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Next generation sequencing (NGS) is transforming the diagnostic approach for neurological disorders, since it
allows simultaneous analysis of hundreds of genes, even based on just a broad, syndromic patient categorization.
However, such an approach bears a high risk of incidental and uncertain genetic findings. We report a patient
with spastic paraplegia whose comprehensive neurological and imaging examination raised a high clinical suspi-
cion of SPG11. Thus, although our NGS pipeline for this group of disorders includes gene panel and exome se-
quencing, in this sample only the spatacsin gene region was captured and subsequently searched for
mutations. Two probably pathogenic variants were quickly and clearly identified, confirming the diagnosis of
SPG11. This case illustrates how combination of expert clinical characterization with highly oriented NGS
protocols leads to a fast, cost-efficient diagnosis, minimizing the risk of findings with unclear significance.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Hereditary spastic paraplegia (HSP) is a syndromic designation for a
group of inherited neurological disorders with predominant manifesta-
tions of lower extremityweakness and spasticity. HSPs are clinically and
genetically heterogeneous with over 70 known genetic types named
SPG followed by a cardinal number. The prevalence of HSP is estimated
in a range from 1.3 to 9.6 per 100,000. They are classified into pure and
complicated or complex HSPs, the latter presenting with additional
neurological symptoms such as cognitive impairment, cerebellar signs,
peripheral neuropathy, extrapyramidal manifestations and other fea-
tures (Fink, 2000).

With next generation sequencing (NGS) technologies the simulta-
neous analysis of hundreds of genes can be carried out at an affordable
price, allowing to apply this type of testing successfully even in less
ituto de Investigación Sanitaria
upana s/n, 15706 Santiago de

).
informative cases and pedigrees (Chae et al., 2015). Like other catego-
ries of disease with genetic heterogeneity and a high degree of clinical
overlap, currently the preferred approach to the study of HSP patients
is NGS — either through a panel of HSP related genes, whole exome or
even whole genome sequencing (Kumar et al., 2013; Bettencourt
et al., 2014). However, themoremegabases of genomic sequence are in-
cluded in the NGS pipeline, the higher post-sequencing effort is needed
to filter the list of genetic variants observed in any individual.
Interpreting the potential pathogenicity of the identified variants
represents much of the current workload for laboratory and clinical
geneticists (Quintáns et al., 2014).

Spastic paraplegia type 11 is one of the most frequent autosomal
recessive HSPs. It is caused by mutations in the SPG11 gene
[MIM *610844], which has 100,982 coding nucleotides distributed in
40 exons and translated into spatacsin, a 2443 amino acid protein
(Stevanin et al., 2007). Although SPG11 can present as a pure HSP,
more often patients develop a complex HSPwith cognitive impairment,
peripheral neuropathy, cerebellar, lower motor neuron and/or extrapy-
ramidal features. A recognized hallmark of SPG11 is the presence of a
thin corpus callosum (TCC) in the brainMRI of patientswith this disease
(Stevanin et al., 2008). Over 160 pathogenic variants have been
described in families with SPG11, most of them missense mutations
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and small truncating indels. This large number of variants without a
mutational hotspot makes conventional, exon by exon Sanger sequenc-
ing a cumbersome diagnostic approach. Here we report the case of a
patient who was diagnosed with SPG11 using NGS targeted exclusively
to the spatacsin gene.

2. Case report

2.1. Clinical and genealogical data

A 25-year-old woman without any significant previous disease pre-
sented with a five year history of progressive gait difficulty. There were
no sensitive disturbances, paroxysmal symptoms, cranial nerve involve-
ment or Lhermitte's sign. The patient's father had suffered a cerebellar
hemorrhage due to an arteriovenous malformation; family history
was otherwise negative for neurological problems. There was no con-
sanguinity. Her neurological examination showed a slightly asymmetric
spastic paraplegiawith brisk reflexes, bilateral ankle clonus andBabinski
sign. She also presented dystonic posture in both feet. Sensory exam, as
well as cognitive evaluation was normal. She had pes cavus and her gait
was spastic. Full blood count, biochemical test with liver, renal and
thyroid function, proteinogram, plasma level of vitamins B9, B12 and
E, lactate and pyruvate were all within normal range. Autoantibodies
and serologic tests for syphilis, Lyme disease, HIV, HTLV-I, as well as
hepatitis B and C were negative. Cranial and spinal magnetic resonance
imaging (MRI) showedmoderate, diffuse cortical atrophy and amarkedly
thin corpus callosum (TCC), with some high signal lesions located in the
periventricular white matter (Fig. 1). The electroneuromyography find-
ings were indicative of a sensory–motor axonal polyneuropathy more
pronounced in the lower limbs. Based on the clinical picture of a
sporadic, young onset spastic paraplegia with axonal neuropathy and
TCC, without a family history of the disease and without evidence of
any other primary etiology, the possibility of an autosomal recessive
HSP was raised, strongly suggestive of SPG11.

2.2. Genetic analysis

A next generation sequencing study was carried out targeting the
SPG11 gene only. The assay was designed using the SureSelect® Target
Enrichment System (Agilent Technologies, Santa Clara, CA). The
captured region, including all coding exons, 10 bp exon–intron bound-
aries and UTRs was amplified using ligation-based sequencing with
the SOLiD® platform (Life Technologies). The mean coverage of the
target region was 921×, with 100% nucleotides covered ≥30×. The
Lifescope® 2.5.1 software package (Life Technologies) was used for se-
quence alignment and variant calling, together with GATK 3.0.0
Fig. 1. Brain MRI study of the patient. (A) Saggittal T1WI revealed a thin corpus callosum;
(B) axial FLAIR showed slight hyperintense lesions affecting the periventricular white
matter.
(McKenna et al., 2010). The BEDTools and PicardTools suites were
used for coverage statistics and to remove duplicates (Quinlan and
Hall, 2010). Variant annotation was carried out with ANNOVAR
(2014Feb24 version) and ExomeDepth was used for deletion detection
(Plagnol et al., 2012). The integrative genomics viewer (IGV) developed
at the Broad Institute was used to visually explore NGS data (Robinson
et al., 2011). The following features were recorded on each observed
variant: population allele frequencies, conservation (GERP, Phylophen,
SiPhy), and pathogenicity prediction with several algorithms (SIFT,
Polyphen, Mutation Taster, LRT, CADD). Information on SPG11 genetic
variants previously associated to disease was reviewed from the pub-
lished literature as well as online genetics resources (OMIM®,
GeneReviews®, ClinVar) and the HGMD™ mutation database. The
criteria used for clinical interpretation of the variants were based on
those previously published, which classify genetic variants in a five-
tiered scheme (Quintáns et al., 2014., Richards et al., 2015). Only two
variants fulfilled the criteria to be classified as “pathogenic”: a single nu-
cleotide missense substitution in exon 38 (NM_025137:c.6999GN
C:p.Q2333H) and a partial gene deletion [NM_025137:c.(?_4907)_
(5120_?)del] involving exon 29, predicted to lead to a frameshift and
premature stop. The single nucleotide variant was validated by Sanger
sequencing and the deletion was confirmed by multiplex ligation-
dependent probe amplification analysis (MLPA®) (Fig. 2).

3. Discussion

The patient described here presented a clinical picture of spastic
paraplegiawith axonal neuropathy, TCC andmildwhitematter involve-
ment in the brainMRI. Therewas no consanguinity and no family histo-
ry of similar neurological symptoms. These data were highly suggestive
of one of the forms of HSP that associate TCC, amongwhich SPG11 is one
of the most frequent, accounting for 20–40% of autosomal recessive
HSPs (Finsterer et al., 2012; Stevanin et al., 2008). The SPG11 phenotype
may be mild and uncomplicated or variably associated with intellectual
disability, dysarthria, nystagmus, upper extremity weakness and extra-
pyramidal features (Paisan-Ruiz et al., 2008; Stevanin et al., 2008). In
some cases the clinical picture can be similar to a slowly progressive
juvenile ALS and itmay also present as Kjellin syndromewith childhood
onset spastic paraplegia, retinopathy, dementia and distal muscular at-
rophy (Orlacchio et al., 2010; Puech et al., 2011). A TCC is a very charac-
teristic finding in SPG11 and has been proposed to be the best
phenotypic predictor of this form of HSP (Schüle et al., 2009). However,
this finding is neither constant nor specific since this abnormality can be
observed in other SPG genetic subtypes (Pensato et al., 2014).

Through highly selective, targeted NGS we have identified two mu-
tations in spatacsin: an exonic deletion and a novel missense variant,
confirmed through MLPA and Sanger sequencing, respectively. The in
silico predictions and additional clinical and genetic criteria support
the pathogenicity of the p.Q2333H variant, while partial gene deletions
and other truncatingmutations have previously been reported in SPG11
(Stevanin et al., 2008). Although we did not identify the exact
breakpoints, the exon 29 deletion in our patient affects the same gene
region as the deletion described by Pereira and collaborators in
Portuguese families (Pereira et al., 2012), thus adding further support
to the pathogenicity of this particular mutation.

This result had amajor impact on the clinical handling of the patient.
After five years into the disease course, the patient received a specific –
and not just syndromic – diagnosis within a few weeks. The young
disease onset, together with a frequent lack of family history in many
patients with recessive HSPs, leads to an odyssey of workup tests in
order to rule out non-genetic causes. Thus, it is important to reach a
definitive diagnosis as soon as possible through a clinically-oriented,
candidate gene approach. In this situation, a broader and unselective
NGS strategy might lead to a long list of variants that will have to be
scrutinized and interpreted before a final conclusion can be reported.
Identifying the causal mutations and thus confirming that her HSP



Fig. 2. Pathogenic variants identified in the SPG11 gene. The heterozygous transversion NM_025137:c.6999GNC:p.Q2333H in the complementary strand visualizedwith the IGV (a) and in
the electropherogram (b). The heterozygous exon 29 deletion c.(?_4907)_(5120_?)del as observed in the NGS output with the IGV (c) and through MLPA (d).
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was recessive also had profound implications for genetic counseling of
the patient and her family.

Even to screen a few or just one gene, like in this case, the NGS ap-
proach offers significant advantages over conventional techniques. It al-
lows a faster analysis of genes with many exons, which would require
longer hands-on laboratory time. Furthermore, whereas exon by exon
Sanger sequencing only detects single nucleotide changes and small de-
letions, both point mutations and exonic deletions can be adequately
detected in the NGS data with currently available software tools, as
illustrated here. A single gene targeted approach – versus a gene panel
or whole exome sequencing – was chosen given the high a priori
probability of SPG11, in order to minimize the possibility of uncertain
findings leading to difficult interpretation and decision-making.

Lessons learned

• In a patientwith spastic paraplegia, TCC and axonal neuropathy, a par-
tial gene deletion and a novelmissense variants were identified in the
SPG11 gene, both of them probably pathogenic.

• Sanger Sequencing still is the gold standard technique to detect SNPs
and small DNA variants, however NGS may be a more efficient ap-
proach evenwhen targeting just one candidate gene. The strategy de-
scribed here covered the complete SPG11 coding region and led to
identify both a point mutation and a deletion simultaneously.

• Knowledge of the phenotypic spectrum of each genetic subtypewith-
in a given syndromic category of disorders, a high degree of clinical
expertise and careful observations allow to design a very selective,
quick and cost-efficient genetic analysis strategy.

• When pathogenic variants are identified (probability of pathogenicity
≥98%) that are consistentwith the phenotype and inheritancepattern,
no further genetic screening is indicated (e.g. whole exome, gene
panel). This minimizes the risk of genetic findings that are incidental
or difficult to interpret.
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