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Abstract

Angiography by Optical Coherence Tomography (OCT-A) is a non-invasive retinal imaging

modality of recent appearance that allows the visualization of the vascular structure at pre-

defined depths based on the detection of the blood movement through the retinal vascula-

ture. In this way, OCT-A images constitute a suitable scenario to analyze the retinal

vascular properties of regions of interest as is the case of the macular area, measuring the

characteristics of the foveal vascular and avascular zones. Extracted parameters of this

region can be used as prognostic factors that determine if the patient suffers from certain

pathologies (such as diabetic retinopathy or retinal vein occlusion, among others), indicat-

ing the associated pathological degree. The manual extraction of these biomedical param-

eters is a long, tedious and subjective process, introducing a significant intra and inter-

expert variability, which penalizes the utility of the measurements. In addition, the absence

of tools that automatically facilitate these calculations encourages the creation of com-

puter-aided diagnosis frameworks that ease the doctor’s work, increasing their productivity

and making viable the use of this type of vascular biomarkers. In this work we propose a

fully automatic system that identifies and precisely segments the region of the foveal avas-

cular zone (FAZ) using a novel ophthalmological image modality as is OCT-A. The system

combines different image processing techniques to firstly identify the region where the FAZ

is contained and, secondly, proceed with the extraction of its precise contour. The system

was validated using a representative set of 213 healthy and diabetic OCT-A images, pro-

viding accurate results with the best correlation with the manual measurements of two

experts clinician of 0.93 as well as a Jaccard’s index of 0.82 of the best experimental case

in the experiments with healthy OCT-A images. The method also provided satisfactory

results in diabetic OCT-A images, with a best correlation coefficient with the manual label-

ing of an expert clinician of 0.93 and a Jaccard’s index of 0.83. This tool provides an

accurate FAZ measurement with the desired objectivity and reproducibility, being very
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useful for the analysis of relevant vascular diseases through the study of the retinal micro-

circulation.

Introduction

Over the recent years, the constant technological advances allow the integration of specialized

computed-aided diagnosis systems in different fields of medicine [1–3]. These systems ease

the doctor’s work, facilitating and accelerating the diagnosis and monitoring of many dis-

eases, in addition to the inclusion of important advantages as objectivity and determinism

that are not always present in the diagnostic processes of the experts in their clinical routine.

These facts are present in ophthalmology, where the analysis and diagnostic procedures fre-

quently involve the use of different image modalities as a relevant source of information of a

large variability of relevant diseases. Among the ophthalmological image modalities, in the

recent years, we can find the appearance of the Angiography by Optical Coherence Tomogra-

phy (OCT-A) that is a new non-invasive imaging modality that allows the visualization, with

great precision, of the vasculature at different depths over the retinal eye fundus. OCT-A

images are mainly based on the detection of blood movement without the need of injecting

intravenous contrast, fact that was unavoidable in previous capture techniques, as happens

with classic angiographies. The classic angiography is a simple but invasive image modality

that allows the study of the vascular characteristics of the retina using the injection of an intra-

venous contrast to the patient. Subsequently, Optical Coherence Tomography (OCT) [4]

allows to observe, non-invasively, a cross-sectional visualization of the layers of the retina.

Finally, OCT-A combines the advantages of both, offering a suitable visualization for the anal-

ysis of the retinal vasculature, as angiographies, but non-invasively, using the tomography

capture characteristics, which constitutes a more comfortable scenario for the patients.

OCT-A images are typically taken at superficial and deep views of the eye fundus, which facili-

tates the subsequent vascular analysis; in addition, these images can be obtained at different

levels of zoom, being 3 and 6 millimeters-wide (greater and smaller zooms) the most used

configurations. This image technique offers many advantages [5] compared to those previ-

ously used, such as the possibility of generating volumetric scans that can be captured at spe-

cific depths, offering a 3D visualization of the eye fundus with a limited time and cost that it

typically involves (image acquisition in about 2 or 3 seconds). Given these characteristics,

OCT-A images are suitable for the analysis of the retinal micro-circulation, being spread their

use in many health-care systems.

The higher or lower presence of vessels in certain areas of the eye fundus is a very useful

biomedical parameter since they are affected by many vascular pathologies, such as diabetic

retinopathy or age related macular degeneration, being their level of presence or absence a sig-

nificant prognostic factor. One of these parameters is the area of the Foveal Avascular Zone

(FAZ), the region of the fovea that has no blood supply. The analysis of the FAZ region is cru-

cial given its characteristics are directly related to many relevant clinical conditions. As refer-

ence, it is related to the visual acuity of patients who suffer from diabetic retinopathy or the

occlusion of the retinal vein [6].

As reference, the population with diabetes has from 40% to 90% of suffering from diabetic

retinopathy; in addition, people with diabetic retinopathy are 5 times more likely to derive in

total blindness. Given those facts, the identification, segmentation and analysis of the FAZ

region is crucial for the early diagnosis of relevant diseases as diabetic retinopathy.

Automatic segmentation of biomarker in OCT-A images

PLOS ONE | https://doi.org/10.1371/journal.pone.0212364 February 22, 2019 2 / 22

de Galicia, Centro singular de investigación de

Galicia accreditation 2016-2019, Ref. ED431G/01;

Grupos de Referencia Competitiva, Ref. ED431C

2016-047 and Instituto de salud Carlos III, Ref. PI-

00940. Also, this work has received partial financial

support from the Fundación Mutua Madrileña
project, Ref. 2017/365.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0212364


Given that it is a recently technology, there are still few studies that are related to the auto-

matic extraction of measurements of interest using the OCT-A image modality. Instead, these

early studies are mainly based on the clinical analysis of these images to define manual param-

eters that can be extracted and the characteristics they typically offer [7]. There are works that

study the repeatability and reproducibility of these measures in healthy patients [8, 9] indicat-

ing the satisfactory impact of this analysis. In addition, as previously indicated, it was shown

that visual acuity is related to the FAZ area in patients with diabetic retinopathy and with the

occlusion of the retinal vein [6], demonstrating the suitability and the clinical relevance of this

analysis in the diagnosis of relevant pathologies related to the vision loss. However, still few

proposed computational studies are based on the extraction of the FAZ region. Lu et al. [10]

faces the automatic FAZ extraction and its quantification in different measurements to classify

the images as healthy or diabetic cases. Particularly, the FAZ region is extracted applying a

region growing approach in the exact central point of the image as seed, which represents a

significative limitation with the initialization of this static point; then, morphological opera-

tors and an active contour model are applied in order to obtain the final FAZ segmentation.

Next, four different parameters are calculated to quantify the FAZ region and classify the

image as a healthy or diabetic case. In the work of Hwang et al. [11], the proposal directly

subtracts the image intensities over consecutive OCT-A images in order to generally obtain

avascular zones, deleting posteriorly the non-representatives ones using a given size as

reference.

In this paper, we propose a fully automated and robust methodology to localized and mea-

sure the FAZ region in OCT-A images. The validation of the proposal was performed with a

set of experiments, using a representative public dataset that covered a significative age-range

as well as modalities of healthy and diabetic OCT-A images. Specifically, this public dataset

contains 3 × 3 millimeters and 6 × 6 millimeters superficial and depth healthy OCT-A images

from people between 10 and 69 years old, including all the types in each age-range. Moreover,

a smaller part of the dataset belongs to diabetic patients, including about 17 images for each of

the 4 mentioned subgroups: 3 × 3 millimeters superficial and depth and 6 × 6 millimeters

superficial and depth. In the Section Image dataset we explain extensively these used image

dataset. The methodology that is presented in this work is able to perform the aforementioned

actions automatically, without the need of the user intervention. Generally, the methodology

to segment the FAZ region implies the following steps: first, the image acquisition and normal-

ization of its values in order to facilitate the following stages of the process; second, an exhaus-

tive analysis of the image to detect FAZ candidates and the consecutive removal of existing

false positives; then, from the remaining candidates, we select the correct FAZ; and, finally, a

precise segmentation of the FAZ region is achieved. The obtained results were compared with

the manual measurements of two expert clinicians to analyze the correlation and similarity of

the results of the system with the manual performance of an expert clinician.

This paper is organized as follows: Section Materials and methods presents the OCT-A

image dataset that was used in the experiments as well as the detailed characteristics of the pro-

posed method. Section Results exposes the results and comparisons with the manual segmenta-

tions. Finally, Section Discussion and Conclusions discusses about the obtained results,

concludes the paper and indicates possible future lines of work.

Materials and methods

Image dataset

The “Comité de Ética da Investigación de Santiago-Lugo” committee belonging to the “Rede

Galega de Comités de Ética da Investigación” attached to the regional government “Secretarı́a
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Xeral Técnica da Consellerı́a de Sanidade da Xunta de Galicia” approved this study, which was

conducted in accordance with the tenets of the Helsinki Declaration. This study was carried

out retrospectively on existing data that have previously been anonymized. The validation pro-

cess was done using the public image dataset OCTAGON [12], that contains 144 healthy and

69 diabetic OCT-A images (all the cases presenting diabetic retinopathy (RD)), summing a

total of 213 cases. The images were taken using the Optical Coherence Tomography capture

device DRI OCT Triton; Topcon Corp taking images from both left and right eyes of different

patients. Additionally, the images were obtained at different levels of zoom and depths, with a

resolution of 320 × 320 pixels. In particular, the following configurations were represented in

the dataset:

• Superficial. OCT-A images in which the foveal area can be observed from the surface.

• Deep. OCT-A images visualizing the deep foveal area.

The previous configurations were also captured at the following resolutions:

• 3 × 3 millimeters OCT-A images centered in the fovea covering a region of 3 × 3 millimeters.

Hence, a greater level of detail of the captured macular region is appreciated.

• 6 × 6 millimeters OCT-A images centered in the fovea covering a region of 6 × 6 millimeters.

Hence, a wider range of the macular region is visualized.

Fig 1 illustrates, with representative examples, all the 4 configurations that are represented

in the used dataset. Additionally, the set of 144 healthy images presents the following clinical

and population characteristics:

• Age range. The image dataset is divided into 6 age ranges: 10-19 years, 20-29 years, 30-39

years, 40-49 years, 50-59 years and 60-69 years. This way, we used a diverse set of images

with a significant variability of ages.

• Division by patients. For each mentioned age range, images from three different patients

were captured.

• Eye. For each patient, we have OCT-A images that were extracted from both left and right

eyes.

• Depth and size. Finally, for each eye, 4 images were captured ranging all the superficial/deep

and 3/6 millimeters configurations.

Additionally, two expert clinicians manually labeled and segmented the FAZ region of

each OCT-A image. This ground truth served as reference for the validation process of the

method.

As said, the dataset also includes 69 diabetic OCT-A images, about 17 of each mentioned

subgroup. Given that these OCT-A images are manually labeled by an expert clinician, the val-

idation process is the same as with healthy cases, testing that the method is valid for both

healthy and diabetic OCT-A images.

Proposed methodology

We based the proposed methodology on the analysis of the main image characteristics of the

FAZ region as it typically appears in the OCT-A images. Generally, these characteristics are

the following:

Automatic segmentation of biomarker in OCT-A images
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• Macular centered area. Although this is not exactly in all the cases, the FAZ region is typi-

cally centered on the macular region, specially in the cases of healthy patients.

• Low intensity profile region. Given the absence of vasculature, the FAZ region is generally

defined as a dark area with a significative contrast with respect to the neighbor areas of the

macular region.

• Surrounded by blood vessels. Given this low intensity profile region, surrounded by blood

vessels, we can base the precise delimitation of the FAZ region using this surrounding vascu-

lature as reference.

The proposed methodology based its characteristics in these properties to achieve the

desired results. Fig 2 illustrates the main steps of the proposed method. They are progressively

discussed in next subsections.

Fig 1. Examples of OCT-A images representing all the configurations that were used in this work. 1st row, images

of 3x3 millimeters. 2nd row, images of 6x6 millimeters. (a) & (c) Superficial OCT-A images. (b) & (d), Deep OCT-A

images.

https://doi.org/10.1371/journal.pone.0212364.g001
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Image processing. We initiality intensify the visualization of the vasculature to facilitate

its following differentiation by applying morphological operators. Morphological operators

are often used to highlight the geometric properties of the image. Our first purpose is to clearly

differentiate what is an avascular zone and what is not, so the objective of the application of

the morphological operators is to make this difference stronger. Given that is used in different

works with satisfactory results [13], we apply the white top-hat operator (see Fig 3), since it

makes the bright areas of the image more intense. In this way, vessels will present higher inten-

sities while areas without vessels will remain with low intensity profiles.

Vascular edge identification. Using the previous image, we can easily identify the vascu-

lar regions and differentiate them from the target FAZ area. Additionally, this enhanced image

also facilitates the removal of possible wrong identifications in subsequent stages of the meth-

odology. To identify the vascularity, the Canny edge detector [14] is used, extracting the edges

of the vessels. The parameters of Canny edge detector are decisive for the results; in this case

these parameters vary based on the image average values, allowing to acquire satisfactory

results independently of the input OCT-A image. This way, we obtain solid and continuous

detections of the vasculature that serve as baseline for the vascular region identification. In

Fig 2. Main steps of the proposed methodology.

https://doi.org/10.1371/journal.pone.0212364.g002

Fig 3. Application of the preprocessing step. (a) Original image. (b) Image result after applying the-top hat operator.

https://doi.org/10.1371/journal.pone.0212364.g003
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Fig 4, we can see a representative example of the result after the application of the Canny edge

detector.

Extraction of the FAZ candidates. Using the previous set of vascular detections as base-

line, we identify all the regions that are suspicious of being candidates of the FAZ location. To

remove most of the false positives, we firstly apply a morphological closure. The reason for

choosing this operator instead of a dilatation is that the target vascular area would be exces-

sively modified if an erosion is not applied after dilatation. Thus, after the application of the

morphological closure we obtain an adequate scenario where we can easily identify the most

suitable candidate as the target FAZ region, as illustrated in the example of Fig 5.

Afterwards, after inverting the image to facilitate posterior stages, an opening morphologi-

cal operator is applied given that the previous image still contains a significant number of spu-

rious detections. This way, as result, the fewer possible candidates (Fig 5(c)) are preserved.

FAZ region final identification. As indicated before, the main characteristics of the FAZ

region imply a centered location, given that the OCT-A images are typically taken macular-

centered, as well as their common appearance of low intensity profiles. These properties per-

mitted that, in most of the cases, we obtain images from the previous stage as the case pre-

sented in Fig 5(b). In that cases, the larger identified region directly represents the FAZ region.

However, other times, we face situations, as the one presented in Fig 6, where errors in the cap-

ture process or pathological conditions can introduce other significant dark regions in the

OCT-A images, producing mistakes in the FAZ identifications. In that sense, we analyzed the

morphological characteristics of the remaining candidates to perform a precise identification,

avoiding those that are not clearly FAZ regions. In particular, peripheral and disperse candi-

dates are directly discarded and marked as background.

Applying these rules we can see that, as happens with the example of Fig 6(c), we remove

many false positives, specially those problematic that could be confused with FAZ regions and

Fig 4. Vascularity edge identification using the Canny edge detector. (a) Original OCT-A image (after the top-hat preprocessing step). (b) Results of

the vascular edge identification.

https://doi.org/10.1371/journal.pone.0212364.g004
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therefore, introduce identification errors. Moreover, even without the existence of pathological

or capture artifacts, this stage contributes discarding a significant number of FP candidates, as

happens with the example of Fig 7.

Finally, from the remaining candidates, we decide which of them represents the final FAZ

identification. Carefully analyzing the candidates, at this stage, we normally preserved the FAZ

region and other small candidates of spurious artifacts. For that reason, we select the largest

remaining candidate as the most significant one being, therefore, the identified FAZ region.

There are many ways to check the largest sized regions. In our case, the used criterion is the

measurement of the perimeter of the candidates. This preliminary extraction serves as baseline

of the following precise FAZ segmentation.

Precise FAZ segmentation and area calculation. The previously obtained FAZ segmen-

tation is adequate in many cases. However, the use of morphological operators and the signifi-

cant level of complexity of the OCT-A images penalize the segmentation precision in the

surrounding FAZ limits. For that reason, we afterwards applied region growing [15, 16] using

Fig 6. Example of error in the capture process. (a) Original image. (b) Initial set of identified FAZ candidates. (c) Final set of FAZ candidates after FP

removal.

https://doi.org/10.1371/journal.pone.0212364.g006

Fig 5. Morphological closure and inversion of intensities followed by a removal of small elements. (a) Image with the vascular edge identification.

(b) Result after applying a morphological closure. (c) Result after applying an inversion of intensity and an opening.

https://doi.org/10.1371/journal.pone.0212364.g005
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the previous segmentation as seed to further adjust with a higher precision the contour of the

segmentation to the surrounding vascular edges. In this case, we implemented a new version

of region growing, based on the original idea and adding new features. This implementation

add to the original region growing the ability of deleting pixels that are in the region and not

accomplish the region conditions.

Given that the preliminar segmentation could exceed the vasculature limits, we performed

a preliminary erosion step to guarantee that the area that is used as seed for the region growing

process is contained inside the real existing FAZ region. Then, the contour points of this seed

are used by the region growing process to progressively aggregate or delete neighboring pixels

by intensity similarity until reaching the entire vascular edge contour. Finally, where no fur-

ther pixels are added, the growing process is stopped.

The similarity criterion calculates the average intensity of the extracted region, letting a

30% of variation as the tolerance for the addition of new pixels to the segmentation. This

means that we accept a pixel in the region if it value is content in [ARV − 0.3 × ARV, ARV +

0.3 × ARV], where ARV is the average region value. Fig 8 presents a couple of imperfect pre-

liminary FAZ extractions and their corresponding final precise segmentations. This way, we

obtain more adjusted FAZ segmentations that are suitable for their use in following analyses

and diagnostic processes.

Finally, using the resultant segmentation, the method also calculates the corresponding area

of the identified FAZ zone, as a global and complementary numeric parameter to be used in

clinical procedures. The area is calculated as follows:

A ¼ a�
mm2

height � width
ð1Þ

where a represents the count of pixels of the segmented region, mm represents the size in milli-

meters of the image (in our experiments 3 or 6 millimeters), and height and width indicates the

dimensions of the analyzed OCT-A image.

Fig 7. Removal process of FAZ FP candidates. (a) Initial set of identified FAZ candidates. (b) Final set of FAZ candidates.

https://doi.org/10.1371/journal.pone.0212364.g007
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Results

We conducted different experiments to validate the suitability of the proposed method using

the image dataset that was presented in Section Materials and methods. As indicated, this

dataset includes a significant variability of conditions with images at superficial and deep levels

as well as sizes of 3 and 6 millimeters. In the experiments, we compared the results of the

method with the manual labeling of two experts clinician. The designed experiments were the

following:

• Experiment 1. Validation of the accuracy of the localization process.

• Experiment 2. Validation of the quality of the segmentation results. We performed a couple

of comparisons: firstly, a global comparison analyzing the area of the retrieved FAZ regions;

secondly, a more adjusted comparison using the Jaccard’s index.

Additionally, we divided the experiments by the analysis of the included 4 configurations of

the OCT-A images, given the difference of complexity of each case. This way, we obtain more

precise results and conclusions of the performance of the proposal in all the existing scenarios.

Experiment 1: Validation of the FAZ localization stage

We firstly tested if the proposal correctly identifies the location of the FAZ region that corre-

sponds to the first part of the proposed methodology. This is a crucial stage as the subsequent

precise FAZ segmentation depends on a preliminary correct detection. As gold standard, we

Fig 8. Application of the precise final FAZ segmentation. (a) & (c) Preliminary FAZ extractions. (b) & (d) Final

segmentation results.

https://doi.org/10.1371/journal.pone.0212364.g008
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consider that a localization was successfully achieved if the centroid of the preliminary extrac-

tion is placed inside the manual segmentation of the specialist.

Table 1 summarizes the main localization results including the success and failure rates for

both superficial and deep OCT-A healthy images. As we can see, the results using deep images

were satisfactory, localizing correctly all the aimed 72 FAZ cases. Regarding the superficial

images, the method also provided accurate results in most of the cases, remaining 4 cases

where it was not correctly detected (the 4 cases are presented in Fig 9). About these cases, they

belong to 6 millimeters images, where the tonalities of the images are fairly regular and the

FAZ normally presents small dimensions. This short size can make that the final selection of

the biggest candidate returns a candidate that does not belong to the real FAZ region, discard-

ing the real detected one. Despite that, we would like to highlight that this situation is only

present in a very low number of particular cases.

Table 2 summarizes the localization results and the success and failure rates for both super-

ficial and deep OCT-A diabetic images, reaching accurate results in all the subgroups.

Table 1. Accuracy localization FAZ results using the proposed method in healthy OCT-A images.

Size Superficial Deep Total

3 × 3 millimeters 36/36 (100%) 36/36 (100%) 72/72 (100%)

6 × 6 millimeters 32/36 (88.89%) 36/36 (100%) 68/72 (94.45%)

https://doi.org/10.1371/journal.pone.0212364.t001

Fig 9. Error cases on the FAZ localization process.

https://doi.org/10.1371/journal.pone.0212364.g009

Table 2. Accuracy localization FAZ results using the proposed method in diabetic OCT-A images.

Size Superficial Deep Total

3 × 3 millimeters 19/19 (100%) 16/16(100%) 35/35 (100%)

6 × 6 millimeters 17/17 (100%) 17/17 (100%) 34/34 (100%)

https://doi.org/10.1371/journal.pone.0212364.t002
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Experiment 2: Validation of the FAZ segmentation

Over the correctly localized FAZ regions, we further analysed the characteristics of the

obtained FAZ precise segmentations in comparison with the manual segmentations of the spe-

cialist. We firstly compared the final area size of the extracted regions given this is the aimed

final parameter that is being used by clinicians in the diagnostic procedures, providing a gen-

eral and bright idea about the usefulness of the results for their final purpose. In particular, we

used the correlation coefficient [17] to measure the similarity and relationship between both

method and clinician extracted area sizes. In this way, it can be verified whether the relation-

ship between both sets is directly proportional. More formally, the correlation is calculated as

the quotient between the covariance and the product of the standard deviations of both area

size sets:

r ¼
sxy

sx � sy
ð2Þ

The results of this operation returns values in the interval [−1, 1], where:

• 1� r> 0. The correlation between both sets is directly proportional, being r = 1 the maxi-

mum possible correlation.

• r = 0. No correlation is identified between both sets.

• 0> r� −1. The correlation is inversely proportional, being r = -1 the maximum inverse

correlation.

The results of the correlation are presented in Table 3, where we can observe that the per-

formance of the proposed method is significantly correlated to the manual performance of the

specialists, being even clearer this similarity in the cases of superficial OCT-A images. The

higher values in superficial images are obtained given that the FAZ regions in these images

present clearer surrounding vascular edges, for what the manual and the automatic region

identifications agree with higher rates. Also, we have to consider the typical variability and

imperfection of the manual identifications that are normally made by the specialists, instead of

the determinism and repeatability of the computational performance of our proposal, which

puts in valuable consideration the correlation rates that were obtained. In addition, it should

be noted that the correlation between the specialists do not reach the highest value of the corre-

lation coefficient of Pearson. This means that there is a discrepancy between the performance

of both experts. Consequently, the correlation of the automatic system performance and the

expert results is also penalized. Fig 10 presents representative examples of superficial and deep

images with the manual and automatic FAZ extractions and the area size measurements. As

we can see, the similarity in the measurements motivates the significative results that were pre-

sented in Table 3.

Table 3. Correlation coefficients that were obtained using the manual and the automatic area size measurements in healthy OCT-A images.

Size Superficial Deep Comparisons

3 × 3 millimeters 0.93 0.54 Expert1 vs. Expert2

0.90 0.81 System vs. Expert2

0.93 0.66 System vs. Expert1

6 × 6 millimeters 0.68 0.74 Expert1 vs. Expert2

0.48 0.66 System vs. Expert2

0.40 0.72 System vs. Expert1

https://doi.org/10.1371/journal.pone.0212364.t003
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On the other hand, the obtained correlation coefficients with the diabetic image subset are

presented in Table 4.

Despite the satisfactory results of the area size correlations, we analysed not only the final

measured area sizes but also the specific matching degree of both extracted regions. In that

sense, we performed an additional analysis of the manual and the computational segmented

FAZ regions using the Jaccard’s index [18, 19]. We used this index given its simplicity and

accurate representation of the agreement degree, frequently used in a large variability of

domains and, specifically, in the evaluation of medical image segmentation issues [20–23]. The

Jaccard’s index is defined by:

Jaccard ¼
A \ B
A [ B

ð3Þ

where A and B represent the regions of the segmentations that are compared. The Jaccard’s

index tends to one with high levels of agreement. In this case, with largely similar segmenta-

tions, their intersection is practically the same as their union. On the contrary, the Jaccard’s

index tends to zero for a reduced level of agreement. The Jaccard’s index presents values in the

range [0, 1], being generally considered the obtained values as:

Fig 10. Comparative examples of the experts (green and red) and the automatic computational (blue)

segmentations as well as the corresponding area size measurements.

https://doi.org/10.1371/journal.pone.0212364.g010

Table 4. Correlation coefficients that were obtained using the manual and the automatic area size measurements

in diabetic OCT-A images.

Size Superficial Deep

3 × 3 millimeters 0.83 0.89

6 × 6 millimeters 0.82 0.96

https://doi.org/10.1371/journal.pone.0212364.t004
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• Poor. If the Jaccard’s index is 0.4 or less, it is considered a poor result.

• Good. If the obtained value with the Jaccard’s index is approximated to 0.7 the result is con-

sidered good.

• Excellent. In the case that the Jaccard’s index takes values of 0.9 or higher, the result of the

segmentation is considered excellent.

Table 5 details the average Jaccard’s indexes that were obtained for all the analyzed images

using the manual and the automatic segmented regions in healthy OCT-A images. The results

were divided in 4 parts using both size and depth dimensions, as mentioned, with the typical

configurations that the specialists normally use: superficial & 3x3 millimeters, superficial &

6x6 millimeters, deep & 3x3 millimeters and deep & 6x6 millimeters. We divided the analysis

in this 4 subgroups given that each case presents specific characteristics and complexity obtain-

ing, therefore, a more adjusted analysis of the performance of the method. In addition, there

were divided into other 3 subgroups, based on the comparisons that were performed (compar-

ison between both experts or between each expert and the automatic segmentation). In general

terms, we can see that all the cases reached satisfactory results, but presenting slight variations

that are discussed in detail next.

Images with a size of 6x6 millimeters typically present smaller FAZ regions, which means

that small variations and imperfections in the segmentation process of the system and/or the

expert impact and penalize in a higher rate the obtained agreements, producing lower Jaccard’s

indexes than the results with 3x3 millimeters images that include a zoom with more resolution

of the FAZ region. In addition, deep images (as stated above) present more diffuse, small and

rough edges which constitutes a more complex scenario. In these cases, the computational

results are slightly more irregular, given that they are based in the intensity characteristics,

than the manual labelling given the expert tried to produce a smoother manual segmentation.

Given that, the Jaccard’s indexes were slightly penalized, although in the graphic results (exam-

ples are presented in Fig 11) we can appreciate similar results and, even in this case, Jaccard’s

indexes approximate values of 0.7, which are considered satisfactory. In addition, the Jaccard’s

index between the specialists is, in all the four cases, similar to the Jaccard’s index between the

system and both the experts. Therefore, we consider that the automatic segmentation is satis-

factory in relation with to the results of both specialist.

Table 6 details the average Jaccard’s index using the expert’s annotations and the system’s

extracted region in the different image subgroups. As in the previous case, the 3 × 3 superficial

case represents the subgroup with the highest results whereas the 6 × 6 deep case provided the

lowest values, as we explained before.

Normally, healthy OCT-A images present a more regular and circular FAZ contours than

the pathological cases. For that reason, we performed an additional analysis of the performance

of the method considering the irregularity of the FAZ contour, more specifically the circularity

Table 5. Jaccard indexes that were obtained for each subgroup of healthy OCT-A images.

Size Superficial Deep Comparisons

3 × 3 millimeters 0.83 0.72 Expert1 vs. Expert2

0.82 0.72 System vs. Expert2

0.81 0.74 System vs. Expert1

6 × 6 millimeters 0.72 0.68 Expert1 vs. Expert2

0.77 0.72 System vs. Expert2

0.72 0.66 System vs. Expert1

https://doi.org/10.1371/journal.pone.0212364.t005
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of the analyzed FAZ region. The circularity is a metric that measures, in the range [0, 1], the

contour of the analyzed region, determining quantitatively their similarity with a circle. In par-

ticular, in our case, we measured the circularity of each extracted FAZ region as follows:

C ¼
4� p� A

P � P
ð4Þ

where A indicates the area and P the perimeter of the FAZ region. Given that the FAZ irregu-

larity is related to the RD degree, we decided to organize all the diabetic OCT-A images into

three groups, being characterized by their circularity degree: low, medium and high. To do

that, we used all the four subgroups of OCT-A images: 3 × 3 and 6 × 6 millimeters, deep and

superficial.

First of all, we calculated the FAZ circularity metric for each image. Then, we sorted all the

circularity values increasingly. With the sorted set of values, we divided them in the mentioned

three groups, with the same number of elements in each one. Then, we analyzed the results

with the validation metrics that we explained before to test the performance of the method in

Fig 11. Comparative examples with goods and bad results in the Jaccard’s index in the four subgroups (superficial and deep in 3 × 3 and 6 × 6

sizes).

https://doi.org/10.1371/journal.pone.0212364.g011

Table 6. Jaccard’s indexes that were obtained for each subgroup of diabetic OCT-A images.

Size Superficial Deep

3 × 3 millimeters 0.83 0.69

6 × 6 millimeters 0.75 0.64

https://doi.org/10.1371/journal.pone.0212364.t006
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each circularity degree group. In Table 7, we can see the defined three circularity levels with

their corresponding values of correlation coefficients and Jaccard’s indexes. As we can see,

generally, the results were satisfactory in all the cases. In particular, the correlation coefficient

is stable, with values around 0.9 in all the tested scenarios. In the case of the Jaccard’s index,

the method provided satisfactory results, with values over 0.7 in all the groups, being progres-

sively slightly higher in more circular cases given the simple scenario. We would like to high-

light that all the values of circularity were in the range [0.27, 0.83], indicating a significative

variation of the analyzed FAZ contours.

In Fig 12 we can see representative examples of diabetic OCT-A images from each defined

circularity degree group.

The case that presented the best results was the one including OCT-A images with a size of

3x3 millimeters and at a superficial depth (see Fig 13), given they present FAZ regions with

better marked contours and larger sizes. The size of the FAZ region influences the Jaccard’s

index since the greater that is the size, the less that it is penalize by variations in the contour.

Images with a size of 6x6 millimeters and at a superficial depth (see Fig 14), also provided

satisfactory results, having clear and marked edges, allowing that the segmentation of the sys-

tem and the labeling of the expert are significantly similar. Despite that, given that the FAZ

region is smaller, changes that are generated in the contour identification affect in a higher

rate the Jaccard’s index.

Finally, deep images (see Figs 15 and 16) are those that retrieved the worse results, neverthe-

less they remain within the range of Jaccard index results that are considered correct. From

both sizes coherently once again 3x3 millimeters images presented better results.

Additionally, Fig 11 presents examples of the best and worst cases of each subgroup, dem-

onstrating that frequently even in the worst scenario, the method provides acceptable results

Table 7. Circularities that were obtained for each group of diabetic OCT-A images.

Circularity level Low Medium High

Correlation 0.91 0.88 0.93

Jaccard’s index 0.70 0.73 0.77

https://doi.org/10.1371/journal.pone.0212364.t007

Fig 12. Examples of representative FAZ regions from the defined levels of circularity in the diabetic OCT-A dataset. (a) High level of circularity,

(b) medium level of circularity and (c) low level of circularity.

https://doi.org/10.1371/journal.pone.0212364.g012
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in the segmentation of the FAZ region and the calculation of the corresponding area size for

the following clinical analysis. In addition, the summary of all the subgroups of Jaccard’s index

is represented in the Table 8, where there are the best and worst cases of this metric in each

subgroup.

Discussion and conclusions

There exist many vascular diseases that affect the retinal micro circulation, not only specific

vascular diseases of the human eye but also others of general impact in the patients, as hyper-

tension or diabetes. For that reason, the availability of automatic tools that quickly calculate

Fig 13. Comparative examples of the experts (green and red) and the automatic computational (blue) FAZ

measurements in superficial 3 millimeters images.

https://doi.org/10.1371/journal.pone.0212364.g013

Fig 14. Comparative examples of the experts (green and red) and the automatic computational (blue) FAZ

measurements in superficial 6 millimeters images.

https://doi.org/10.1371/journal.pone.0212364.g014
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suitable biomarkers and assist clinicians in the diagnosis and monitoring of patients is of great

interest in the healthcare systems.

Among the different ophthalmological image modalities, we can find the recent appearance

of the OCT-A image modality, offering visualizations of the characteristics of the retinal vascu-

lature at different depths, but being non-invasive as it omits the injection of fluorescein, as

happens with the case of classical angiographies. Given its utility, the OCT-A image modality

is increasing its interest in clinical and research practice. The automatic extraction of the FAZ

region in OCT-A images is of a great interest given it offers important advantages in many

aspects with respect to the manual extraction of the specialist. In addition to the avoidance of a

Fig 15. Comparative examples of the experts (green and red) and the automatic computational (blue) FAZ

measurements in deep 3 millimeters images.

https://doi.org/10.1371/journal.pone.0212364.g015

Fig 16. Comparative examples of the experts (green and red) and the automatic computational (blue) FAZ

measurements in deep 6 millimeters images.

https://doi.org/10.1371/journal.pone.0212364.g016
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tedious manual labeling process with an computational and instant tool, the automatic extrac-

tion provides repeatability and determinism, which is largely complicated with the manual

extractions of the clinical experts, representing a fundamental characteristic in accurate diag-

nostic and monitoring processes.

In this work, we present a novel automatic methodology that identifies and precisely seg-

ments the FAZ region using OCT-A images. The proposed method applies morphological

operators to enhance the vascular brightness of the OCT-A images. Subsequently, edge detec-

tion techniques are performed to eliminate unnecessary spurious details and detect the vascu-

lar regions. After this, morphological operations are performed, again, to eliminate areas that

are not of interest in the detection of the aimed FAZ region and keep a reduced number of

candidates. Then, specific domain knowledge is used to preserve, from all the candidates, the

most suitable identification as the FAZ localization. Finally, a region growing approach is

applied using this preliminary identification as seed to obtain a precise segmentation as the

final FAZ segmentation result. Additionally, using this precise segmentation, the method cal-

culates the corresponding FAZ area size, as an important biomarker for its use in the study of

the evolution of different relevant diseases and their treatments.

Regarding the obtained results with the used image dataset, the FAZ localization obtained a

success rate over a 97%, as well as a correlation coefficient about a 0.9 in 3 × 3 superficial

images (better case), whereas a coefficient of 0.7 in 6 × 6 deep images (worse case), using the

manual performance of the clinical experts as reference. The similarity results were also mea-

sured with the Jaccard’s index, obtaining an average value of 0.8 in 3x3 millimeters superficial

images (better case) and a 0.7 of average value in 6x6 millimeters deep images (worse case).

Summarizing, we can conclude that the proposed method offered a satisfactory performance

in all the designed scenarios.

To perform the validation process, we tested the method with the public image dataset

OCTAGON [12], that contains 213 images grouped in 2 image subsets: the first one, formed by

144 healthy OCT-A images; and the second one, formed by 69 diabetic OCT-A images. The

healthy dataset is divided into different groups of ages (10-19, 20-29, 30-39, 40-49, 50-59 and

60-69 years old) with 3 patients in each age-range. Each of these patients contains OCT-A

images of each eye (left and right), containing both of them one image of each subgroup (3 × 3

millimeters in superficial, 3 × 3 millimeters in depth, 6 × 6 millimeters in superficial and 6 × 6

millimeters in depth). The healthy image subset also provides the manual labeling of 2 experts,

that allows us to proceed with robust validations. On the other hand, the diabetic subset

Table 8. Worst and best Jaccard’s indexes that were obtained for each subgroup of OCT-A healthy images.

Size Superficial Deep Comparisons

3 × 3 millimeters best 0.92 0.83 Expert1 vs. Expert2

0.93 0.88 System vs. Expert2

0.88 0.86 System vs. Expert1

3 × 3 millimeters worst 0.74 0.44 Expert1 vs. Expert2

0.68 0.59 System vs. Expert2

0.69 0.57 System vs. Expert1

6 × 6 millimeters best 0.84 0.84 Expert1 vs. Expert2

0.88 0.87 System vs. Expert2

0.88 0.83 System vs. Expert1

6 × 6 millimeters worst 0.43 0.40 Expert1 vs. Expert2

0.43 0.40 System vs. Expert2

0.42 0.41 System vs. Expert1

https://doi.org/10.1371/journal.pone.0212364.t008
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contains 69 images: 19 superficial images of 3 × 3 millimeters, 17 deep images of 3 × 3 millime-

ters, 16 superficial images of 6 × 6 millimeters and 17 deep images of 6 × 6 millimeters. This

subset also contains the manual labeling of an expert clinician. As we can see, we use a com-

plete dataset that contains healthy and pathological images, with a large variability of OCT-A

images in different age-ranges (specially in the healthy case) also including, at least, manual

annotations of one expert clinician, allowing us a robust validation. The different methods in

the state of the art worked only with datasets with 1 or 2 of the subgroups that we use in our

proposal, as we can see in Table 9, where we compare our OCT-A image coverage with differ-

ent published works.

Regarding the results, we tested the method with the dataset OCTAGON [12], as we said,

using the correlation coefficient of Pearson and the Jaccard’s index. The first one is useful to

prove that the manual extracted and the automated extracted areas are related. The second one

is useful to check the coverage area between the manual and automated extractions. As we saw

in the Section Experiment 2: validation of the FAZ segmentation, the results in both validation

methods are satisfactory, concluding that the method correlates accurately with the manual

labeling of the expert. To compare our approach with other similar works, we can see

Table 10. There, we can check the results of the Jaccard’s index in healthy and diabetic cases

with our proposal and the Lu et al. [10] method. Given that our image dataset fits better with

the real conditions that face the expert clinicians, including a significative variability in the

image conditions as detailed, we implemented a more general solution than other proposals.

Also, we would like to remark that our dataset contains 69 diabetic OCT-A images with

advanced stages of RD, whereas the dataset of [10] contains 66 images, being 16 of them with-

out RD, 22 mild to moderate RD and 28 with severe RD. Additionally, our dataset includes

cases with high levels of irregularity in the FAZ contours, as we said, providing more variability

and a higher representativity that is typically present in real environments. For this reasons,

our method provided slightly lower results in 3 × 3 millimeters, superficial, representing in

any case satisfactory results. In fact, we obtain satisfactory results in all the subgroups that

were tested, both in healthy and also in diabetic OCT-A images. In this comparative, no results

were reported regarding the work of Hwang et al. [11] given that their proposal is centered in

clinical research and they propose the validation of the method as future work.

Table 9. Comparative of the coverage OCT-A image types between this proposal and the Lu et al. [10] and Hwang

et al. [11] works.

Method Superficial Deep Size

Proposed
p p

3 × 3 millimeters
p p

6 × 6 millimeters

Lu et al. [10]
p

− 3 × 3 millimeters

− − 6 × 6 millimeters

Hwang et al. [11] − − 3 × 3 millimeters
p

− 6 × 6 millimeters

https://doi.org/10.1371/journal.pone.0212364.t009

Table 10. Comparison of the Jaccard’s indexes that were obtained for 3 × 3 millimeters superficial OCT-A images

in our proposal and Lu et al. method [10].

Method Proposed Lu et al. [10]

Superficial 3 × 3 mm healthy case 0.82 0.87

Superficial 3 × 3 mm diabetic case 0.83 0.82

https://doi.org/10.1371/journal.pone.0212364.t010
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To further test the robustness and suitability of the obtained results, it is proposed as future

work to design experiments that involve image datasets of patients with different relevant

pathologies that affect the retinal vascularity. On the other hand, it is proposed the use of the

proposed methodology to perform the measurements of the FAZ region in real scenarios,

monitoring pathologies to confirm the validity of the method.

All the code developed in this work is publicly available on the repository https://github.

com/macarenadiaz/FAZ_Extraction.
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