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Metabolic stress-induced joint inflammation and osteoarthritis
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Osteoarthritis (OA) is a heterogeneous disorder with several risk factors. Among them, obesity has a
major impact on both loading and non-loading joints. Mechanical overload and activity of systemic
inflammatory mediators derived from adipose tissue (adipokines, free fatty acids (FFA), reactive oxygen
species (ROS)) provide clues to the increased incidence and prevalence of OA in obesity. Recently,
research found greater OA prevalence and incidence in obese patients with cardiometabolic disturbances
than “healthy” obese patients, which led to the description of a new OA phenotype e metabolic syn-
drome (MetS)-associated OA. Indeed, individual metabolic factors (diabetes, dyslipidemia, and hyper-
tension) may increase the risk of obesity-induced OA. This review discusses hypotheses based on
pathways specific to a metabolic factor in MetS-associated OA, such as the role of advanced glycation end
products (AGEs) and glucose toxicity. A better understanding of these phenotypes based on risk factors
will be critical for designing trials of this specific subset of OA.

© 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Introduction

Osteoarthritis (OA) is a chronic joint disease leading to cartilage
degradation that involves synovial inflammation, subchondral bone
remodeling and the formation of osteophytes1,2. Cartilage degrada-
tion results from ruptured joint homeostasis that favors catabolic
processes activated by pro-inflammatory mediators such as cyto-
kines, lipid mediators and reactive oxygen species (ROS), which are
produced as well by chondrocytes, synoviocytes and osteoblasts3,4.
These products are responsible for altering anabolism and release
of proteolytic enzymes degrading extracellular matrix.

We can differentiate OA phenotypes according to risk factors
such as aging, genetics, trauma, obesity and metabolic disorders4.
Despite eventual joint failure, the pathogenic pathways leading to
this end may differ among phenotypes. This review gives
epidemiological and mechanistic insights into metabolic syn-
drome (MetS)-associated OA, in which metabolic disorders and
low-grade inflammation have a central role5. We discuss espe-
cially the relevant mechanisms involved in inflammation related
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to excess fat mass and metabolic disturbances and their impli-
cation in OA and in pain-related OA. The references for this re-
view were limited to papers published in English in PubMed and
were selected according to their relevance to the topic and after
critical discussion.
Epidemiology of MetS-associated OA

As endemic diseases of the twenty-first century, obesity and
overweight are among the most important risk factors of OA6,7.
Such an association cannot be solely explained by excessive me-
chanical stress because the rate of hand OA (HOA) is two-fold
higher in obese patients than lean subjects8. Thus, excess fat
mass has a systemic harmful role in joints.

From an epidemiological perspective, assessing obesity in
studies remains a crucial issue9. The most accurate anthropometric
marker of fat mass distribution is the waist/hip ratio (WHR)10.
Besides weight, android (or visceral) obesity is highly linked to
metabolic comorbidities and cardiovascular (CV) events as
compared with gynoid obesity11e14. As well, the association of fat
mass distribution (i.e., WHR or impedance analysis) and OA has
been studied. Hand, knee and hip OA incidence and severity are
associated with fat mass distribution and especially visceral and
central adiposity15,16. However, such associations are fewer than
td. All rights reserved.
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those with body mass index (BMI) for weight-bearing joints (i.e.,
knee and hip OA)7.

Considering the harmful systemic impact of excess fat mass, the
role of systemic metabolic disorders in OA has become of interest.
MetS is an accumulation of metabolic disorders leading to an
increased risk of stroke, type 2 diabetesmellitus and CV diseases17,18.
Despite several definitions, all disorders include abdominal obesity,
increased blood pressure, impaired glucose tolerance and lipid ab-
normalities such as high triglycerides level and low high-density
lipoprotein cholesterol level19e21. MetS and OA share a strong as-
sociationwith obesity and age, and adjustment for these parameters
is crucial to correctly analyze the associations between them. The
risk of onset, pain and progression of knee OA as well as rate of knee
and hip arthroplasty increase with the accumulation of MetS
components22e24. The cumulative impact of metabolic disturbances
in obese patients is also observed in HOA25. Whereas an association
between MetS and hand OA is quite well demonstrated in the
literature, this is not the case for knee OA26. As illustrated by Visser
et al., this discrepancy could be due to a critical role of overload on
weight-bearing joints which could mask any underlying roles of
metabolic disorders27. Eventually, being obese with other compo-
nents of MetS confers an increased risk of OA as compared with
being only obese. On the other side, OA is associated with increased
prevalence of MetS, especially in the youngest population, and some
authors have suggested that a diagnosis of OA before 65 years
should lead to a systematic screening for MetS28.

Beyond the association of OAwith MetS, OA could be also linked
to each metabolic disorder separately. The most relevant evidence
is probably for type 2 diabetes or hyperglycemia22,29,30. Type 2
diabetic patients have a two-fold higher need for hip and knee
arthroplasty (i.e., suggesting a more severe form of OA) after
adjustment for confounding factors and display more frequently
knee synovitis on ultrasonography than non-diabetic OA patients30.
Furthermore, in the Rotterdam study, for patients 55e62 years old,
type 2 diabetes increased the risk of HOA25. In addition, diabetes
mellitus is associated with increased pain in erosive HOA31. These
data on knee and HOA were confirmed in other studies and in a
meta-analysis that reported an overall 43% increased risk of OA in
type 2 diabetic patients32,33.

All studies of OA reported high hypertension prevalence, but the
independent association remains rare after adjustment for con-
founding factors such as age or BMI23,26. However, two recent
studies demonstrated an independent but weak association
regardless of BMI22,24. To date, hypertension should be considered
an aggravating factor for OA in subjects with obesity or other
metabolic disturbances25.

Finally, an association between dyslipidemia and OA has been
reported. Hypercholesterolemia has been associated with HOA and
generalized OA regardless of age, gender and BMI34,35.

OA, cardiovascular risk and related mortality

The main concern about MetS-associated OA is its potential
association with atherosclerosis and death due to CV events.
Radiographic OA was found independently associated with
atherosclerosis of carotid, femoral and coronary vessels36e39.
Furthermore, atherosclerosis severity increases when HOA is
associated with knee or hip OA40. As well, OA has been associated
with higher age- and sex-standardized CVmortality incidence ratio
than expected in the general population41. However, data remains
controversial, and no increase of mortality in the OA population
was also reported42. Some authors have suggested that OA-related
disability could explain the higher CVmortality raising the question
of reciprocity between OA and cardiometabolic diseases. Thus,
OA induced disability which in turn promotes obesity and its
cardiometabolic comorbidities43. However, beyond this induced
disability, OA may be responsible for a low-grade inflammation
state via a joint release of inflammatory mediators into the blood
stream that could in turn aggravate cardiometabolic diseases such
as atherosclerosis44. Interestingly, an independent association has
recently been shown between increased popliteal artery wall
thickness and subsequent knee cartilage degradation seen on MRI
in asymptomatic and non-disabled subjects45.

Inflammation in MetS and its involvement in OA

During the past decade, obesity and metabolic disorders have
been found related to systemic low-grade chronic inflammation
characterized by abnormal cytokine production, increased levels of
acute-phase reactants and activation of a network of inflammatory
signaling pathways5,46. Fat mass is the cornerstone of this inflam-
mation, but diabetes, dyslipidemia and hypertension have specific
involvement in metabolic inflammation, which could be implicated
in OA pathogenesis. Here, we focus on the harmful biological
mechanisms of fat mass and metabolic disorders in the joint, with
special emphasis on inflammatory factors (Fig. 1) and possible
future developments in this topic.

The key mechanisms of metabolic stress

Adipokines
Several novel biochemical players were identified in the last 2

decades after the discovery of leptin, in 1994, the forerunner of a
large superfamily of proteins collectively called adipokines47. Most
of these proteins, secreted systematically by white adipose tissue
but also by all cells of the joint (including chondrocytes, synovial
cells, adipocytes of periarticular fat tissue and bone cells) partici-
pate in the degrading process of OA in several ways: supporting
chronic inflammation, increasing oxidative stress and participating
in other pathologic complications associated with OA (i.e., CV and
metabolic diseases)48,49. Likewise, lots of studies have shown adi-
pokines disturbances (i.e., serum level, synovial fluid level or
tissular expression) as a common characteristic of chronic inflam-
mation in OA50. Although we will not discuss in detail the role of
individual adipokines in OA (widely discussed elsewhere51,52), we
summarize the most salient aspects that link adipokines to OA.

With the exception of adiponectin, circulating levels of adipo-
kines (e.g., leptin, visfatin and resistin) are elevated in patients with
OA and are gender-dependent, even after adjustment for BMI, so
these molecules might be responsible for the higher prevalence of
OA in women than men. Most of the adipokines identified to date
have pro-inflammatory activities, by inducing the synthesis of
other related pro-inflammatory adipokines and cytokines,
increasing the synthesis of aggrecanases and metalloproteases, of
ROS levels as well as nitrogen radicals such nitric oxide (NO), and
prostaglandin levels.

The most studied adipokine is undoubtedly the leptin. Mainly
produced by white adipocytes (but also by joint cells), its serum
level correlated to the weight and fat mass. It plays an essential role
in homeostasis (thermogenesis, food intake, lipolysis, and gluco-
neogenesis). Its synovial expression correlates also with BMI53 and
with OA prevalence and severity54. In vitro, leptin induces the
production of cytokines by synoviocytes (IL-6 and IL-8)55,56,
chondrocytes (IL-1b, MMP-9 and MMP-13)54 and cartilage explants
(IL-6, IL-8, PGE2)57. Leptin levels in chondrocytes could be increased
by epigenetic regulations such as DNA methylation of leptin which
is decreased in OA chondrocytes. Indeed, DNAmethylation of leptin
promoter gene leads to an upregulation of leptin expression
which in turns increased its catabolic activity through MMP-13
production58. However, some anabolic aspects of leptin have been



Fig. 1. Major metabolic stress inducing inflammation in chondrocytes. We hypothesize that, in the metabolic OA phenotype, several pathways and metabolic stress factors are
involved: (1) obesity activates chondrocytes through mechanical signals but also through adipokines (i.e., leptin and visfatin) (2) insulin resistance limits pro-anabolic effects of
insulin and enhances FFA production which is also responsible for chondrocyte activation via TLR-4 (3) at end-stage, diabetes mellitus induces ROS and cytokine production
triggered by hyperglycemia and AGE. All these stresses induce ROS and pro-inflammatory cytokines which both play a major role in joint inflammation, proteolytic enzymes
production and subsequent cartilage degradation. RAGE: receptor for AGE; Ob-R: receptor for leptin.
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reported. For instance, leptin can induce insulin growth factor 1
(IGF-1) and transforming growth factor-beta in cartilage, perhaps
protecting cartilage against osteoarthritic degeneration or partici-
pating in osteophyte development53.

As well, visfatin could increase the rate of IL-6 and MCP-1 by
chondrocytes59 and decrease the pro-anabolic effect of IGF-160.
Also known as nicotinamide phosphoribosyltransferase (NAMPT),
visfatin has been shown tomodulate other enzyme expression such
as sirtuin 1 (Sirt1), an histone deacetylase, which is an epigenetic
regulator61. Sitrt1 has been involved in cartilage biology and OA
pathogenesis but also in type II diabetes and other aging-related
diseases and could be another link between OA and MetS62,63.

Finally, even adiponectin, in contrast to its protective role in
cardiovascular diseases and obesity, shows pro-inflammatory ac-
tivities like the production of NO synthase 2, IL-6 and MCP-1,
triggering matrix degradation by inducing MMP-3 and MMP-9
expression in chondrocytes64,65.

Eventually, despite the possible protective role of leptin, there is
a general consensus that adipokines exert a catabolic and pro-
inflammatory effect on cartilage. Only 20 years after the discov-
ery of leptin, the first identified, adipokines are considered to play
multiple important biological roles, and the increasing research
effort in this area is gradually revealing the intricate adipokine-
mediated interplay among white adipose tissue, metabolic disor-
ders and inflammatory degenerative joint disorders such as OA.

Although many issues remain unclear, several possible avenues
that these works have opened can be sketched. In particular, from a
metabolic point of view, one should remember that the primary
causes of obesity-related hyperproduction of detrimental adipo-
kines are generally nutritional and lifestyle factors such as over-
eating and physical inactivity and that front-line treatment
essentially involves the correction of these factors. Knowledge of
the actions of the newer adipokines is still too incomplete to
generate well-supported therapeutic hypotheses. However, by the
rate at which their roles are being clarified, theywill soon be central
to pharmacotherapeutic approaches to obesity-induced inflam-
matory diseases. For example, in light of the pro-inflammatory role
of visfatin on joint cells, this adipokine has been therapeutically
blocked in a murine model of OA with efficacy59,66.

Oxidative stress
Oxidative stress is a cellular response in which the synthesis of

intracellular ROS goes beyond the ability of the cell to neutralize the
molecules, thus leading to final cellular damage and in some cases
cell death67. Oxidative stress has been involved in several patho-
physiological conditions including aging, cancer, and CV diseases as
well as metabolic diseases and obesity68,69. ROS and or nitrogen
radicals (nitric oxide [NO]) are important players in the inflamma-
tory process occurring in OA70,71. Actually, almost all the OA joint
cells, including chondrocytes, synovial fibroblasts and adipocytes,
can produce large amounts of ROS and NO in response to
biomechanical or biochemical stimuli. In this regard, most of
biomechanical-induced ROS are likely produced by mitochondria,
and recent evidence suggests that mitochondrial dysfunction may
contribute to the development of OA72. Indeed, in vitro data showed
that in certain biomechanical conditions, mitochondria can release
large amounts of ROS in cartilage, thus leading to cell death (REF A
DEMANDER pr�eciser les certain biomechanical conditions). ROS are
thought to participate in several processes of the inflammatory
response in OA in particular by triggering specific intracellular
pathways such those elicited by nuclear factor kappa B (NF-kB),
hypoxia-inducible factor 1 alpha (HIF-1a) or activating protein 1
(AP-1)73. Although high levels of ROS are clearly detrimental to joint
cell populations, some evidence suggests that cellular energy supply
in chondrocytes relies on the availability of mitochondrial ROS to
produce ATP, which suggests that physiological or sublethal levels of
these molecules may have implications in cartilage biology. Indeed,
in vivo studies suggest that physical exercise (at both extremes:
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high-intensity or sedentary activity) is related to high levels of ROS
and therefore increased risk of cartilage lesions. In contrast, mod-
erate physical exercise, with low ROS levels, may favor healthy
cartilage. Thus, a low adequate level of ROS might have a cartilage-
protective role by eliciting increased matrix synthesis and/or acti-
vating specific protective pathways that finally lead to inflammation
suppression or control, with imbalanced ROS synthesis and accu-
mulation leading to degenerative effects74. Of note, several adipo-
kines, but also high glucose level, may be considered the link
between oxidative stress and the mechanisms of obesity-associated
metabolic syndrome75. Actually, leptin, adiponectin and lipocalin-2
can induce accumulation of NO and activation of NO synthase type 2
in chondrocytes and other joint cells76.

Free fatty acids (FFA) and the high-fat diet
The increased dietary fat content that characterizes the diet of

industrialized countries in the last 30e40 years clearly contributes
to both obesity and the metabolic dysfunction associated with type
2 diabetes. Nutritional aspects, particularly fat intake, are involved
in the development of OA-associated obesity. Dietary poly-
unsaturated fatty acids (PUFAs) of both the n-3 and the n-6 series
are essential for human health but may have opposite effects on
inflammatory responses: n-6 PUFAs likely give rise to inflammatory
eicosanoids, whereas n-3 PUFAs are generally anti-inflammatory.
High levels of fatty acids are found in joint tissues in OA and are
associated with severe tissular lesions77. In vitro, palmitate, a
saturated FFA induced pro-inflammatory cytokines production by
chondrocytes and synoviocytes via the Toll-like Receptor-4 (TLR-4)
and has pro-apoptotic effects78. In animal models, a high-fat diet
accelerated the progression of OA; n-3 PUFAs limited disease
severity, thus corroborating their anti-inflammatory and anti-
degradative effect on chondrocytes, and n-6 PUFAs had no detri-
mental effect79e81. A diet containing significant levels of eicosa-
pentaenoic acids and docosahexaenoic acids may reduce joint
stiffness and tenderness in arthritic patients82,83.

PPAR gamma and autophagy
Peroxisome proliferator-activated receptors (PPARs) are lipid-

activated transcription factor of the nuclear receptor superfamily
and play a major role in homeostasis. Among them, PPAR gamma
(PPARg) is the pivotal transcription factor leading to adipogenesis
and increasing sensitivity to insulin explaining why PPARg agonists
such as glitazones take place in the therapeutic armentorium
against diabetes mellitus84. Interestingly, the role of PPARg has been
studied in OA too. Its expression seems to be decreases in the OA
joint tissues85. In vitro, PPARg agonists are protective by decreasing
the production of pro-inflammatory and catabolic mediators by
chondrocytes and synoviocytes86e88. As well, PPARg inducible-
cartilage knockout mice develop accelerated OA with increased
cartilage degradation and decreased autophagy responsible for an
impairment of cartilage homeostasis89. Interestingly, loss of auto-
phagy is also observed in obesity and other metabolic diseases90. All
these data suggest that PPARg plays a crucial role in maintaining
homeostasis of the joint and could be one of themechanisms linking
OA to obesity and other metabolic comorbidities.

Advanced glycation end products (AGEs)
AGEs result from the non-enzymatic and posttranslational

addition of reduced sugars on proteins or apolipoproteins. Because
of their multiple ways of formation and their different half-lives,
they constitute a heterogeneous group of chemical species. The
most famous AGE is glycated hemoglobin A (HbA1c), used in clin-
ical practice to monitor diabetes. Pentosidine and N-epsilon-car-
boxymethyllysine, because of their antigenic properties, have also
been studied91. The molecules accumulate in tissues during aging,
but their production is also highly related to glycemia92. These
AGEs are involved in diabetes onset and complications93. Some
steps of AGE formation depend on PUFA peroxidation and oxidative
stress, so they are also associated with obesity94,95.

First, accumulation of extracellular AGEs exerts a harmful role
by modifying the mechanical properties of the tissue. Indeed, their
accumulation in the collagen network increases the stiffness and
fragility of cartilage and bone96,97. AGEs accumulate in retina, kid-
ney, vessels or skin in diabetic patients, but also in diabetic OA joint
tissues98e101. OA diabetic patients show a higher rate of pentosidine
in the subchondral bone than do non-diabetic OA patients102. They
also act by triggering a receptor-dependent pathway, involving the
receptor of AGE (RAGE). In vitro studies demonstrate that binding of
AGEs on RAGE activates NF-kB and p38 mitogen-activated protein
kinase signaling pathways leading to the production of pro-
inflammatory cytokines, proteolytic enzymes and ROS in chon-
drocytes and synoviocytes103e108. AGEs also induce chondrocyte
apoptosis109 and participate in cartilage aging as their accumula-
tion is also age-related110. A potential limitation of these receptor-
related studies could be the use of a non-specific mixture of AGEs
like glycated albumin which may not be relevant to the glycated
proteins expected in cartilage such as type II collagen.

Hyperglycemia and insulin resistance

Diabetes mellitus-related OA belongs to the MetS-associated OA
phenotype. Hyperglycemia and insulin resistance may explain the
relationship between diabetes and OA. In the streptozotocin-induced
diabetic rat model, characterized by a strong hyperglycemia due to
chemical destruction of pancreatic b-cells, type 2 collagen and pro-
teoglycan content was spontaneously decreased in cartilage, which
suggests a noxious role of hyperglycemia in cartilage111. Glucose
incorporation in chondrocytes is mediated by glucose transporters
(GLUTs). The main GLUTs expressed by chondrocytes are GLUT-1, -3
and -9112. GLUT-3 expression is constitutive, whereas GLUT-1 and -9
are inducible by cytokines (e.g., interleukin 1b [IL-1b]) and glucose
concentration, thereby allowing chondrocytes to adapt glucose
incorporation depending on the extracellular concentration113.
In vitro, human OA chondrocytes lose this ability, which leads to
increased incorporation in a high-glucose environment75. Once in-
tegrated in the cell, glucose is metabolized via different pathways
such as the glycolysis and polyol pathways but also the protein kinase
C and pentose/hexosamine pathways, all known to result in ROS
production in other cell types and could explain why high glucose
concentration increases ROS formation in chondrocytes75,114.

Insulin resistancemay also be implicated. Insulin levels are higher
in overweight patients with OA than without OA115. Chondrocytes
and synoviocytes are insulin-sensitive cells because they express the
insulin receptor. Recently, synoviocytes in diabetic patients were
found to be insulin-resistant116. Furthermore, with high glucose
concentrations, chondrocytes lose their responsiveness to IGF-1. In-
sulin is an anabolic hormone inducing matrix component synthesis,
so insulin resistance may limit anabolic processes of cartilage117.

Vascular involvement
Oxygenation and nutrients arrive at avascular cartilage from

synovial fluid and subchondral bone. Since OA is associated with
hypertension and atherosclerosis, compromised vascularization of
the subchondral bone may be responsible for OA exacerba-
tion118,119. Two phenomena can induce impaired blood flow:
reduced arterial inflow (such as ischemia) and obstruction of
venous outflow. Early bone-marrow lesions observed on MRI in OA
could correspond to ischemic lesions but, to date, no histological
proof is available. In a female rat model, inducing thrombosis of
subchondral bone in a temporo-mandibular joint led to OA, which
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suggested the role of vascularization in joint homeostasis120.
Furthermore, angiogenesis, to counteract ischemia, is involved in
OA pathogenesis. Indeed, abnormal vascular channels occur in
calcified cartilage during OA, which enhances the permeability to
inflammatory mediators121. However, a specific relation with hy-
pertension or atherosclerosis needs further investigation.

Other paths?

Gut microbiota
Another systemic connection between MetS, obesity and OA

could be gut microbiota122. The absorption of endotoxins across the
intestinal tract seems highly implicated in systemic low-grade
inflammation related to obesity and metabolic disorders123. Modi-
fication of dietary intake, such as a high-fat diet, affects gut micro-
biota, thereby increasing the inflammatory state, regardless of
weight loss124. For example, the relation between a high-fat diet and
OA previously described suggests the effect of microbiota on OA;
indeed, a high-fat diet markedly affects gut microbiota bymodifying
the bacterial composition and functional response125. Furthermore,
bacterial lipopolysaccharide strongly induces pro-inflammatory
chondrocytes via TLR-4, for a potential mechanism to explain how
endotoxaemiamay favor OA126. Data are limited in this field, and the
role of microbiota in OA onset and inflammation-related OA in the
MetS-associated OA phenotype need further investigation.

Genetics
Lifestyle and environment seem key factors in the onset and

progression of metabolic diseases, but obesity and type 2 diabetes
are also subject to genetic susceptibility, and risk of OA onset in
obese subjects could be affected by common genetic factors127,128.
Since 2007, the single nucleotide polymorphism in the fat mass and
obesity-associated (FTO) gene has been associated with risk of
excess fat mass and obesity in several populations, so investigating
this gene in OA could be of interest129. A genome-wide study
demonstrated that knee and hip OA were associated with the FTO
polymorphism, but this association was mediated by BMI130,131.
Interestingly, obesity, metabolic disorders and OA are associated
with IL-6 or leptin polymorphisms, which could be involved in
MetS-associated OA pathogenesis132e134.
Fig. 2. How chronic inflammation related to obesity and metabolic syn
Chronic low-grade inflammation: consequence or cause of
pathological aging?

A common hypothesis is that metabolic disturbances precede
and induce systemic chronic inflammation, which causes joint
deterioration. Another theory has raised the concept of “inflam-
maging” (for inflammation and aging), with inflammation as the
direct consequence of aging. Aging is associated with cellular
senescence, immunosenescence, debris accumulation and harmful
products such as ROS and also microbiota change (i.e., endotoxin
accumulation) leading to exacerbated and sustained pro-
inflammatory processes135. All these factors are also involved in
other age-related diseases (e.g., cancer, atherosclerosis, Alzheimer
disease). Thus, inflammaging could be the common biological
background of all these age-related diseases. However, the phe-
nomenon is probably more complex because inflammation, what-
ever its cause, is also responsible for accelerated aging.
The role of inflammation in OA pain: is MetS OA the most
painful phenotype?

Pain during OA is a complex phenomenon involving sub-
chondral bone, synovium and articular capsule because cartilage is
not innervated. Furthermore, pain in the setting of MetS-associated
OA is somewhat peculiar: BMI as well as MetS is associated with
increased OA pain intensity in all localisations (knee, hip and
hand)26,136. Moreover, mechanical load and increased IL-1b level as
well as adipokine levels increase nerve growth factor released by
chondrocytes, an important mediator of pain related to OA137.
Because dietary intake could modify the inflammatory state, it may
be also implicated in OA-related pain138. However, depression,
frequent in the obese population, is also associated with increased
serum IL-6 and tumor necrosis factor a levels. These pro-
inflammatory cytokines may decrease serotonin levels via trypto-
phan depletion and sustained hypothalamo-pituitary-
adrenocortical stimulation, which leads to cortisol resistance in
depression pathophysiology139. Finally, a complex vicious circle
results because pain induces disability, which in turn promotes
obesity (Fig. 2). All these data are therefore to be considered in the
drome could lead to osteoarthritis pain; the vicious circle of pain.



Table I
Research agenda

Research agenda

� Link between hypertension and osteoarthritis
� Effect of antidiabetic drugs in OA
� Effect of antihypertensive drugs in OA
� Investigation of anti-adipokines therapies in OA
� Investigation of PPAR gamma agonists in OA
� Is OA an independent risk factor for metabolic and cardiovascular diseases?
� AGEs in type 2 diabetes-related OA pathophysiology and “anti-AGE”

therapies in OA
� Insulin resistance of joint cells in type 2 diabetes and obesity
� Gut microbiota in OA and especially in obese patients
� Pain mediators and OA in the metabolic OA phenotype

A. Courties et al. / Osteoarthritis and Cartilage 23 (2015) 1955e19651960
development of new therapeutic strategies of MetS-associated OA
(Table I).

Conclusions

OA is now classified according to several phenotypes based on
risk factors. Here, we describe the relevant mechanisms implicated
in one of these phenotypes, MetS-associated OA, with chronic
inflammation as the cornerstone. Through multiple pathogenic
pathways (i.e., adipokines, AGEs, oxidative stress) related to fat
mass and metabolic disturbances, systemic inflammation leads to
joint degradation. The concept allows for better understanding
how loss of weight or modification of dietary intake may be
beneficial for the joint in addition to decreasing mechanical load.
Beyond modifying the excess fat mass, better control of each
metabolic disturbance should slow the onset and progression of OA
and should be considered in the therapeutic objectives of MetS-
associated OA. Despite no strong conclusions about statins
because of contradictory results, pioneering studies for OA treat-
ment have recently been published140e142. We can consider new
therapeutic strategies targeted to specific mechanisms such as
oxidative stress or AGE production143. Other OA phenotypes such as
post-traumatic and aging OA need investigation, and because OA
seems to affect the onset of other chronic diseases, the impact on
metabolic disturbances needs to be investigated144. The description
of this new MetS-associated OA phenotype should lead to
designing clinical trials in this specific subset of OA patients.
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