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Abstract 1 

Biologics such as TNF antagonists are a new class of drugs that have greatly improved 2 

Rheumatoid Arthritis (RA) treatment. However, for unknown reasons, individual 3 

patients with RA respond to one of these drugs but not to others even those targeting the 4 

same molecule. Methods to predict response are sorely needed because these drugs are 5 

currently selected by trial and error, what is very inefficient and prejudicial for the 6 

patient and the healthcare system. Here, we have explored the discovery of protein 7 

biomarkers in serum from patients treated with infliximab, one of the major anti-TNF 8 

drugs. The study was based in a quantitative proteomics approach using 8-plex iTRAQ 9 

labeling. It combined depletion of the most abundant serum proteins, two-dimensional 10 

LC fractionation, protein identification and relative quantification with a hybrid 11 

Orbitrap mass spectrometer. This approach allowed the identification of 315 proteins of 12 

which 237 were confidently quantified with two or more peptides. The detection range 13 

covered up to 6 orders of magnitude including multiple proteins at the ng/mL level. A 14 

new set of putative biomarkers was identified comprising 14 proteins significantly more 15 

abundant in the non-responder patients. The differential proteins were enriched in 16 

apolipoproteins, components of the complement system and acute phase reactants. 17 

These results show the feasibility of this approach and provide a set of candidates for 18 

validation as biomarkers for the classification of RA patients before the beginning of 19 

treatment, so that anticipated non-responders could be treated with an alternative drug. 20 

 21 
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Introduction 1 

 2 

Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease of complex 3 

etiology comprising genetic and environmental factors that is characterized by 4 

inflammation in multiple joints [1]. Left without treatment, it progresses to disability, 5 

deformities due to bone erosion and life shortening. RA prevalence is about 1% of the 6 

world population. Classical treatments are still commonly used, but they are not 7 

sufficiently effective for many patients. In the last decade, new drugs became available 8 

in the group of biologics (monoclonal antibodies, soluble receptors or other complex 9 

molecules targeting specific players in the disease process). The first that were available 10 

for RA treatment were the tumor necrosis factor (TNF) antagonists. Among them, 11 

infliximab, a chimeric antibody comprising a human IgG1 constant fraction and a 12 

murine variable region targeting membrane and soluble TNF [2], has become one of the 13 

biologics most commonly used in RA. 14 

Biologics have greatly improved RA treatment but none of them is effective in 15 

all patients. For unknown reasons, about a third of the patients in whom one of these 16 

drugs is assayed fail to show significant improvement. These patients can respond to an 17 

alternative biologic targeting the same or a different molecule [3]. Currently, clinical or 18 

laboratory methods for the prediction of patients response are not available. Therefore, 19 

the only approach to select biologics for a particular RA patient is by trial and error. 20 

This approach is associated with notable inefficiency and prejudices because 21 

responsiveness can only be assessed after three to six months of treatment. During this 22 

time, patients suffer uncontrolled disease with the potential of irreversible damage, and 23 

the healthcare system expends large amounts in ineffective drugs. Thus, it is necessary 24 

to find biomarkers that make possible the identification of  non-responder patients in 25 

advance, to treat them with an alternative drug from the beginning. Many studies have 26 

already tried to identify this type of biomarkers in the genetics, functional genomics, 27 

proteomics, autoantibody and clinical fields, but no reproducible and informative 28 

findings have yet been reported [4]. 29 

 Very few proteomic studies have attempted to identify biomarkers for prediction 30 

of response to biologics in RA. A couple of studies analyzed selected cytokines or 31 

cytokines plus RA autoantibodies showing  that some of them were associated with 32 

clinical response to the TNF antagonist etanercept  [5,6]. By contrast, not a single 33 

cytokine was associated with response to a different biologic, rituximab, in a similar 34 
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study [7]. The unique previous agnostic proteomic study was done by Trocmé et al. [8]. 1 

These authors used SELDI-TOF technology to identify plasma biomarkers for 2 

prediction of response to infliximab. Six potential biomarkers were detected, although 3 

only two proteins were identified. None of the previous studies have been independently 4 

replicated. This paucity of proteomic research on biomarkers for prediction of response 5 

contrasts with the multiple studies searching RA diagnostic and prognostic biomarkers 6 

[9-20], and with several proteomic studies monitoring  the changes that take place after 7 

the administration of different drugs  [7,16,21,22].  8 

Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) is a quantitative 9 

proteomic approach ideally suited for biomarker discovery. It provides quantification, 10 

identification and multiplexing in a single assay. However, it has been scarcely used to 11 

study human serum and plasma. This is unfortunate because serum and plasma are 12 

informative for many diseases, especially for systemic diseases like RA, and easily 13 

available. The latter is very important when validating the potential biomarkers and also 14 

for their future widespread use. For example, patients with RA are not routinely 15 

subjected to synovial tissue biopsies and it will pose significant difficulties to 16 

implement them for drug selection.  Unfortunately, discovery of biomarkers among the 17 

serum or plasma proteins is limited by their great complexity and wide dynamic range. 18 

Protein concentrations extend for more than 11 orders of magnitude with the top 10 19 

most abundant plasma proteins accounting for ~ 90% of the total proteins [23]. Disease 20 

biomarkers are usually present at low concentrations (~ ng/mL) [23], being masked by 21 

higher abundance proteins in 2-DE and being blurred in MS due to competitive 22 

ionization and signal suppression. Therefore, the quantitative and qualitative analysis of 23 

low abundance proteins is challenging. To overcome these problems, there is a need for 24 

(i) prefractionation methods to specifically remove the high abundance proteins; (ii) 25 

good separation techniques to further decrease protein complexity; and (iii) MS 26 

equipments with high sequencing speed and sensitivity. In this study, we have explored 27 

the performance of an approach including these characteristics. It was applied to the 28 

discovery of biomarkers for prediction of response in serum of patients with RA that 29 

had been prospectively evaluated during treatment with infliximab. The proteomics 30 

approach comprised an immunodepletion prefractionation step, a thorough 2-D LC 31 

fractionation and quantification of the differentially isotopic labeled peptides by 32 

MS/MS. Results were satisfactory because this approach allowed the identification of a 33 

large number of proteins, covering a wide dynamic range and including many proteins 34 
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in the ng/mL level, and identifying 14 putative biomarkers for prediction of response to 1 

infliximab that are consistent with our knowledge of the disease.  2 

 3 

Materials and Methods 4 

 5 

Ethics approval 6 

 7 

The project was approved by the Ethics Committee for Clinical Research of 8 

Galicia and carried out according to the Helsinki Declaration Principles. All 9 

participating subjects gave their written informed consent. 10 

 11 

Sample collection 12 

 13 

Patients with RA according to the American College of Rheumatology (ACR) 14 

classification criteria [24] from a single center (Gregorio Marañón Hospital, Madrid, 15 

Spain) were enrolled in the study. All were naive for any biologics before the start of 16 

the enrollment period. Blood was collected into 8 ml Vacuette Z Serum Sep Clot 17 

Activator tubes (Greiner Bio-One GmbH, Frickenhausen, Germany) before starting 18 

infliximab administration, left to clot at room temperature for 2 hours and then 19 

centrifuged at 3000 g for 10 min. The collected serum was aliquoted and stored at -80ºC. 20 

Infliximab (Remicade; Centocor Inc., Malvern, PA) was given following the standard 21 

dose and administration schedule. Clinical response was determined 6 months after 22 

infliximab initiation according with the European League Against Rheumatism 23 

(EULAR) criteria based in the Disease Activity Score 28 (DAS28) [25]. Only patients 24 

classified as non-responder (NR, n = 4) or good responder (R, n = 4) were compared to 25 

increase the chances of finding differences. The intermediate class of moderate 26 

responders was excluded.  27 

 28 

Immunoaffinity depletion of high-abundance proteins 29 

 30 

The six most abundant proteins in serum were depleted using the Hu-6 Multiple 31 

Affinity Removal System kit (Agilent Technologies, Wilmington, USA) following 32 

manufacturer’s instructions. Afterwards, the remaining proteins were concentrated using 33 

5000 MWCO spin concentrators (Agilent Technologies) and acetone precipitation. The 34 



6 

 

resulting air-dried pellets were dissolved in 0.5 M triethylammonium bicarbonate 1 

(TEAB) pH 8.5 buffer and protein concentration was measured. 2 

 3 

Protein digestion and iTRAQ labeling 4 

 5 

For each sample, 40 µg of protein, at 1 mg/mL in 0.5 M TEAB pH 8.5 and 0.1% 6 

SDS, were reduced with 5 mM tris-(2-carboxyethyl) phosphine (TCEP) at 60ºC for 1 7 

hour and cysteine-blocked with 10 mM methyl mehanethiosulfonate (MMTS) at RT for 8 

10 min. The proteins were then digested with Sequencing Grade Modified trypsin 9 

(Promega, Madison, WI, USA) at a trypsin-to-protein ratio of 1:50, at 37ºC for 6 hours. 10 

Each digest was labeled at 25ºC for 3 h with one of the 8-plex iTRAQ reagents 11 

previously solubilized in 100 µl isopropanol, according to the manufacturer’s 12 

instruction (AB Sciex, Framingham, MA, USA). The labeling reactions were stopped 13 

by adding phosphoric acid to reach pH below 4.0, and all iTRAQ-labeled samples were 14 

combined into one tube. Tryptic peptides were then dried by centrifugal evaporation. 15 

 16 

Peptide fractionation with SCX chromatography 17 

 18 

Peptides were fractionated using a PolyLC SCX Polysulphoethyl A 200 mm x 19 

2.1 mm, 5 µm, 200 A column (PolyLC, Columbia, MD, USA), on a high-pressure LC 20 

pump (1100-series, Agilent Technologies). Dried peptides were reconstituted in 600 µl 21 

buffer A, the pH was adjusted to 2.7 with H3PO4. The flow rate was kept at 0.2 ml/min, 22 

and the sample was fractionated using a two-buffer system (buffer A, 7mM KH2PO4 in 23 

25% ACN pH 2.7; buffer B 7mM KH2PO4, 500 mM KCl in 25% ACN pH 2.7). The 24 

gradient employed was 0% B for 20 min, 0% to 5% B in 5 min, 5% to 35% B in 35 min, 25 

35% to 100% B in 10 min, 100% B for 5 min, and then 0% B for 25 min. Eluted 26 

peptides were monitored at 214 and 280 nm and collected from 20-25.7 min, 25.7-31.3 27 

min, 31.3-37.0 min, then every 2.4 min until 95 min. A total of 27 fractions were 28 

collected and then dried. An aliquot of 0.5 µl of each fraction was desalted by C18 29 

ZipTip tips (Millipore, Billerica, MA, USA) and analyzed by MALDI-TOF-TOF (4800, 30 

AB Sciex) MS to check its peptide complexity. The first three fractions were discarded, 31 

and the other 24 fractions were mixed in 12 final fractions according to their complexity.   32 

 33 

Nano-reverse-phase LC-MS/MS 34 
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 1 

Combined fractions were desalted onto C18 spin tips (StageTips, Thermo Fisher 2 

Scientific, Waltham, MA, USA) lyophilized and dissolved on buffer A. Analysis by 3 

nanoHPLC-MS/MS was done using a NanoLC-Ultra system (Eksigent, Dublin, CA, 4 

USA) coupled to an Orbitrap Velos hybrid mass spectrometer (Thermo-Finnigan, San 5 

Jose, CA, USA). The separation was performed on a inhouse-made tip column (75 µm 6 

id x 8 cm)  packed with Magic RP C18 AQ, 200A, 3 µm beads (Bischoff GmbH, 7 

Leonberg, Germany), at a flow rate of 250 nl/min. Water with 1% ACN and 100% ACN, 8 

both containing 0.2% formic acid, were used as solvents A and B, respectively. Peptides 9 

were loaded on the column for 16 min with 2% of solvent B and a flow rate of 500 10 

nl/min. Peptide elution was started using the following gradient of solvent B: 0 to 1 min 11 

2% to 10% B, 1 to 65 min 10% to 30% B, 65 to 70 min 30% to 45% B, 70 to 74 min 12 

45% to 97% B. The column was washed for 7 min with 97% B and then re-equilibrated 13 

for 9 min with 2% solvent B before the next run. The mass spectrometer was operated 14 

in data-dependent mode with the following ion scanning parameters: survey MS scan in 15 

FT mode from 300 to 2000 m/z (resolution 30000), followed by top eight peaks 16 

collision induced dissociation (CID) fragmentation (isolation width 2 m/z, normalized 17 

collision energy 35%) for identification, plus the same top eight peaks higher-energy 18 

collisional dissociation (HCD) fragmentation (isolation width 2 m/z, normalized 19 

collision energy 52%) and readout in the FT analyzer (resolution 7500) for 20 

quantification. Fragmented peptide masses were set in dynamic exclusion for 60 s and 21 

singly charged ions were excluded from MS/MS analysis. To improve sensitivity of the 22 

MS/MS analysis for peptides of low-abundance proteins, each fraction was run a second 23 

time excluding previously fragmented precursors. 24 

 25 

Protein identification and protein relative abundance 26 

 27 

Peptide and protein identification was performed with ProteinPilot software v4.0 28 

(AB Sciex) and the Paragon algorithm [26] by comparison with the human 29 

Swissprot/TrEMBL database (downloaded in December 2011). Paragon method 30 

parameters were: peptide labeled with iTRAQ 8plex, fixed modification of methyl 31 

methanethiosulfonate on Cys (+46 Da), digestion with trypsin, instrument Orbi/FT MS 32 

(1-3ppm) LTQ MS/MS, and ID focus on biological modification. Proteins having at 33 

least one peptide above the 95% confidence level as determined by Protein Pilot were 34 
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recorded. False discovery rates (FDR) were estimated using a concatenated target-decoy 1 

database [27]. For the estimation of the protein abundance ratio, the intensities of 2 

iTRAQ reporter ions for each MS/MS spectra were extracted from ProteinPilot and the 3 

sum ratio for each protein was calculated across the spectra matched to the 4 

corresponding peptides. Data were normalized for loading error by bias corrections 5 

using ProteinPilot. The statistical significance of the differences between the means for 6 

each group (R vs. NR) was determined on the transformed data (arc sin hyperbolic) 7 

using the two–tailed t-test. Threshold for significance was set at p < 0.05. A receiver 8 

operation characteristic (ROC) curve analysis was performed for each protein to obtain 9 

the area under curve (AUC). AUC was used as the summary statistic reflecting the 10 

overall predictive accuracy of each protein [28]. A model or test with perfect 11 

discriminatory ability will have an AUC of 1.0, while a model of random outcomes will 12 

have an AUC of 0.5. Interactions and pathways of proteins with fold differences 13 

between NR and R patients higher than 1.5 were analyzed with Ingenuity Pathway 14 

Analysis (IPA) software (Ingenuity Systems, Redwood City, CA, USA). 15 

 16 

Results and Discussion 17 

 18 

Figure 1 shows the discovery-driven 8-plex iTRAQ workflow used in this study. 19 

This workflow combines depletion of the highest abundance serum proteins, intensive 20 

fractionation of the depleted serum, and MS/MS based identification and quantification 21 

of the fractionated proteins. In the first step, sera were immunodepleted from the six 22 

highest abundance proteins on a human MARS-6 spin column. Reproducibility and 23 

protein recovery of this step were evaluated by 1-DE (Figure 2) and by total protein 24 

quantification. These analyses revealed uniform reduction of major protein bands and 25 

compensatory increases in other bands of lower concentration together with significant 26 

reduction of the total protein concentration. The mean protein recovery rate was 11.5%, 27 

which is in agreement with the column’s manufacturer specifications. Subsequent MS 28 

analysis showed that this depletion step was effective because our protocol allowed the 29 

identification with strict criteria (at least 2 peptides and 95% confidence) of medium 30 

and low concentration proteins. Examples of identified proteins that are in the ng/mL 31 

range according with the bibliography were hepatocyte growth factor activator, sex 32 

hormone-binding globulin, alpha synuclein and retinoic acid receptor responder protein 33 

[29-32]. However, our protocol was not able to identify very rare proteins in the pg/mL 34 
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range.  Since concentrations of the most abundant identified proteins are in the mg/mL 1 

level, the workflow used in this study allowed the detection of serum proteins with a 2 

dynamic range of up to 10
6
. A wide detection range is a necessary characteristic for 3 

effective proteomic analysis of serum given the complexity and heterogeneity of this 4 

biologic fluid. 5 

 6 

Identification of serum proteins 7 

 8 

The next steps involved trypsin digestion of the proteins, labeling of the 9 

resulting peptides with the iTRAQ reagents, pooling samples in a single mix and 10 

fractionation of the labeled peptides by SCX. The 27 initial fractions were collected and 11 

their peptide complexity was determined by MALDI-TOF MS. Low complexity 12 

fractions were pooled, given a total of 12 final fractions. These 12 fractions were 13 

subjected to nanoHPLC-MS/MS in an Orbitrap Velos hybrid mass spectrometer. 14 

Spectra were analyzed with ProteinPilot leading to the identification of 247 proteins 15 

with at least 2 peptides (315 proteins with a single peptide) (Table S-1 in the 16 

Supplementary Material). An experiment with 300 µg of depleted serum treated in the 17 

same conditions except for iTRAQ labeling, led to the identification of 235 proteins 18 

(results not shown). This result indicatesg that iTRAQ labeling with the analytical 19 

conditions used in this study does not substantially modify peptide ionization efficiency 20 

and protein identification. This finding is relevant because the effect of iTRAQ labeling 21 

seems to depend on the analytical system used. For example, iTRAQ labeling increases 22 

the number of identified proteins when using MALDI-TOF-TOF [33], but decreases the 23 

number with pulsed-Q dissociation (PQD) on a dual-pressure linear ion trap LTQ Velos 24 

[34] or with CID on a non-dual-pressure linear ion trap [35]. CID shows better 25 

performance for identification on linear ion traps, so quantification methods that use 26 

isobaric tags usually combine CID fragmentation for identification with PQD or HCD 27 

scans for quantification [36-38]. We have achieved similar protein identification for 8-28 

plex labeled samples than for label-free samples, showing that the combination of dual-29 

pressure LIT CID for identification with HCD for quantification, as implemented in the 30 

Orbitrap Velos hybrid mass spectrometer, is advantageous for isobaric tag 31 

quantification workflows.  32 



10 

 

Gene ontology analysis of the identified proteins showed that most of them had 1 

an extracellular location (Figure 3a), as expected.  The main activities were defined by 2 

functional classification as binding, catalytic and enzyme regulator (Figure 3b). 3 

 4 

Quantitative analysis 5 

 6 

The iTRAQ label ratios were used for relative quantification of 289 proteins, 7 

237 of them with at least two peptides (Table S-2 in the Supplementary Material). 8 

Comparison of protein abundance between responder and non-responder patients was 9 

used to identify potential biomarkers for prediction of response to infliximab. Statistical 10 

significance rather than fold difference is preferred for selection of proteins showing 11 

differential abundance [39]. Therefore, we have used p-values < 0.05 from t-test 12 

comparisons between the two groups of patients to discover 14 differential proteins 13 

(Table 1 and Figure S-1 in the Supplementary Material). As expected, the AUC values 14 

derived from ROC analyses were concordant with the p-values from the t-tests: with the 15 

most discriminant proteins being identified by the two analyses (Table 1 and Table S-2 16 

in the Supplementary Material). Each value of AUC can be interpreted as the 17 

probability that the biomarker will rank a randomly chosen non-responder higher than a 18 

randomly chosen responder [28]. The AUC value for a perfect test is 1.0, whereas the 19 

value for a completely random test is 0.5. It is commonly accepted that tests with AUC 20 

below 0.75 are unlikely to have interest for clinical use, whereas those with values over 21 

0.75 could be of utility. All the differential proteins in our study were in this later group 22 

with high predictive potential (Table 1) and compare favourably with those previously 23 

identified for prediction of response to treatment in RA [8], with other predictors of 24 

response [40-42] and with other predictors in RA research [43-45]. All the differential 25 

proteins, except for adipocyte plasma membrane-associated protein (APMAP), have 26 

been previously related to RA or to the inflammatory response.  These relationships 27 

with inflammation and the disease process could explain that all of them were more 28 

abundant in the non-responder subset of patients than in the responder group. In 29 

addition, as the serum samples were obtained before the start of infliximab treatment, all 30 

of them came from patients with active inflammation because this is a requirement for 31 

the prescription of this drug. The fold difference values should be interpreted 32 

considering that iTRAQ quantification underestimates the abundance differences [46], 33 
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and therefore some of the results may be possibly more disparate between the two 1 

groups of patients when assessed with other techniques. 2 

Results of pathway analysis showed that the differential proteins were 3 

significantly enriched in the inflammatory response and protein synthesis networks 4 

(scores 46 and 41, respectively). These results highlight a potential role for 5 

apolipoproteins and complement factors in the differential response to infliximab 6 

(Figure 4). Among the apolipoproteins, three were significantly more abundant in non-7 

responder patients: apoB-100, apoA-II and apoM.  In addition, apoA-I, apoC-I and 8 

apoC-II were near the significance threshold (P values < 0.08). Proteins of this family 9 

bind lipids to form lipoprotein particles and transport these lipids to tissues. ApoB-100 10 

is the hepatic isoform of apoB. It is the main protein component of low-density 11 

lipoproteins (LDL) that carry most of the cholesterol that is transported to the tissues. 12 

ApoB is the recognition signal for the cellular binding and internalization of LDL, and it 13 

is a very good biomarker for cardiovascular risk [47]. ApoA-I and apoA-II are the main 14 

apolipoproteins of high-density lipoproteins (HDL). ApoA-I is associated with 15 

protection from cardiovascular risk because it promotes cholesterol efflux from tissues 16 

to the liver for excretion. It has been much more extensively studied than apoA-II, 17 

which seems to play a crucial role in triglyceride catabolism [48]. ApoM is also a HDL-18 

associated apolipoprotein with anti-atherogenic potential probably through an 19 

antioxidant effect [49]. ApoC-I is a component of HDL and is also associated with 20 

triglycerides and cholesterol in very low density lipoproteins (VLDL). ApoC-II is also a 21 

component of VLDL, and it is incorporated to these particles once they are circulating 22 

in the blood. The differences we have found in apolipoproteins should be considered in 23 

the context of the complex interactions between chronic inflammation and lipid 24 

metabolism in RA that we still do not completely understand. An increased mortality of 25 

RA patients due to cardiovascular events has been reported [50]. This increase is partly 26 

due to the adverse serum lipid profile found in untreated patients, low levels of HDL 27 

cholesterol and increased LDL/HDL cholesterol and apoB/apoA-I ratios [51,52]. This 28 

adverse lipid profile could be partially explained by changes in the expression of genes 29 

in the liver or in the reticuloendothelial system as part of the acute phase response. In 30 

addition, inflammation induces changes in the composition of the HDL and LDL 31 

particles and in the clearance of cholesterol [52,53]. The lipid profile improves during 32 

effective treatment, probably as consequence of the control of inflammation [54,55]. 33 

Together with these effects of inflammation on apolipoproteins there are also effects of 34 
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apolipoproteins on inflammation. The most studied effects have been those of apoA-I, 1 

which is anti-inflammatory [56], and apoB, which is proinflammatory [57], but it has 2 

been also reported that apoA II has an anti-inflammatory role [58] and apoC-I a 3 

proinflammatory one [59]. These contrasting effects pose a problem for a simple 4 

interpretation of our results because all the differential apolipoproteins showed higher 5 

levels in the non-responder group than in the responder one. However, recent evidence 6 

indicates that the known roles of apolipoproteins are reversed in a subset of RA patients 7 

that have proinflammatory HDL particles in place of anti-inflammatory HDL, due to 8 

changes in composition [60]. This change of properties has been shown to be a 9 

consequence of the acute phase response [61] and might mean that all the observed 10 

differences in our study are directed towards a more damaging and proinflammatory 11 

lipid profile.  12 

Another protein related with lipid metabolism in our significant findings is 13 

APMAP. This protein is a transmembrane protein necessary for adipocyte 14 

differentiation that is increased in obesity models [62], although no relationship with 15 

inflammation or RA have been described. 16 

 Regarding the other overrepresented functional pathway, there were five 17 

complement-related proteins among the proteins showing significant differences: C4B-18 

alpha chain, complement factor H-related protein 4 (CFHR4), mannan-binding lectin 19 

serine protease 2 (MASP2), and inter alpha trypsin inhibitor heavy chain H1 (ITIH1) 20 

and H2 (ITIH2). Other four proteins in this pathway showed fold differences over 1.5 21 

but were not significantly different: C8 beta, C8 alpha, C5 and complement factor H-22 

related protein 3 (CFHR3). C4B is one of the two isotypes of C4, each of them encoded 23 

by a different gene. Upon secretion, the C4 molecules are cleaved in three chains that 24 

remain together as a trimer. The classic and the lectin complement activation pathways 25 

include cleavage of the C4 alpha chain, which we have found different, into the C4a 26 

anaphylotoxin and C4b, which continues with the activation cascade. The different 27 

complement activation pathways converge in C3, whose activation is followed by the 28 

cleavage of C5 in C5a, another anaphylotoxin, and C5b, which initiates the membrane 29 

attack complex. This complex is the effector cytolytic endproduct of the complement 30 

system and includes, among others, complement factors C5b and C8. The latter is made 31 

of three subunits encoded in separated genes: C8 alpha, beta and gamma. CFHR4 is a 32 

member of the CFH family that has recently been identified as promoting complement 33 

activation via the alternative and classic pathways [63]. CFHR3 is a member of the 34 
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same family that seems to be involved in regulation of the complement system by 1 

inhibiting the activation of C3 [64]. MASP2, in turn, is a serum protease that activates 2 

the lectin pathway via the cleavage of C4 and C2 [65]. Finally, the inter alpha trypsin 3 

inhibitor (IαI) complex is made of two heavy chains ITIH1 and ITIH2 plus bikunin, and 4 

it is a broad spectrum proteinase inhibitor. Among its many targets, it inhibits the early 5 

phases of complement activation by the three pathways: classic, alternative and lectin 6 

[66].  All these differential proteins related to complement can have a role in RA, since 7 

the complement system is activated in the inflamed joints of patients with RA. This 8 

activation state has been shown by the relative consumption of C3 and C4 in the 9 

synovial fluid together with increased concentrations of C5a and the membrane attack 10 

complex [67]. The higher abundance of all these proteins in the non-responder patients 11 

makes it tempting to propose that this subset of patients is characterized by more 12 

complement activation. However, this interpretation should be very cautious because 13 

regulation of the complement system is mainly done at the activation levels and not at 14 

the transcription level, and because ITIH1 and ITIH2 are inhibitors of complement 15 

activation. An additional element to consider is that many components of the 16 

complement system are acute phase reactants and they could be increased as a 17 

consequence of inflammation [68]. 18 

Other differential proteins in our results were also part of the acute phase 19 

response: ceruloplasmin (CP), thrombospondin (THBS1), vitamin D-binding protein 20 

(GC) and fibronectin (FN1).  CP is a ferroxidase enzyme involved in iron transport and 21 

metabolism that has been proposed as a link between iron metabolism and the immune 22 

system [69]. THBS1 is a multifunctional protein that mediates cell-to-cell and cell-to-23 

matrix interactions. It has been related to RA pathogenesis via the activation of 24 

transforming growth factor beta (TGFβ), and more generally to acute and chronic 25 

inflammation through a variety of mechanisms [70]. GC is involved in the transport of 26 

vitamin D and its metabolites to target tissues [71]. It is also the precursor of vitamin D-27 

binding protein-derived macrophage-activating factor (GcMAF) that results from 28 

enzymatic modifications taking place in B and T cells [72]. GcMAF is a potent activator 29 

of monocyte and macrophage functions that has not yet been specifically studied in RA. 30 

Finally, FN1 is one of the most abundant proteins in inflamed joints of patients with RA 31 

[73], and it is also related with RA as citrullinated FN1. This posttranscriptional 32 

modification and antibodies against it are present in synovial tissue, synovial fluid and 33 

sera of RA patients [74]. In this regard, it is interesting to note that protein citrullination 34 
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and anti-citrullinated protein antibodies play a central role in the pathophysiology of RA 1 

[75]. Most of the proteins in this group of acute phase reactants have been found at 2 

elevated levels in serum of patients with RA [15,73,76]. However, it is uncertain if their 3 

higher level in the non-responder patients of our study could be ascribed to a more 4 

severe inflammation. The reasons for this doubt are that clinical studies have not 5 

identified any sign of inflammation as predictive of response to infliximab [77], and that 6 

other prominent acute phase reactants, serum amyloid A protein and C-reactive protein, 7 

showed a non-significant excess in the responder group (fold differences 0.8 and 0.65, 8 

respectively). Therefore, we cannot exclude the possibility that the higher abundance of 9 

these proteins is due to specific mechanisms unrelated with the intensity of 10 

inflammation. 11 

Finally, gelsolin (GSN) is a protein that does not fit in any of the previous 12 

groups. In blood, it contributes to limit inflammatory responses by acting as a scavenger 13 

binding the actin released by tissue damage, bioactive lipids and proinflammatory 14 

mediators [78]. It is decreased in multiple acute and chronic inflammatory diseases 15 

including RA [79]. Possible mechanisms of this decrease include clearance of the GSN 16 

complexes and trapping of GSN-actin into the inflamed joints in RA. As commented for 17 

the other groups of proteins, it is impossible to know at this stage what could be behind 18 

the higher levels of GSN found in the non-responder group of patients. 19 

The only previous study with similar aims has been already mentioned [8]. It 20 

identified six potential proteins that were different between the non-responder and 21 

responder RA patients treated with infliximab. These proteins showed AUC ranging 22 

from 0.761 to 0.846, but not statistical tests or fold differences were reported. Five of 23 

them were more abundant in the non-responder group and only one in the responder 24 

patients, which is a direction of differences similar to our findings. Four of the proteins 25 

were not further characterized because the authors used SELDI-TOF-MS and needed 26 

purification for identification. The two identified proteins were also present in our 27 

analysis. Platelet factor 4 was more abundant in the non-responder patients in both 28 

studies (fold difference NR/R = 1.39; AUC = 0.81 in our samples), but the difference 29 

was not significant in our analysis (P = 0.2). It has been also highlighted as a biomarker 30 

for prediction of response to infliximab in a Crohn’s disease study showing also higher 31 

concentration in the non-reponder patients [80]. Therefore, platelet factor 4 seems a 32 

good candidate biomarker although it did not came in the top list of our study. The 33 

second protein, apoA-1showed contrasting results. It was almost significantly more 34 
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abundant in the non-responder patients in our study, as already discussed, whereas it 1 

was more abundant in responder patients than in non-responder ones in Trocmé et al. 2 

[8]. This discordant result serves us to remind that all these results need to be replicated 3 

in new studies because of the exploratory nature of the previous and the current studies.  4 

 5 

Conclusions 6 

 7 

This report is the first label-based quantitative proteomics study aimed at 8 

discovering potential serum biomarkers for prediction of response to biologics in RA. 9 

The results have been encouraging in several respects: the number of identified proteins, 10 

the dynamic range of concentrations they covered, and the number of differential 11 

proteins between the two groups compared. The panel of differential proteins needs 12 

further verification and clinical validation, but already it has been possible to notice that 13 

most of these proteins are known to be related with important processes in RA and 14 

many of them are known to show altered levels or function related with RA or chronic 15 

inflammation. Therefore, we expect that they will help establish approaches to classify 16 

RA patients as responders and non-responders to infliximab before the beginning of the 17 

treatment, in order to treat anticipated non-responders with an alternative drug.  18 
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Figure captions. 1 

 2 

Figure 1. Discovery-driven experimental workflow of the study. R, responder; NR, 3 

non-responder; CID, collision-induced dissociation; HCD, higher-energy collisional 4 

dissociation. 5 

 6 

Figure 2. Depletion of the 6 highest abundance proteins from serum. 10% NuPAGE 7 

Bis-Tris 1-DE gel image of the different protein fractions. 8 

 9 

Figure 3. Gene ontology (GO) annotation of identified serum proteins according to (a) 10 

cellular location; and (b) molecular function. 11 

 12 

Figure 4. Pathway analysis of proteins that showed differential abundance between 13 

responder and non-responder patients with RA treated with infliximab. Direct 14 

interactions are shown. Proteins with R/NR ratios > 1.5 are in green, and with NR/R 15 

ratios > 1.5 are in red. Merged two top score networks are shown (immune and 16 

inflammatory response, score 46, and protein synthesis, score 41), centered on low-17 

density lipoprotein (LDL) and high-density lipoprotein (HDL) as reflected by the 18 

number of interactions. 19 
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Table 1. Serum proteins showing differential abundance between the responder and 1 

non-responder patients with RA treated with infliximab. 2 

Accessio
n 

number Protein name 
Non-responder/ 

Responder p-val AUC 
D6RAK8 Vitamin D-binding protein splicing variant 

GC-006  
5.359 0.0386 

1 

P00450 Ceruloplasmin 3.375 0.0178 1 

P04114 Apolipoprotein B-100 2.198 0.0348 0.938 

P19823 

Inter-alpha-trypsin inhibitor heavy chain 

H2 
2.072 0.0230 

1 

P07996 Thrombospondin-1 1.994 0.0319 1 

Q6U2E9 Complement C4-B alpha chain 1.971 0.0315 0.938 

P19827 Inter-alpha-trypsin inhibitor heavy chain 

H1 
1.785 0.0388 

0.938 

P06396  Gelsolin  1.718 0.0328 1 

P02652 Apolipoprotein A-II 1.718 0.0414 1 

P02751-7 Fibronectin isoform 7 1.682 0.0340 0.938 

C9J7J7 Complement factor H-related protein 4 1.680 0.0486 0.875 

O95445 Apolipoprotein M 1.601 0.0325 1 

Q9HDC9 Adipocyte plasma membrane-associated 

protein 
1.508 0.0219 

1 

O00187 Mannan-binding lectin serine protease 2 1.336 0.0246 0.938 
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