high despite the fact that only part of the genome

is being used for each of the two inference tasks. LOCO-

LD is also the best-performing method on very short DNA

segments (in the order of megabases) and is therefore likely

to performwell when integrated into a local-ancestry-infer-

ence method, similarly to existing PCA-based approaches.5

Finally, in order to compare the robustness of the

different methods to the effects of long-range LD, we apply

them to a data set of Spanish individuals, whose relative

homogeneity allows for the easy detection of such signals.

Indeed, we detected a strong distortion, which we traced

back to a common inversion on chromosome 8. Whereas
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the results of both PCA and SPA were affected, LOCO-LD

was resistant to the distortion.We also provide simulations

that demonstrate the effects of variously sized long-range

LD regions on the accuracy of spatial inference.
Subjects and Methods

LD-Aware Spatial Model
Suppose we have a sample of genotypes over a common set of

SNPs and we would like to estimate the geographic locations

from which each sample originated (the method works just as

well for haplotypes with a slight modification, which we explain

later). Suppose also that we have a set of n genotypes, g1.gn,

whose locations of origin, x1.xn (xi is a d 3 1 vector and d is the

dimension of the spatial representation), are known to a reason-

able precision. We will train a model on these n samples and use

the inferred parameters to estimate the locations of the samples

whose origins are unknown.

Our model describes the expected genotype value of each SNP

across space as a linear function of the position, and in that regard,

it is similar to SPA. In addition, we divide the genotypes into

nonoverlapping windows of length l and model the pairwise cor-

relations between pairs of SNPs within each window as window

specific and constant (position independent). Finally, we assume

that the genotypes within a window are sampled from a multivar-

iate normal distribution (MVN). The score function that we obtain

for window j is therefore

L
�
g1j.gnj; bj;Sj

�
¼
Yn
i¼1

1

ð2pÞ l
2 jSj j

1
2

e
�1
2ðbjxi�gijÞTS�1

j ðbjxi�gijÞ;

(Equation 1)

where gij is an l 3 1 vector containing the portion of genotype i

restricted to window j, bj is an l 3 d linear-coefficient matrix

describing the position-dependent allele frequencies in the win-

dow, and Sj is the l 3 l matrix of pairwise correlations within

the window.

The MVN is not a natural choice for describing discrete geno-

types; ideally, we would use a discrete multivariate distribution,

but such distributions are mathematically complex and computa-

tionally demanding, even when l is small. A number of recent

works have demonstrated that modeling genotypes and haplo-

types with the MVN performs well in the tasks of SNP calling,

phasing, imputation, and local-ancestry inference.18–20 The key

point is that although the multivariate normal model does not

accurately describe the data, it is able to capture its principal prop-

erties, and it therefore clusters the samples correctly according to

their position of origin, as we show in the Results.

Dividing the genome into windows is meant to decrease

the number of estimated correlation parameters while capturing

the local nature of LD. Because the genotypes in different windows

are assumed to be sampled independently of each other, neigh-

boring SNPs residing in adjacent windows are also assumed

independent; however, their number is small relative to the total

number of SNPpairs, and thereforemost of the LD is accounted for.

Finally, we note that our proposedmodel makes the assumption

that LD is constant, which is violated when true LD patterns vary

at different geographic locations. However, we show that using the

average LD over the entire data set as a first approximation over

the standard assumption of independence already leads to

increased accuracy.
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Supervised Inference in Our Model
LOCO-LD is designed mainly for use with training data (i.e., sam-

ples with known origin), although in subsequent sections, we

show how it can also be used in the absence of such data. Assume

that we have a training set of samples whose origins are known;

such data can be obtained from public repositories such as POPRES

or can be directly available for some of the analyzed samples. LetGj

denote the l 3 n matrix, whose columns are the genotypes within

window j of the samples with known origins, and let X denote the

d 3 n matrix, whose columns are these origins. Under the formu-

lation of Equation 1, the maximum-likelihood estimator for bj has

the following closed-form solution (the mathematical derivations

appear in Appendix A):

bbj ¼ GjX
T
�
XXT

��1
: (Equation 2)

Given bbj, the maximum-likelihood estimator for Sj has the

following standard solution:

Ŝj ¼ 1

n

Xn
i¼1

�bb jxi � gij
��bbjxi � gij

�T
: (Equation 3)

Thus far, we have shown how to obtain the per-window param-

eter estimates bbj and Ŝj given the genotypes of a set of samples

whose spatial origins are known. Now we can use these estimates

to infer the origins of other samples. The likelihood of a genotype

divided into windows g1.gm as a function of its position vector x

can be written as

Lðg1.gm; xÞ ¼
Ym
j¼1

1

ð2pÞ l
2 jSj j

1
2

e
�1

2ðbjx�gjÞTS�1
j ðbjx�gjÞ; (Equation 4)

and the maximum-likelihood estimator for x has again a closed-

form solution:

bx ¼
 Xm

j¼1

bT
j S

�1
j bj

!�1 Xm
j¼1

bT
j S

�1
j gj

!
: (Equation 5)

We infer bx by setting bj and Sj to the estimates we obtained from

the training set by using Equations 2 and 3. In case the position

vector includes fixed entries (for example, and as we discuss

next, we chose to set one of the entries to 1 in order to allow for

a position-independent offset), Equation 5 needs to be adjusted;

the details are given in Appendix A.
Variations on the Model
The position vector x can be any function of the geographic coor-

dinates. Setting x ¼ (x1, x2, x3) ¼ (x coordinate, y coordinate, 1) al-

lows for a linear change along a given spatial direction with an

arbitrary offset. Having x include higher-degree terms derived

from the original coordinates introduces more flexibility to the

pattern of spatial change in genotype expectations. For example,

x can be added as a multiplicative term:

x ¼ ðx1; x2; x3; x4Þ
¼ ðx coordinate; y coordinate; x coordinate3 y coordinate;1Þ

(Equation 6)

When x includes higher-degree terms, the estimation of b and S

remains closed form, but the estimation of x now needs to be done

under nonlinear constraints via an iterative optimization proce-

dure. We used MATLAB’s implementation of the active-

set algorithm to solve these optimization problems.
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The model as we described it operates on genotypes, but we

can be easily adapt it to handle haplotypes by modeling the

haplotypes instead of the genotypes as sampled from MVN distri-

butions. When bj and Sj are estimated for a given window, Gj be-

comes an l 3 2n matrix of haplotypes, and X is a d 3 2n matrix

in which each position vector appears twice. When estimating

the position of a sample, Equation 5 now sums over 2m instead

of m elements because there are two haplotypes per window.
Final Geographic Assignment
The estimates obtained by the different methods for (x1, x2) ¼
(x coordinate, y coordinate) are assigned to final geographic posi-

tions (z1, z2) with the same transformation as in Novembre

et al.21 and Yang et al.11 Specifically, a training set (disjoint from

the set on which the model parameters were estimated) is used

for fitting standard linear-regression models

z1 ¼ a11x1 þ a12x2 þ b11x
2
1 þ b12x

2
2 þ c1x1x2 þ e1; e1 � N �0;s2

1

�
(Equation 7)

and

z2 ¼ a21x1 þ a22x2 þ b21x
2
1 þ b22x

2
2 þ c2x1x2 þ e2; e2 � N �0;s2

2

�
;

(Equation 8)

and the inferred regression parameters are then used for assigning

positions to the test set. We note that using a different, more so-

phisticated transformation might lead to better results; for

example, a recent paper22 used a Procrustes analysis on top of

PCA. In this paper, however, we focus on improving the pretrans-

formation estimates and use the basic transformation above to

carry out the method comparison.
PCA
PCA is a commonly used technique for geographic localization.

We use the standard PCA procedure preceded by a previously sug-

gested normalization step. LetGn 3 m be the genotype-datamatrix,

so that Gij is the genotype of SNP j in individual i. Denote by pj the

average genotype of SNP j. Following Price et al.,3 we standardize

the entries of the jth column of G in the following manner:

Mij ¼ Gij � pjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pj
2

�
1� pj

2

�s (Equation 9)

We then compute the singular-value decomposition of the n3 n

matrix MMT to obtain

MMT ¼ QDQT ; (Equation 10)

where Q is an orthogonal matrix containing the eigenvectors of

MMT. We obtain matrix U, which contains the eigenvectors of

MTM, by transforming Q as follows:

U ¼ MTQD�1
2 (Equation 11)

Note that we first decompose the smaller n 3 n matrix and then

transform the eigenvectors in order to increase the computational

efficiency.

In addition to assessing our PCA implementation, we experi-

mented with the SMARTPCA software included in the package

EIGENSOFT 4.2.23 SMARTPCA can be run in a mode that attempts

to handle local LD by regressing each SNP on prior SNPs and re-

placing the original genotypes with the residual values.We experi-

mentedwith various values for the number of prior SNPs onwhich
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Table 1. Tuning of LOCO-LD’s Window-Size Parameter on the
POPRES Data Set

Window Size
(SNPs)

Euclidean Distance: 2nd

[1st, 3rd] Quartile
Distance: 2nd [1st, 3rd]
Quartile (km)
to regress and found that setting this parameter to 5 attains the

best performance for the POPRES data. We therefore used

SMARTPCA with this parameter set to 5. We avoided outlier

removal (numoutlieriter: 0).
10 2.44 [1.44, 3.84] 215.4 [129.2, 324.8]

30 2.40 [1.38, 3.70] 214.1 [123.2, 313.2]

50 2.42 [1.36, 3.70] 211.2 [124.7, 313.8]

70 2.43 [1.42, 3.75] 215.0 [128.4, 318.5]

100 2.40 [1.43, 3.76] 213.9 [129.0, 320.8]

1 2.84 [1.62, 4.43] 247.1 [149.3, 366.3]

S ¼ I 3.21 [1.90, 5.01] 277.1 [169.0, 414.6]

We report the median (second quartile), as well as the first and third quartiles,
of the errors for the samples in the data set; the error is given both in terms of
Euclidean distance between the true and predicted coordinate vectors and in
terms of the distance in kilometers. S ¼ I denotes fixing all correlation matrices
to the identity.
The POPRES Data Set
The results presented in the first part of the Results were generated

with the use of European samples from the POPRES14 data set

(dbGaP accession number phs000145.v4.p2). We used the same

data set and quality-control procedures as in Novembre et al.21

and in Yang et al.11 We obtained the genotype data from POPRES

by removing low-quality SNPs, individuals from outside of Europe,

and additional European samples to create more even sample sizes

across Europe. Only individuals whose four grandparents had the

same geographic origin were kept. The ‘‘true’’ position for each

sample was determined as the central point of the geographic

area of the country (as in Novembre et al.21) with the exception

of the Russian Federation, Sweden, and Norway, for which the lo-

cations of the capitals were used. The final analysis focused on ge-

notype data of 447,245 autosomal loci in 1,385 individuals from

36 populations. We used BEAGLE 3.3.224 to phase and impute

the genotypes in this data set, and some of the runs were per-

formed on the imputed genotypes or haplotypes, depending on

the method.
LD Pruning
Because PCA and SPA do not account for LD, as the marker data

become denser, a tradeoff should come into play between the

additional information provided by the markers and the increased

LD between them. We experimented with several approaches of

removing both local and long-range LD in the POPRES data set.

We used PLINK25 to LD prune the data by using windows of 50

SNPs (offset by 5) and a cutoff of 0.2 for the pairwise r2. To account

for long-range LD, we removed all regions reported by Price et al.12
Localization of the POPRES Data Set
We compared different versions of LOCO-LD and benchmarked

them against PCA and SPA. For SPA and LOCO-LD, localization

was performed with the following leave-one-out scheme:

1. The group of all samples G was randomly divided into ten

groups (g1.g10).

2. For i ¼ 1.10, the parameter set mi ¼ (bi, Si) was estimated

with the training set G \ gi.

3. For each sample s ˛ gi, xwas estimated withmi andwas then

subject to the transformation inferred from gi\{s}.

For PCA (and SMARTPCA), the entire setGwas used for inferring

the PCs, and the transformation was inferred in a leave-one-out

fashion. The different procedure used for PCA appropriately ac-

counts for the fact that this method does not utilize the known lo-

cations of the samples in the training set.

In each experiment, we computed for each sample the localiza-

tion error as the distance in km (computed with the Haversine for-

mula26,27) between the true and the estimated positions, as well as

the Euclidean distance between the true and estimated coordinate

vectors. We report the performance of the methods in the localiza-

tion task in terms of the error distribution over these specific 1,385

samples. Because of the limited sample size and the uneven repre-

sentations of the different countries, these results are data-set
The Am
specific, and we therefore avoid providing estimates of the SD of

the ‘‘true’’ localization error.
Results

LOCO-LD Is Robust to Window Size

LOCO-LD relies on a nonoverlapping window framework

to model LD among nearby markers. We assessed the

robustness of our approach to different window sizes by us-

ing the POPRES data set (see Table 1). The increase in accu-

racy provided bymodeling LD can be seen in the decline in

median error from 247 to 211 km as the window size is

increased from 1 to 50 SNPs, thus abandoning the assump-

tion of independence and allowing for correlations be-

tween proximal SNPs. Whereas windows that are too short

allow for nonzero correlations only between small groups

of neighboring SNPs, windows that are too long model

spurious correlations between distant SNPs, which are

induced by the finite sample size. Although the best perfor-

mance is attained at window sizes of ~50 SNPs, we note

that our approach is generally insensitive to the window

size in the range of 10–100. In the experiments below,

we therefore used the value 50 unless otherwise specified.

LD-Corrected Probabilistic Modeling Improves

Accuracy in Spatial Localization

We quantified the effect of LD on the spatial-localization

results of different variations of PCA, SMARTPCA, SPA,

and LOCO-LD by using the POPRES data set (Table 2).

We compared several approaches to accounting for LD:

(1) ignoring the presence of LD and running the methods

on the complete, non-LD-pruned data, (2) filtering out

SNPs in LD, (3) using the linear-regression correction im-

plemented in SMARTPCA, or (4) accounting for LD in

the explicit model of LOCO-LD. In general, we found

that all approaches to accounting for LD improve on the

naive approach, which ignores LD altogether. The

commonly taken LD-pruning approach reduced PCA’s
erican Journal of Human Genetics 92, 882–894, June 6, 2013 885



Table 2. Comparison of the Different Methods on the POPRES Data Set

Algorithm Euclidean Distance: 2nd [1st, 3rd ] Quartile Distance: 2nd [1st, 3rd] Quartile (km) Relative Distance

PCA 2.88 [1.68, 4.50] 253.8 [150.0, 373.8] 1.20

PCA pruned 2.78 [1.68, 4.61] 247.2 [154.7, 378.4] 1.17

SMARTPCA 2.88 [1.68, 4.49] 254.2 [150.1, 373.8] 1.20

SMARTPCA pruned 2.78 [1.67, 4.61] 247.1 [155.0, 378.3] 1.17

SMARTPCA with regression (5) 2.74 [1.62, 4.33] 237.5 [146.4, 363.0] 1.12

SPA 2.88 [1.65, 4.44] 249.1 [148.4, 366.2] 1.18

SPA pruned 2.55 [1.56, 4.02] 226.4 [137.7, 336.2] 1.07

LOCO-LD 2.42 [1.36, 3.70] 211.2 [124.7, 313.8] 1

‘‘PCA’’ is our implementation of PCA. ‘‘Pruned’’ denotes running the methods on the data set after pruning for local and long-range LD. ‘‘SMARTPCA with regres-
sion (5)’’ denotes running SMARTPCA with the local regression option and setting the relevant parameter to 5. Reported error measures are the same as in Table 1.
‘‘Relative Distance’’ gives the ratio between the median error (in km) and LOCO-LD’s result.
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Figure 1. The Effect of Increasing the SNP Density on the
Different Methods
PCA, SPA, and LOCO-LD were run on the POPRES data set after
different levels of LD pruning were applied to it. As the threshold
increased, fewer SNPs were pruned, the number of SNPs increased,
and the LD increased. The increasing threshold levels correspond
to using 12%, 17%, 25%, 43%, 57%, and 97% of the available
SNPs. The reported error is the median distance in km between
the true and estimated locations over all samples in the data set.
error by 3% and SPA’s error by 9%. The regression approach

was more effective for PCA in that it reduced its error by

7%. We also found that the pruned version of SPA (median

error ¼ 226 km) was more accurate than the regression-

corrected PCA (median error ¼ 238 km). LOCO-LD

achieved the highest accuracy with a median error of

211 km, a 15% decrease in error compared with the

commonly taken approach of running PCA on pruned

data. We therefore saw that the combination of explicit

probabilistic modeling with LD correction, which does

not entail loss of information, was the most effective

approach.

Running LOCO-LD on phased haplotypes rather than

genotypes resulted in a small decrease in its error, presum-

ably because haplotypic LD ismore informative than geno-

typic LD. Extending the position vectors to include an

additional multiplicative term (as in Equation 6) provided

a further slight decrease. The total decrease in error

provided by these variations brought down LOCO-LD’s

median error to 206 km, as depicted in Table S1, available

online. The decreased distances between the estimated and

true positions translated into higher rates of successful

classifications to country of origin: the average true classi-

fication rates over countries with at least 20 individuals in

the data set were 45%, 53%, and 59% for PCA with re-

gression, pruned SPA, and LOCO-LD, respectively. Com-

plete classification results per country of origin are given

in Table S2.

LD-Unaware Methods Underperform at High Marker

Densities

In order to gain more insight into some of the results in Ta-

ble 2, we compared PCA, SPA, and LOCO-LD on the

POPRES data set after applying to it different levels of LD

pruning. Because PCA and SPA do not account for LD, as

the marker data become denser, a tradeoff should come

into play between the additional information provided

by the markers and the increased LD between them. The

results of this effect are demonstrated in Figure 1. As the
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number of SNPs increase (by an increasing r2 threshold),

LOCO-LD continues to improve, whereas both PCA and

SPA first improve and then start to deteriorate. As expected,

when the SNPs are unlinked, SPA performs slightly better

than LOCO-LD because of its explicit modeling of discrete

genotype data, and both methods outperform PCA

throughout the entire range. The results also suggest r2 ¼
0.2 as an effective threshold for LD pruning for both PCA

and SPA.
Handling Sporadic Missing Data

For ease of comparison and for reducing the running time,

the method comparison in Table 2 was performed on a
013



Table 3. Comparison of Different Strategies for Handling Sporadic Missing Data for the Different Methods

Method Missing Euclidean Distance: 2nd [1st, 3rd] Quartile Distance: 2nd [1st, 3rd] Quartile (km)

PCA filled 2.89 [1.71, 4.56] 253.4 [152.9, 375.9]

PCA imputed 2.88 [1.68, 4.50] 253.8 [150.0, 373.8]

SMARTPCA with regression (5) with missing 2.78 [1.60, 4.44] 241.1 [147.3, 366.6]

SMARTPCA with regression (5) imputed 2.74 [1.62, 4.33] 237.5 [146.4, 363.0]

SPA filled 2.86 [1.63, 4.48] 248.9 [148.0, 371.3]

SPA ignored 2.87 [1.62, 4.49] 248.7 [147.1, 371.0]

SPA imputed 2.88 [1.65, 4.44] 249.1 [148.4, 366.2]

LOCO-LD (window length ¼ 10) ignored 2.46 [1.43, 3.86] 221.5 [127.1, 320.9]

LOCO-LD imputed 2.42 [1.36, 3.70] 211.2 [124.7, 313.8]

‘‘Filled’’ denotes replacing the missing entries with the mean genotype value for that variant. ‘‘Imputed’’ denotes using BEAGLE for imputing the missing entries.
‘‘With missing’’ for SMARTPCA denotes running the software on data with missing entries. ‘‘Ignored’’ denotes leaving the missing entries out of the computation;
this option is available only for the model-based approaches, SPA and LOCO-LD. Reported error measures are the same as in Table 1.
version of the POPRES data set containing no missing

data (we used BEAGLE24 with default parameters for

missing-data inference). Imputing missing genotypes is

not a necessary stage for running LOCO-LD or the other

methods, given that other approaches can be taken to

handle sporadic missing data; these approaches are

compared in Table 3. One option is to replace the

missing genotype with the sample mean. For SPA, it is

also possible to omit specific missing genotypes when

computing the model parameters and the locations. The

table shows that for PCA, SMARTPCA, and SPA, the way

in which the missing data are handled has a negligible ef-

fect on accuracy.

As for LOCO-LD, the missing genotypes can again be

ignored, but given that the computation is performed on

entire windows, the naive approach would discard the

entire window per sample whenever one of the SNPs is

missing. Another option is to compute different entries

of the correlation matrix on the basis of different sub-

groups of the data, but our experiments show that this

approach yields a loss in accuracy. The best-performing

strategy for LOCO-LD in the presence of sporadic missing

data is to reduce the window length to 10 and ignore the

windows containing missing data. This approach gives a

median error of 222 km, which is still lower than any other

approach on either imputed or nonimputed data. Finally,

we note that the POPRES data set contains a high fraction

of sporadicmissing genotypes because it was genotyped on

the Affymetrix 500K platform, and therefore, the differ-

ences in accuracy we give here are likely to be even smaller

in more recent data sets.

Running Time

The use of closed-form optimization formulae makes

LOCO-LD very fast compared with SPA, which uses an iter-

ative optimization procedure per SNP and per sample.

Training the models on the imputed POPRES data set on

a machine containing eight Quad-Core AMD Opteron
The Am
2354 processors takes LOCO-LD less than 1 min, whereas

SPA requires 160 min; if we extrapolate to a data set of

50,000 samples, LOCO-LD and SPA would require 33 min

and over 4 days, respectively. As for PCA, its time and space

complexity scale cubically and quadratically, respectively,

with the number of samples, making it heavy on data

sets of thousands of samples. In contrast, the time and

space complexities of both LOCO-LD and SPA are linear

in the number of samples.

Estimation with No Prior Location Data

PCA, SPA, and LOCO-LD can be used in the absence of

training data; in the case of SPA and LOCO-LD, this is

done with an iterative scheme in which the model param-

eters and the positions are estimated in turns, the first of

which is a random guess (we note that some training

data must be available, though, so that the obtained posi-

tions can be anchored on the geographic map). We

compared different iterative schemes in which ten itera-

tions were taken on the entire POPRES data set, and the

final positions were called with the transformation in a

leave-one-out procedure.

Because LOCO-LD estimates two different sets of param-

eters, namely b and S, in addition to the positions, its

behavior in the iterative mode is unstable, and we do not

recommend running it in this fashion. Of all the schemes

we tested, the one that yielded the lowest error was

running SMARTPCA with the regression LD-correcting

mode and a subsequent single iteration of LOCO-LD; this

procedure yielded a median error of 233 km, as shown in

Table 4. We note, however, that the accuracy achieved in

the train-test scheme of the previous sections is higher,

and we therefore recommend using it when training data

are available. The training data do not have to be geno-

typed on the same platform as the test samples because,

as we show next, the cross-platform performance of

LOCO-LD is good enough to provide results that are supe-

rior to the best unsupervised approach.
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Table 4. Comparison of the Different Methods in the Lack of Training-Location Data

Method
Euclidean Distance: 2nd [1st, 3rd]
Quartile Distance: 2nd [1st, 3rd] Quartile (km)

Average Classification
(Supervised)

SMARTPCA with regression (5) 2.74 [1.62, 4.33] 237.5 [146.4, 363.0] 0.45 (0.45)

SPA, LD-pruned 2.72 [1.55, 4.42] 238.5 [136.7, 361.6] 0.47 (0.53)

LOCO-LD from
SMARTPCA with regression (5)

2.695 [1.63, 4.16] 233.1 [144.5, 343.0] 0.51 (0.59)

SMARTPCA with regression, SPA on LD-pruned data, and LOCO-LD were run without training-location information. SPA was run for ten iterations, which started
with a random guess. LOCO-LD’s haplotypic version with window length 50 was run for a single iteration from SMARTPCA’s results. Reported error measures are
the same as in Table 1. ‘‘Average classification’’ gives the mean true classification rate over the countries that are represented by at least 20 samples in the data set;
the values in parentheses give for comparison the classification results when training locations were used (as in Table 2).
Cross-Platform Performance

We have shown so far that localization accuracy is

improved when a training set of samples whose origins

are known is leveraged in the inference. It is therefore

important to quantify the loss in accuracy when the refer-

ence training samples are genotyped on a different array

than the localized samples. We simulated this scenario

with the POPRES data, which were genotyped on the Affy-

metrix 500K platform, by randomly choosing 10% of the

POPRES samples (referred to as the Illumina set) and

removing from their genotypes all SNPs not present on

the Illumina 650Y array; this amounted to ~80% of the

SNPs. The remaining 90% of the POPRES samples were

used as the training set. We imputed the Illumina set by us-

ing the training samples as a reference and tested two stra-

tegies: (1) localizing by using all imputed SNPs and (2)

localizing by using only the SNPs that were contained in

both arrays. Table 5 shows the accuracy of PCA and SPA

(on pruned data) and of LOCO-LD when each of these

two strategies were used. For PCA, using the entire imputed

set led to a sharp increase in error, given that the second PC

separated between the Illumina and the training samples;
Table 5. Comparison of the Cross-Platform Performance of the Differ

Method Data Euclidean Distance: 2nd [1st, 3rd] Quart

PCA pruned full 2.70 [1.56, 4.38]

PCA pruned imputed 6.28 [3.27, 11.0]

PCA pruned intersection 2.92 [1.58, 5.13]

SPA pruned full 2.57 [1.48, 4.17]

SPA pruned imputed 2.60 [1.70, 4.60]

SPA pruned intersection 3.12 [1.75, 4.65]

LOCO-LD full 2.19 [1.40, 3.81]

LOCO-LD imputed 2.66 [1.62, 4.39]

LOCO-LD intersection 2.69 [1.57, 4.44]

The genotypes of 10% of the POPRES samples were set to missing for all SNPs not
localization of Illumina-genotyped samples with the use of the POPRES Affymetrix
the use of a training set consisting of the rest of the POPRES samples. ‘‘Full’’ denot
‘‘Imputed’’ denotes imputing the test set to the POPRES SNPs set with BEAGLE prio
arrays for localization. For PCA and SPA, the resulting data sets were pruned for sho
‘‘Relative to Full’’ gives, per method, the ratio between the median error (in km)

888 The American Journal of Human Genetics 92, 882–894, June 6, 2
PCA’s error on the intersected set, however, showed only

a small increase compared with its full-set performance.

For LOCO-LD, using the intersected set was also the best

choice, whereas SPA attained higher accuracy when the

entire imputed set was used. Although SPA showed the

smallest decrease in accuracy in the cross-platform experi-

ment, LOCO-LD remained the best-performing method.

Modeling LD Improves Accuracy when Only Part of

the Genome Is Available

We tested the accuracy of the different methods on

genomic segments of varying lengths by using the same

train-test scheme described above. The tested segments

consisted of 100, 500, 1,000, 5,000, 10,000, 50,000,

100,000, 200,000, and 300,000 consecutive SNPs (out of

a total of ~450,000 SNPs genome-wide); for each length,

ten different segments (overlapping for long segments)

were sampled along the genome. Figure 2 gives the

error for each method as a function of the percentage of

genome used. LOCO-LD’s error remained the lowest

throughout the entire range, andmoreover, it was the least

sensitive to the loss of information: compared with that of
ent Methods

ile Distance: 2nd [1st, 3rd] Quartile (km) Relative to Full

238.7 [151.7, 361.7] 1

513.1 [287.4, 800.2] 2.15

246.2 [148.1, 420.2] 1.03

228.4 [130.7, 350.8] 1

235.4 [146.3, 381.8] 1.03

257.2 [146.6, 379.2] 1.13

195.9 [118.7, 321.6] 1

232.3 [141.0, 365.6] 1.19

227.4 [139.7, 371.3] 1.16

contained in the Illumina 650Y array (~80% of the SNPs) for the simulation of
reference data set. These samples (named the Illumina set) were localized with
es localization using the full Affymetrix SNP set, as in the previous experiments.
r to localization. ‘‘Intersection’’ denotes using only the SNPs contained in both
rt-range and long-range LD. Reported error measures are the same as in Table 1.
and the result on the full SNP set.
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Figure 2. The Effect of Decreasing the Available Amount of
Genomic Sequence on the Different Methods
PCA, SPA, and LOCO-LD were tested on genomic segments of
different lengths, corresponding to different fractions of the
genome. For PCA and SPA, the results with and without pruning
the segments for both local and long-range LD are given. LOCO-
LD’s version is haplotypic with window length 50. For each
method and fraction of genome used, the plot gives themedian er-
ror (in km) averaged over ten segments of the corresponding
length for the samples in the data set. The error bars represent
the uncertainty induced by the sampling of segments and give
the SEM over the ten trials. The genomic fractions, given in the
x axis, correspond to 100, 500, 1,000, 5,000, 10,000, 50,000,
100,000, 200,000, and 300,000 SNPs.
the LD-pruned version of PCA, its error was smaller by 24%

and 38% with the use of 69% and 23% of the genome,

respectively. We note that LOCO-LD achieved the highest

accuracy also in the shortest tip of the range, when only a

few megabases of sequence were used (see Figure S1).

Robustness to Long-Range LD: Results for a Spanish

Data Set

The human genome is known to contain numerous re-

gions in which LD extends longer than expected. At least

some of the long-range LD regions span genomic in-

versions that are known to suppress recombination

events.28 Long-range LD has been shown to seriously

bias the results of PCA in some data sets to the extent

that PCA can be used for identifying long-range LD re-

gions.12 We first tested the POPRES results of the different

methods for such effects by omitting from the analysis

known long-range LD regions,12 but we did not find strong

evidence of such influences (see Table S3 for complete re-

sults; we note that Novembre et al.21 reached a similar

conclusion regarding the effect of long-range LD on the

PCA results for the POPRES data set.)

Next, we hypothesized that long-range LD would be

readily detectable in a more homogenous data set. We

therefore turned to a data set consisting of the genotypes

of 949 Spanish individuals for whom the autonomous

community of origin (e.g., Galicia, Andalucı́a, Catalunya,

etc.) was given. These individuals were genotyped as part
The Am
of a larger genome-wide association study (GWAS), and

we kept only the samples for which a single community

was reported. The Spanish samples were obtained after

informed consent. The study has the approval of the

ethical committee of the University of Santiago de Com-

postela. We also chose to discard samples reported to orig-

inate fromCatalunya, Madrid, Castilla-LaMancha, and the

Islas Canarias because a large number of immigrants are

known to reside in these regions; the numbers of samples

reported to originate from each of the remaining commu-

nities appear in Table S4. The samples were genotyped on

the Affymetrix Genome-wide Human SNP Array 6.0, and

we used in the analysis 650,278 autosomal SNPs for which

there were no missing data. We used PCA, SPA, and LOCO-

LD as in the POPRES analysis but omitted the transforma-

tion stage, given that we were interested in comparing the

general clustering patterns obtained by the different

methods regardless of the transformation’s effect.

The Spanish data set indeed exhibited a strong bias,

which was traced to a common inversion on chromosome

8. This same region was previously found to bias PCA re-

sults of a European panel.13 Figure 3 shows the effect of

the inversion on the localization estimates of PCA, SPA,

and LOCO-LD. For PCA, the effect was so dominant that

it took over the second PC even with the entire SNP set,

which was evident by the three distinct equidistant clus-

ters that captured the three inversion genotypes—homo-

zygous for the inversion, homozygous for noninversion,

and heterozygous. When the analysis was restricted to

chromosome 8 or to the inversion region, the first PC

became dominated. SPA’s results on the entire SNP set

did not seem to be affected, but the results on chromosome

8 were noisier than expected, and in the inversion region

itself, the three clusters were again detectable along the di-

agonal axis. In contrast, LOCO-LD’s results were not biased

by the inversion, and the clusters pattern did not appear.

In some cases, strong effects resulting from long inver-

sions can be detected and manually removed from the

analysis. We checked whether shorter inversions (or other

regions of continuous high LD) could cause biases that

would go undetected in the top PCs but still affect localiza-

tion accuracy.We simulated this scenario by adding to each

POPRES LD-pruned genotype the inversion genotype of a

randomly drawn Spanish sample. In different experiments,

we used either the whole inversion or shorter parts of it.We

localized the samples by using SMARTPCA and SPA. The re-

sults are presented in Table 6 and show that already when

the length of the added inversion was less than 25% of the

original inversion, SMARTPCA showed a 12% increase in

error. Overall, SPA was more robust than SMARTPCA to

the inversion effect, and when the full inversion was intro-

duced, the three-cluster pattern took over PCA’s map,

whereas SPA’s error increased by only 14 km.

We went on to improve LOCO-LD’s localization analysis

by setting a threshold on the maximum number of sam-

ples that were used from each community in each training

session (n % 50) and adjusting the window size to 10.
erican Journal of Human Genetics 92, 882–894, June 6, 2013 889



Figure 3. The Effect of a Long-Range LD Region Spanning an Inversion on Chromosome 8 on the Localization of a Spanish Data Set
The samples of the Spanish data set were localized with PCA, SPA, and LOCO-LD. The colors and marker types, defined in Figure 4, give
the samples’ communities of origin.
(A, D, and G) The localization estimates (x versus y coordinates) of PCA (A), SPA (D), and LOCO-LD (G) on the entire Spanish data set.
(B, E, and H) The results of PCA (B), SPA (E), and LOCO-LD (H) when only chromosome 8 was used.
(C, F, and I) The results of PCA (C), SPA (F), and LOCO-LD (I) when only the inversion region was used.
Figure 4 depicts the inferred locations for communities in

the northern part of Spain. The samples from each of the

communities are well clustered together, except for a few

outliers. The relative positions of these clusters partially

reflect the true relations: the clusters of Galicia, Asturias,

Castilla y León, Cantabria, and Aragón are correctly posi-

tioned, whereas Navarra, the Paı́s Vasco, and La Rioja are

stretched to the northeast. The communities in the south

of Spain do not cluster as clearly (see Figure S2), and sam-

ples from different communities tend to overlap, although

the relative positions are conserved to a limited extent. The

difference between the north and the south is probably at

least partially attributed to the northern mountain chains,

which separate the different communities. Such geograph-

ical barriers, which are absent from the south, decrease

gene flow between the populations and extenuate the ge-

netic differences between them.
Discussion

Existingmethods for the geographic localization of genetic

samples, including the commonly used PCA, do not ac-
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count for LD between variants. In this paper, we have

demonstrated that ignoring LD leads to a loss of accuracy

when a commonly used SNP chip is used. Between-marker

correlations impair the performance of the methods, and

pruning the SNPs to obtain linkage equilibrium, as is often

done with the use of PCA, entails discarding useful infor-

mation. In addition, regions of long-range LD can dramat-

ically bias the analysis results.

We have presented LOCO-LD, a localization method

that incorporates an LD correction within an explicit

probabilistic model. LOCO-LD successfully utilizes the in-

formation contained in variant sets of increasing density,

making it the best-performing localization method

among the methods we tested on the POPRES data set.

This property should become critical as variant sets

become increasingly large. Although examining the effect

of accurate localization on downstream analysis is beyond

the scope of this work, we note that accurate methods for

geographic localization are already being used in the

context of correction for population stratification in

GWASs,29 and LOCO-LD can be directly employed in

such a framework. LOCO-LD also performs well when

only a fraction of the genome is given, suggesting that
013



Table 6. Comparison of the Effect of Long-Range LD Regions of Varying Lengths on SMARTPCA and SPA

Method
Inversion Length
(SNPs)

Euclidean Distance: 2nd [1st, 3rd]
Quartile

Distance: 2nd [1st, 3rd]
Quartile (km) Relative to Length 0

SMARTPCA pruned 0 2.78 [1.67, 4.61] 247.1 [155.0, 378.3] 1

SMARTPCA pruned 410 3.18 [1.84, 5.30] 275.7 [162.7, 433.4] 1.12

SMARTPCA pruned 1,800 (whole) 6.98 [4.18, 11.9] 545.4 [362.6, 832.9] 2.21

SPA pruned 0 2.55 [1.56, 4.02] 226.4 [137.7, 336.2] 1

SPA pruned 450 2.60 [1.58, 4.03] 227.3 [139.5, 336.8] 1.00

SPA pruned 900 2.63 [1.58, 4.09] 230.3 [139.4, 344.6] 1.02

SPA pruned 1,800 (whole) 2.73 [1.61, 4.23] 240.6 [141.8, 355.7] 1.06

The genotypes of the Spanish samples from the chromosome 8 inversion were excised, trimmed to different lengths, and ‘‘transplanted’’ in the genotypes of the
POPRES samples. ‘‘Inversion length’’ gives the number of SNPs in the transplanted inversion out of the entire 1,800 SNPs in the inversion region. Reported error
measures are the same as in Table 1. ‘‘Relative to Length 0’’ gives, per method, the ratio between the median error (in km) and the result before the inversion was
added.
it is appropriate for the analysis of genomic fragments ex-

tracted from admixed individuals in a framework previ-

ously proposed,15 as well as for integration within a

local-ancestry-inference method similar to existing ap-

proaches.16,30

Although we focused on continuous ancestry estimation

in this work, much previous work has been performed in

the context of discrete ancestry assignment. One of these

works, by Lee et al.,31 deals with the problem of clustering

genetic samples according to population of origin. The first

stage of this method, which is based on a spectral-graph
y

Figure 4. LOCO-LD’s Localization Results for Northern Spain
The figure depicts the inferred locations for individuals from
different autonomous communities in the northern part of Spain.
A description of the data set is given in Results section ‘‘Robustness
to Long-Range LD: Results for a Spanish Data Set.’’ The number
of training samples from each community is limited to 50.
LOCO-LD’s version is genotypic with window length 10. The
marker colors and types give the samples’ reported community
of origin. The map at the top left depicts the true geographic loca-
tions of the communities. See Web Resources for background-
image attribution.

The Am
approach, includes a PCA modification that is meant to

alleviate its sensitivity to outliers. In order to adjust the

method to the localization task, we implemented the pro-

posed kernel transformation stage for the LD-pruned

POPRES genotype matrix and tested whether the eigenvec-

tors of the resulting matrix can be used for localization. We

found that the combination of the second and the third

PCs yields accurate results (median error of 227 km). These

results suggest that outlier regularization is an important

factor in the localization of the POPRES data set and that

the incorporation of such regularization into spatial

modeling is likely to be beneficial. We note that we also

experimented with extensions of additional ancestry-

inference methods to the continuous localization sce-

nario32,33 but had limited success.

Although capturing certain properties of the genetic-

flow process, the functions that link the geographic

location to the allele frequencies in both SPA and LOCO-

LD’s models remain restricted even when the addition of

higher-order factors is allowed for. Introducing more

flexibility into these functions is likely to provide a consid-

erable improvement to these methods; specifically, model-

based functions based on population-genetics theory

might perform well, and we view this as a promising direc-

tion for further study.

Another area for further improvement would be a

more principled adjustment of the window sizes

according to the empirical LD patterns observed in the

data in an attempt to increase the amount of LD captured

while decreasing the noise. One could perform this by

increasing the window size in regions where LD extends

longer and setting the window boundaries according to

LD hotspots.

Finally, we expect that allowing for position-dependent

LD would constitute a major contribution to the spatial

probabilistic approach. In addition to enabling more accu-

rate modeling, the fact that LD patterns are likely to

exhibit continuous change over space should allow their

use as additional information for localization.
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Appendix A: Closed-Form Optimization Formulas

Maximizing over b Given x

Given the genotypes of n individuals and their correspond-

ing d 3 1 position vectors x1.xn, we wish to obtain a

maximum-likelihood estimator for bj, the l 3 d coefficient

matrix of window j of size l. If we denote the genotype seg-

ments included in window j as g1j.gnj, the per-window

likelihood expression is

L
�
g1j.gnj; bj;Sj

�
¼
Yn
i¼1

1

ð2pÞ l
2 jSj j

1
2

e
�1

2ðbjxi�gijÞTS�1
j ðbjxi�gijÞ;

(Equation A1)

where Sj is the l 3 l matrix of pairwise correlations within

the window.

We wish to obtain a maximum-likelihood estimator for

bj. Note that an equivalent expression to optimize is the to-

tal Mahalanobis distance,

f ¼
Xn
i¼1

�
bjxi � gij

�T
S�1

j

�
bjxi � gij

�
: (Equation A2)

Let Gj denote the l 3 n matrix, whose columns are the

genotypes within window j of the samples with known or-

igins, and let X denote the d 3 n matrix, whose columns

are these origins. The derivative of the above formula as

a function of bj is

vf

vbj

¼
v
Pn
i¼1

�
bjxi � gij

�T
S�1

j

�
bjxi � gij

�
vbj

¼Pn
i¼1

v
h
xTi b

T
j S

�1
j bjxi � 2gTij S

�1
j bjxi

i
vbj

¼Pn
i¼1

h
2S�1

j bjxix
T
i � 2

�
S�1

j gijx
T
i

�i
¼ 2S�1

j bj

�Pn
i¼1

xix
T
i

�
� 2S�1

j

�Pn
i¼1

gijx
T
i

�
:

By equating the derivative to 0, we obtain

XXTbT
j ¼ XGT

j

0bT
j ¼ ðXXTÞ�1

XGT
j

0bb j ¼ GjX
TðXXTÞ�1

:

Note that bbj is independent of Sj. Also note that the

above result can be obtained per SNP and is not affected

by the division to windows.

Maximizing over S Given b and x

In order to obtain a maximum-likelihood estimator of Sj,

we need to optimize the same likelihood as in Equation

A1 but this time as a function of Sj. This is equivalent to

the derivation of the maximum-likelihood estimator for

the covariance matrix of a multivariate normal distribu-

tion, and the solution is
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Ŝj ¼ 1

n

Xn
i¼1

�
bjxi � gij

��
bjxi � gij

�T
:

The resulting matrix might not be full rank. If this is the

case, we turn it into a full-rank matrix by adding lIl for

0 < l � 1; this is the same correction performed in Ridge

regression.
Maximizing over x Given b and S

Given the parameters bj and Sj for windows j ¼ l.m and

given the genotype of a new sample g1.gm, we wish to

obtain an estimate for the new sample’s position vector

x. The total Mahalanobis distance to be maximized as a

function of x is

f ¼
Xm
j¼1

�
bjx� gj

�T
S�1

j

�
bjx� gj

�
: (Equation A3)

The position vector might include fixed values over

which we do not wish to optimize; for example, we might

decide to allow for an arbitrary offset in the genotype

expectation by adding a third entry that is always set to

1 to the vector of geographical coordinates. We intend to

optimize only over the nonfixed entries of x. Let _x and €x

denote the nonfixed and fixed parts of x, respectively,

and let _b and €b denote the corresponding parts of b. After

the fixed genotype component aj ¼ €bj€x is precomputed

per window, the derivation becomes
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Supplemental Data

Supplemental Data include two figures and four tables and can be

found with this article online at http://www.cell.com/AJHG.
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22. Wang, C., Zöllner, S., and Rosenberg, N.A. (2012). A quantita-

tive comparison of the similarity between genes and geogra-

phy in worldwide human populations. PLoS Genet. 8,

e1002886.

23. Patterson, N., Price, A.L., and Reich, D. (2006). Population

structure and eigenanalysis. PLoS Genet. 2, e190.

24. Browning, S.R., and Browning, B.L. (2007). Rapid and accurate

haplotype phasing and missing-data inference for whole-

genome association studies by use of localized haplotype clus-

tering. Am. J. Hum. Genet. 81, 1084–1097.

25. Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira,

M.A., Bender, D., Maller, J., Sklar, P., de Bakker, P.I., Daly, M.J.,

and Sham, P.C. (2007). PLINK: a tool set for whole-genome
erican Journal of Human Genetics 92, 882–894, June 6, 2013 893

http://commons.wikimedia.org/wiki/File:Autonomous_communities_of_Spain.svg
http://commons.wikimedia.org/wiki/File:Autonomous_communities_of_Spain.svg
http://www.cs.tau.ac.il/%7Eheran/cozygene/software.shtml


association and population-based linkage analyses. Am. J.

Hum. Genet. 81, 559–575.

26. Shumaker, M.D., and Bryan, P. (1984). Computing under the

open sky. Sky Telescope 68, 158.

27. Sinnott, R.W. (1984). Virtues of the haversine. Sky Telescope

68, 159.

28. Pritchard, J.K., and Przeworski, M. (2001). Linkage disequilib-

riuminhumans:models anddata.Am. J.Hum.Genet.69, 1–14.

29. Sul, J.H., and Eskin, E. (2013). Mixed models can correct for

population structure for genomic regions under selection.

Nat. Rev. Genet. 14, 300.

30. Brisbin, A., Bryc, K., Byrnes, J., Zakharia, F., Omberg, L., De-

genhardt, J., Reynolds, A., Ostrer, H., Mezey, J.G., and Busta-
894 The American Journal of Human Genetics 92, 882–894, June 6, 2
mante, C.D. (2012). PCAdmix: principal components-based

assignment of ancestry along each chromosome in individ-

uals with admixed ancestry from two or more populations.

Hum. Biol. 84, 343–364.

31. Lee, A.B., Luca, D., Klei, L., Devlin, B., and Roeder, K. (2010).

Discovering genetic ancestry using spectral graph theory.

Genet. Epidemiol. 34, 51–59.

32. Engelhardt, B.E., and Stephens, M. (2010). Analysis of popula-

tion structure: a unifying framework and novel methods

based on sparse factor analysis. PLoS Genet. 6, e1001117.

33. Alexander, D.H., Novembre, J., and Lange, K. (2009). Fast

model-based estimation of ancestry in unrelated individuals.

Genome Res. 19, 1655–1664.
013


	Enhanced Localization of Genetic Samples through Linkage-Disequilibrium Correction
	Introduction
	Subjects and Methods
	LD-Aware Spatial Model
	Supervised Inference in Our Model
	Variations on the Model
	Final Geographic Assignment
	PCA
	The POPRES Data Set
	LD Pruning
	Localization of the POPRES Data Set

	Results
	LOCO-LD Is Robust to Window Size
	LD-Corrected Probabilistic Modeling Improves Accuracy in Spatial Localization
	LD-Unaware Methods Underperform at High Marker Densities
	Handling Sporadic Missing Data
	Running Time
	Estimation with No Prior Location Data
	Cross-Platform Performance
	Modeling LD Improves Accuracy when Only Part of the Genome Is Available
	Robustness to Long-Range LD: Results for a Spanish Data Set

	Discussion
	Appendix A: Closed-Form Optimization Formulas
	Maximizing over β Given x
	Maximizing over Σ Given β and x
	Maximizing over x Given β and Σ

	Supplemental Data
	Supplemental DataDocument S1. Figures S1 and S2 and Tables S1–S4
	Web Resources
	References


