Large scale multifactorial likelihood quantitative analysis of BRCA1 and BRCA2 variants: An ENIGMA resource to support clinical variant classification
Parsons, M. T.; Tudini, E.; Li, H.; Hahnen, E.; Wappenschmidt, B.; Feliubadaló, L.; Aalfs, C. M.; Agata, S.; Aittomäki, K.; Alducci, E.; Alonso-Cerezo, M. C.; Arnold, N.; Auber, B.; Austin, R.; Azzollini, J.; Balmaña, J.; Barbieri, E.; Bartram, C. R.; Blanco Pérez, Ana; Blümcke, B.; Bonache, S.; Bonanni, B.; Borg, Å; Bortesi, B.; Brunet, J.; Bruzzone, C.; Bucksch, K.; Cagnoli, G.; Caldés, T.; Caliebe, A.; Caligo, M. A.; Calvello, M.; Capone, G. L.; Caputo, S. M.; Carnevali, I.; Carrasco, E.; Caux-Moncoutier, V.; Cavalli, P.; Cini, G.; Clarke, E. M.; Concolino, P.; Cops, E. J.; Cortesi, L.; Couch, F. J.; Darder, E.; de la Hoya, M.; Dean, M.; Debatin, I.; Del Valle, J.; Delnatte, C.; Derive, N.; Diez, O.; Ditsch, N.; Domchek, S. M.; Dutrannoy, V.; Eccles, D. M.; Ehrencrona, H.; Enders, U.; Evans, D. G.; Farra, C.; Faust, U.; Felbor, U.; Feroce, I.; Fine, M.; Foulkes, W. D.; Galvao, H. C. R.; Gambino, G.; Gehrig, A.; Gensini, F.; Gerdes, A. M.; Germani, A.; Giesecke, J.; Gismondi, V.; Gómez, C.; Gómez Garcia, E. B.; González, S.; Grau, E.; Grill, S.; Gross, E.; Guerrieri-Gonzaga, A.; Guillaud-Bataille, M.; Gutiérrez-Enríquez, S.; Haaf, T.; Hackmann, K.; Hansen, T. V. O.; Harris, M.; Hauke, J.; Heinrich, T.; Hellebrand, H.; Herold, K. N.; Honisch, E.; Horvath, J.; Houdayer, C.; Hübbel, V.; Iglesias, S.; Izquierdo, A.; James, P. A.; Janssen, L. A. M.; Jeschke, U.; Kaulfuß, S.; Keupp, K.; Kiechle, M.; Kölbl, A.; Krieger, S.; Kruse, T. A.; Kvist, A.; Lalloo, F.; Larsen, M.; Lattimore, V. L.; Lautrup, C.; Ledig, S.; Leinert, E.; Lewis, A. L.; Lim, J.; Loeffler, M.; López-Fernández, A.; Lucci-Cordisco, E.; Maass, N.; Manoukian, S.; Marabelli, M.; Matricardi, L.; Meindl, A.; Michelli, R. D.; Moghadasi, S.; Moles-Fernández, A.; Montagna, M.; Montalban, G.; Monteiro, A. N.; Montes, E.; Mori, L.; Moserle, L.; Müller, C. R.; Mundhenke, C.; Naldi, N.; Nathanson, K. L.; Navarro, M.; Nevanlinna, H.; Nichols, C. B.; Niederacher, D.; Nielsen, H. R.; Ong, K. R.; Pachter, N.; Palmero, E. I.; Papi, L.; Pedersen, I. S.; Peissel, B.; Perez-Segura, P.; Pfeifer, K.; Pineda, M.; Pohl-Rescigno, E.; Poplawski, N. K.; Porfirio, B.; Quante, A. S.; Ramser, J.; Reis, R. M.; Revillion, F.; Rhiem, K.; Riboli, B.; Ritter, J.; Rivera, D.; Rofes, P.; Rump, A.; Salinas, M.; Sánchez de Abajo, A. M.; Schmidt, G.; Schoenwiese, U.; Seggewiß, J.; Solanes, A.; Steinemann, D.; Stiller, M.; Stoppa-Lyonnet, D.; Sullivan, K. J.; Susman, R.; Sutter, C.; Tavtigian, S. V.; Teo, S. H.; Teulé, A.; Thomassen, M.; Tibiletti, M. G.; Tischkowitz, M.; Tognazzo, S.; Toland, A. E.; Tornero, E.; Törngren, T.; Torres-Esquius, S.; Toss, A.; Trainer, A. H.; Tucker, K. M.; van Asperen, C. J.; van Mackelenbergh, M. T.; Varesco, L.; Vargas-Parra, G.; Varon, R.; Vega, A.; Velasco, Á; Vesper, A. S.; Viel, A.; Vreeswijk, M. P. G.; Wagner, S. A.; Waha, A.; Walker, L. C.; Walters, R. J.; Wang-Gohrke, S.; Weber, B. H. F.; Weichert, W.; Wieland, K.; Wiesmüller, L.; Witzel, I.; Wöckel, A.; Woodward, E. R.; Zachariae, S.; Zampiga, V.; Zeder-Göß, C.; Investigators, K.; Lázaro, C.; De Nicolo, A.; Radice, P.; Engel, C.; Schmutzler, R. K.; Goldgar, D. E.; Spurdle, A. B.
Identificadores
Identificadores
URI: http://hdl.handle.net/20.500.11940/15792
PMID: 31131967
DOI: 10.1002/humu.23818
ISSN: 1059-7794
Visualización ou descarga de ficheiros
Visualización ou descarga de ficheiros
Data de publicación
2019Título da revista
HUMAN MUTATION
Tipo de contido
Artigo
DeCS
biología computacional | mutación | humanos | empalme alternativo | detección precoz del cáncer | neoplasias | proteína BRCA1 | herencia multifactorial | funciones de verosimilitud | predisposición genética a la enfermedad | proteína BRCA2MeSH
Mutation | Early Detection of Cancer | Computational Biology | Alternative Splicing | Likelihood Functions | Humans | BRCA1 Protein | Multifactorial Inheritance | BRCA2 Protein | Genetic Predisposition to Disease | NeoplasmsResumo
The multifactorial likelihood analysis method has demonstrated utility for quantitative assessment of variant pathogenicity for multiple cancer syndrome genes. Independent data types currently incorporated in the model for assessing BRCA1 and BRCA2 variants include clinically calibrated prior probability of pathogenicity based on variant location and bioinformatic prediction of variant effect, co-segregation, family cancer history profile, co-occurrence with a pathogenic variant in the same gene, breast tumor pathology, and case-control information. Research and clinical data for multifactorial likelihood analysis were collated for 1,395 BRCA1/2 predominantly intronic and missense variants, enabling classification based on posterior probability of pathogenicity for 734 variants: 447 variants were classified as (likely) benign, and 94 as (likely) pathogenic; and 248 classifications were new or considerably altered relative to ClinVar submissions. Classifications were compared with information not yet included in the likelihood model, and evidence strengths aligned to those recommended for ACMG/AMP classification codes. Altered mRNA splicing or function relative to known nonpathogenic variant controls were moderately to strongly predictive of variant pathogenicity. Variant absence in population datasets provided supporting evidence for variant pathogenicity. These findings have direct relevance for BRCA1 and BRCA2 variant evaluation, and justify the need for gene-specific calibration of evidence types used for variant classification.