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Stroke is the main cause of disability and death in the world within neurological diseases.

Despite such a huge impact, enzymatic, and mechanical recanalization are the only

treatments available so far for ischemic stroke, but only <20% of patients can benefit

from them. The use of stem cells as a possible cell therapy in stroke has been tested

for years. The results obtained from these studies, although conflicting or controversial

in some aspects, are promising. In the last few years, the recent development of the

induced pluripotent stem cells has opened new possibilities to find new cell therapies

against stroke. In this review, we will provide an overview of the state of the art of cell

therapy in stroke. We will describe the current situation of the most employed stem cells

and the use of induced pluripotent stem cells in stroke pathology. We will also present

a summary of the different clinical trials that are being carried out or that already have

results on the use of stem cells as a potential therapeutic intervention for stroke.
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INTRODUCTION

From the moment that the capacity of differentiation and self-renewal of stem cells became known,
their use as cell therapy for a wide range of diseases has been considered. The international
community has focused on this idea, starting a revolution in the study of stem cells (1). This
revolution led to several important discoveries that, step by step, paved the way to convert cell
therapy into reality. But the greatest discovery was made in 2006 when Yamanaka and Takahashi
were able, for the first time, to generate induced pluripotent stem cells (iPSCs) from adult somatic
cells by inducing the artificial expression of four transcriptional factors: OCT4, SOX2, c-MYC, and
KLF4 (2). This new approach provided a considerable resource of human pluripotent stem cells
that could be propagated during long-term culture and yet be differentiated to a variety of lineages
representatives of the three embryonic germ layers, solving the ethical limitations caused by the use
of human embryonic stem cells.

In addition, the generation of human iPSCs from different somatic cells of patients and the
subsequent differentiation to the affected cell lineage has allowed the recapitulation of features of
genetic pathologies through in vitro disease modeling and the discovery of new treatments directly
tested on these human cells. Recently, the combination of iPSCs with the advances in genome
editing techniques, such as the clustered regularly interspaced short palindromic repeat (CRISPR)
system, has also provided a promising way to repair putative causative alleles in patient lines into a
healthy cell line for future autologous cell therapy (3, 4) (Figure 1).
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FIGURE 1 | iPSCs modeling scheme. Adult somatic cells (e.g., blood cells) are collected from the patient, reprogrammed and derived to the affected cell types (e.g.,

endothelial cells, muscle cells, neurons, or astrocytes), which are co-cultured in vitro, opening the possibility to perform several studies directly on the patient’s

own cells. Adapted from Servier Medical Art by Servier is licensed under a Creative Commons Attribution 3.0 Unported License (https://smart.servier.com/).

The development of human iPSCs has also opened a
new opportunity for those neurological diseases where the
affected neuronal type is well-known or the genetic cause
of the pathology is well-described such as (i) Alzheimer’s
(5, 6), (ii) Parkinson’s (7, 8), (iii) amyotrophic lateral
sclerosis (9), or (iv) Huntington disease (10). In these
pathologies, iPSCs have been used to generate neuronal
cell lines to recapitulate and study the mechanics of
the pathology in in vitro models or to evaluate their
neurorecovery capability.

In the field of stroke, like other stem cells, iPSCs have
been used as a neuroprotective cell therapy (mainly based
on their immunomodulatory capacity) or as a neuroreparative
therapy (by inducing neurogenesis, angiogenesis, synaptogenesis,
modulation of the immune response, or transdifferentiation)
(Figure 2). Besides its neuroprotective or neuroreparative
application, the use of iPSCs for stroke modeling has been poorly
exploited mainly because this is a neurological pathology with
multiple affected cells types and reduced genetic component,
compared to other neurological diseases such as Alzheimer’s or
Parkinson’s. However, the use of iPSCs has been recently explored
to model neurovascular pathologies associated with risk of stroke
(11, 12), opening a promising approach in the study of these
neurovascular diseases.

In this review, we offer a general overview of the use of adult
stem cells and iPSCs in stroke, addressing the main problems and
the main clinical trials that already present results.

ADULT STEM CELL THERAPY IN STROKE

Stroke, resulting from the interruption of blood supply to the
brain, is the leading cause of disability and death in the world
within neurological diseases despite a decrease in its mortality
rate (13). Pharmacological or mechanical reperfusion therapies
are the most effective treatments during the acute phase of
ischemic stroke and it is associated with good outcome in 50–
70% of cases. However, these treatments are only applicable to
<20% of patients because of the short therapeutic window and
side effects (14).

Stem-cell-based therapies have emerged as a promising
tool for the treatment of both acute and delayed phases
of stroke owing to their multipotentiality, ability to release
growth factors, and immunomodulatory capacities. Thus, this
transdifferentiation is able to produce cells with a neural
lineage; induce neurogenesis, angiogenesis, and synaptogenesis;
and activate endogenous restorative processes through the
production of cytokines and trophic factors. Moreover, the
regulation of cerebral blood flow (CBF), the blood–brain barrier
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FIGURE 2 | Scheme of all the main effects promoted by stem cells in stroke. By intraparenchymal injection or i.v./i.a. routes, stem cells induce neurogenesis,

transdifferentiation, angiogenesis, synaptogenesis, and immune modulation by attracting or releasing trophic substances to the infarcted area. Adapted from Servier

Medical Art by Servier is licensed under a Creative Commons Attribution 3.0 Unported License (https://smart.servier.com/).

(BBB), and other neuroprotective mechanisms, such as the
reduction of apoptosis, inflammation, and demyelination or
the increase of astrocyte survival, have also been described as
beneficial after stroke (15).

While the technology of the iPSCs is quite new and deeper
studies are being carried out to know its real translationality,
studies with adult stem cells have been performed for much
longer, and there is more information about their use in cell
therapy for stroke. Furthermore, there are already clinical trials
going on and even closed with adult stem cells. Focusing on
stroke, the most frequently used stem cells are the mesenchymal
stem cells (MSCs), due to their great trophic capabilities, and
the neural stem cells (NSCs), because of their neurorecovery
activity (15).

METHODOLOGY IN STEM CELL
ADMINISTRATION FOR STROKE

Despite the special attention on stem cells as a promising
therapeutic candidate for stroke, parameters such as
administration route or cell dosage are still under discussion.

There are relatively few studies that have compared the
different possible routes of administration of stem cells. The
first studies that used stem cells for cerebrovascular diseases
were looking for a neuronal replacement, so they chose an
intraparenchymal injection as the most direct route for cell
engraftment. These studies showed that the stem cells not
only survived but they migrated to the affected zone (16, 17).
However, this choice is not the most suitable due to the need of
opening a cranial window and also because it damages the brain
parenchyma, which is not convenient for stroke patients.

The main alternatives to this route of administration are
the vascular routes, either intra-arterial (i.a.) or intravenous
(i.v.), which are currently the most used for cell delivery.
Intravenous injections are minimally invasive, but cell tracking
studies following this route have shown that most administered
cells remain trapped mainly in the lungs (18, 19), liver (20),
and spleen (21), indicating that a reduced number of cells reach
the brain. On the other hand, i.a. administration is a promising
strategy to direct the majority of injected cells to the brain, but
this is a risky administration route and the fate of injected cells
following this route remains unknown due to high variation in
the reported results (22).
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Whether one route is more efficient than the other is not
clear and depends on the cell type used. Thus, in some studies,
it was found that the injection of neural progenitor cells
(NPCs) by i.a. through the carotid artery presented a higher
migration rate in brain and a wider distribution pattern than
i.v. administration. Nevertheless, the mortality rate for this i.a.
delivery was significantly higher (41%) than in i.v. injection (8%)
(23). However, in other studies with bone marrow stem cells
(BMSCs) and bone marrow mononuclear cells, there was no
greater mortality or greater recovery of infarct volume of one
route with respect to the other (24, 25).

The size of stem cells is also a critical parameter when passing
through the lungs and should be taken into consideration to
decide the best route of administration. As an example, when
using MSCs, the majority of them get trapped in the lungs, while
the NSCs have a pass-through rate twofold higher (18).

Aimed to clarify the discrepancies about the best route for
cell administration in stroke, we have recently reported an
experimental study to investigate whether MSCs were able to
reach the brain following i.a. or i.v. administration after transient
cerebral ischemia in rats and to evaluate the therapeutic effects
of both routes (22). Based on our findings, we could conclude
that MSCs were found in the brain following i.a. but not i.v.
administration in ischemic rats. However, the i.a. route increased
the risk of cerebral lesions (microstrokes) and did not improve
functional recovery, while the i.v. delivery produced functional
recovery and was safe but MCSs did not reach the brain tissue.
This fact implies that treatment benefits are not attributable to
brain MCS engrafting after stroke (22).

Cell dose is another issue to take into account for both i.a. and
i.v. administration that has not been very well-elucidated yet. In
line with other studies, we have estimated that doses higher than
1 × 105-0.25 × 106 cells/mL administered i.a. as bolus infusion
increase significantly the risk of arterial occlusion (22, 26), while
other studies have estimated that doses to 3 × 107 cells are
safe (24, 25).

STEM CELL FATE AND ENGRAFTMENT

It has been widely accepted that there is not engraftment of MSCs
in the brain after i.v. administration and that the repair and
recovery effects observed in some ischemic animals models are
mediated by trophic factors secreted by MSCs (22, 24, 27, 28).
However, other studies mainly focused on the intraparenchymal
cell injection in brain have found successful engraftment results
of cells in the ischemic tissue. The survival and the engraftment
rate of the stem cells in brain are critical parameters that
determine the successful rate of the repairing and healing effects
after cerebral ischemia (29, 30).

Despite the low level of cell brain engraftment, it has been
shown that intraparenchymal cells promote neovascularization
and functional recovery (31). One of the most relevant studies
about this issue was performed by Kokaia’s team who carried
out a 4-month follow-up of iPSC-derived NSCs transplanted into
brain striatum and cortex of rats and mice subjected to stroke.
They found that that engrafted cells survive in the brain for up

to 4 months without forming tumors, observing a sensorimotor
recovery even 1 week after cell administration. In this study,
most of the cells had differentiated to neurons able to form
axonal prolongations. In addition, the proliferative capacity of
these engrafted cells diminished from 40% at 2 weeks to 8 and
0.5% at 2 and 4 months respectively, probably due to this NSC
differentiation to neurons (29). The same findings have also been
observed when BMSCs were intraparenchymally administered,
observing an engraftment of the cells at the ischemic penumbra
and at the subventricular zone (32).

Nowadays, cell targeting with contrast agents for the in vivo
tracking by magnetic resonance imaging (MRI) or positron
emission tomography (PET) are being established as powerful
technology tools to determine fate and survival after cell
treatment, after i.v., i.a., and intraparenchymal cell injection (33).

Indeed, studies using MRI have allowed follow-up of cells
for up to 1 year after transplantation (34). One of the most
important aspects of the in vivo cell tracking is that the cell tracers
cannot interfere with the properties and cell viability. In this
regard, contrast agents such as gadolinium, superparamagnetic
iron oxide agents, or fluorine 19 (35, 36) have been widely used
for MRI cell tracking as they do not interfere with cell viability or
the migration capacity (33, 37).

Gadolinium (Gd3+) has been used to label and track different
types of stem cells, such as hematopoietic progenitor cells,
monocytic cells, endothelial progenitor cells, and MSCs in small
cell transplantation studies. Because they are not nanoparticles,
the cellular uptake of Gd3+ chelates occurs by pinocytosis (a
non-specific form of endocytosis in which small particles present
in the extracellular fluid are internalized into cells) or via
electroporation. However, overall, the low sensitivity of these
contrast agents and low uptake by cells are the main limitations
to cell labeling with Gd3+ (37).

Superparamagnetic iron oxide agents, also known as SPIO
nanoparticles, have a much stronger MR sensitivity compared
to other paramagnetic agents. Thousands to millions of SPIOs
can be internalized in the cells, which makes them generate an
MRI signal that is strong enough to visualize a small number
of transplanted cells under in vivo conditions. The use of SPIOs
is mainly restricted to assessing the acute retention of labeled
cells and their short-term distribution in the body as these
nanoparticles may occasionally diffuse to other tissues or can be
scavenged bymacrophages, which can then generate a false signal
on MRI (37).

Fluorine 19 as a contrast agent for MRI has recently gained
more attraction because of several advantages. Fluorine 19
provides a more accurate, unambiguous detection of labeled
cells (given the lack of background signal). Moreover, the
relationship between the concentration of fluorine 19 and signal
intensity is directly proportional and linear over a wide range of
concentrations, and the signal can be quantified directly from the
acquired images. In addition, the lack of a detectable background
in biological tissues leads to higher visibility of the target cells,
much like “hot spots” emerging from an empty background
(37, 38).

The quantity threshold needed to detect labeled cells is clearly
different for SPIOs and fluorine 19. A comparative analysis,
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using different types of iron-oxide-based contrast agents for
MRI labeling of embryonic stem cells, NPCs, and dendritic cells,
showed that there is a strong dependence of the iron oxide uptake
and label stability on the type of iron oxide particles and cell lines
used. Although sufficient uptake was achieved to allow for single-
cell detection, in this study, it was estimated that the amount
of iron necessary for single-cell imaging was 1–3 pg/cell (39).
However, in other in vivo studies with fluorine 19 for MRI cell
tracking, the minimal amount of tracer estimated for single-
cell imaging was 0.1 pg/cell (40), which reflects the different
sensitivity between both label types.

Nuclear medicine imaging techniques, such as single photon-
emission computed tomography (SPECT) or PET, represent
another promising modality to track stem cells in vivo for
stroke treatment. Nuclear medicine imaging involves the use
of radiotracers that can bind to different ligands. The main
advantage of PET and SPECT is the extreme sensitivity, detecting
molecules at the nanomolar level; however, due to the short half-
life of the tracers, it is not possible to follow the cells longer than
3 or 4 days, in the best of cases (33).

Despite the high sensitivity and resolution obtained with
MRI and PER probes for in vivo cell tracking, sometimes the
image is not clear enough to visualize the graft or tracking
of the targeted cells. The ambiguity of cell label detection and
cell assignment that usually happens with MRI or PET can be
successfully circumvented with gene reporter imaging, mainly
used with bioluminescence and fluorescence reporters, a strategy
commonly adopted in several studies (34, 38).

MSCs FOR STROKE TREATMENT

Cell therapy based on the use of autologous MSCs represents
one of the most promising treatments to restore function after
stroke. MSCs are pluripotent stem cells that are found, in small
proportion, inside the bone marrow. These cells have the ability
to differentiate into different cell-type precursors (chondrocytes,
osteocytes, myocytes, etc.) but their use in cell therapy is mainly
based on their ability to release a wide range of bioactive
molecules, with immunoregulatory and regenerative properties
(41). However, one of the main causes that has limited the
advance of MSCs in stroke and other neurological pathologies
are the arduous protocols that are sometimes required to obtain,
expand, and characterize human MSCs for clinical use (42).

Among the MSCs, due to their great regenerative potential
and tissue engineering, the BMSCs are the most promising ones
(41, 43). It has been shown that the i.v. administration of BMSC
24 h after stroke induces angiogenesis within the surrounding
lesion area in rats. This angiogenesis is mainly due to an increase
of VEGF secretion by the BMSCs, and VEGFR2 expression in
cerebral endothelial cells (44). Also, these BMSCs are able to
induce the proliferation of endogenous NSCs (45). BMSCs also
have a neuroplasticity function, induced by the release of trophic
factors within the affected region, enhancing restructuration
processes (46). Although multiple repairing mechanisms seem
to be involved in the healing effects of the BMSCs (and MSCs
in general), it is well-known that their ability of releasing high
amounts of extracellular vesicles is a relevant pathway by which
they exert these effects (47–49).

Despite being an interesting tool for the treatment of stroke,
the use of BMSCs requires bone surgical interventions that
sometimes limit their use. Comparing with BMSCs, the adipose
tissue-derived mesenchymal stem cells (ADMSCs) come from
a more accessible source and are more abundant. Also, they
have already proved their effectiveness in stroke preclinical
experiments, specifically as a promising treatment for stroke-
related comorbidities (15).

Although the use of ADMSCs is less studied, there are works
that show their positive effects. In a report from 2013, the effect
of BMSCs vs. ADMSCs was compared. Neither BMSCs nor
ADMSCs have shown a reduction in infarct size or any cellular
migration or engraftment, but in both cases, a reduction in cell
death and an increase in the proliferation rate with an increment
in the levels of VEGF, oligodendrocytes, synaptophysin, and
neurofilaments at day 14, which was associated with good
functional recovery, were found (50). These results show that
ADMSCs present the same regenerative abilities as BMSCs, but
since the source of acquisition of the ADMSCs is better, the
use of these stem cells could be more suitable. Regarding the
way ADMSCs exert their regenerative properties, it seems that
it is mediated by the extracellular vesicles release. In a previous
study, it was proved that an intravenous injection of isolated
extracellular vesicles fromADMSCs produced a greater beneficial
effect in rats subjected to 50min of middle cerebral artery
occlusion than the injection of just ADMSCs (51). Also, the safety
of the ADMSCs has already been tested. A study in 2011 proved
that an intravenous injection of ADMSCs in immunodeficient
mice didn’t produce any toxicity effect all along 13 weeks, even
at the highest cell dose (2.5 × 108 cells/kg body weight). In the
same way, they tested the possibility of tumor formation along 26
weeks, but they also didn’t find any evidence of tumorigenesis not
even at the highest dose (2 × 108 cells/kg). In a 3-month follow-
up of patients with spinal cord injury to whom a single dose of
hADMSCs (4× 108cells) was administered, again no evidence of
any adverse effect was found (52).

The therapeutic use of MSCs has been also extended to
other pathologies as hemorrhagic stroke where it has seen that
administration of MSCs induce neuroprotective effects during
the acute phase of the lesion (53) and functional recovery,
even when cells are administered at long term (54). Moreover,
MSCs have been tested in combination with recombinant
tissue plasminogen activator to prevent the risk of hemorrhagic
events thanks to the ability of the cells to inhibit endothelial
dysfunction (55).

MSCs are also prone to cell engineering; for instance,
excitatory amino acid transporter 2 (EAAT2) plays a pivotal role
in glutamate clearance in the adult brain, thereby preventing
excitotoxic effects after cerebral ischemic damage. Considering
the high efficacy of EAAT2 for glutamate uptake, we have recently
induced the expression of this transporter in MSCs for systemic
administration, combining the intrinsic properties of these cells
with excitotoxic protection (56).

NSCs FOR STROKE TREATMENT

NSCs are adult stem cells present at the central nervous system
that are capable of self-renewal and give birth to new neurons
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and glial cells, thus contributing to the plasticity and brain repair
(57). These processes are enhanced within ischemic brain as a
neurorepairing mechanism (58, 59). However, these processes
do not occur at a rate high enough to be effective (60).
Because of that, several approaches in pre-clinical studies have
been performed in order to compensate or supplement these
endogenous mechanisms. The most used approach consists of
the administration of exogenous NSCs (61, 62). This approach
has shown that i.a. administration of NSCs 24 h after stroke,
in a mouse model, promotes a reduction on the inflammatory
process and also reduces the BBB damage (63). This reduction
of the inflammatory process was also seen in a pig stroke
model, also by intraparenchymal injection, but 5 days after
stroke (64). Nevertheless, the total percentage of NSCs that
successfully migrate and engraft within the ischemic area is
quite low. To this respect, genetic modifications that may make
the cells more resistant to ischemic conditions (65, 66), such
as the use of NSCs submitted to pre-conditioning conditions
before administration (67, 68) or their release with various
biomaterials as vehicles (69, 70), would increase this percentage.
NSCs derived from human iPSCs have been also tested in
rodent stroke models. The cells did not reduce stroke volume
or improve behavioral recovery during the month following
transplantation, but no tumor formation was observed (71).
Regarding intracerebral hemorrhages, there are fewer studies, but
they report improvements in functional performance after 2–8
weeks, independently of the administration route (72, 73).

iPSCs IN STROKE

On the first years after Yamanaka and Takhashi iPSC research, the
experiments and preclinical studies on stroke assayed the effect
of a direct injection of iPSCs into the affected region. Several
studies reported improvements both in infarct volume reduction
and in functional recovery (74–76). Also, improvements in the
neurological function and survival rate in hemorrhagic stroke
were reported (77). Most of these improvements attributed to the
iPSCs were due to a differentiation of these iPSCs into different
adult stem cells in the affected region (78, 79).

Although some studies have reported that iPSC-derived NSCs
transplanted in the brain of mice subjected to stroke have no
tumorigenicity risk (29) or iPSCs in intracerebral hemorrhage
stroke (77), one of the main limitations of iPSCs in order to
achieve a future translationality to the clinical is the formation
of teratomas or tumorigenicity in the following weeks after cell
administration (80). This is due to the environmental effects of
the niche where the iPSCs are implanted. Formation of teratomas
can also occur by transformation of residual iPSCs that remain
on the implanted area and can become benign teratomas after
some time (81, 82). To this respect, there are some studies
that tried to solve this issue. For example, a study published
by Chen et al. compared the formation of teratomas after the
injection of iPSCs with and without fibrin glue as vehicular agent
into the subdural region instead of its injection right into the
cortex. In the injection of iPSCs by themselves, there was always
formation of teratomas after 4 weeks, whereas in the ones injected

with fibrin glue, there was not. The authors pointed out that
this was not only due to the fibrin glue but also because the
subdural region was not a niche appropriate enough to induce
an uncontrolled growth of the iPSCs (74). Besides, another study
showed the possibility of inhibiting the formation of tumors due
to this residual iPSCs by treatments with inhibitors of specific
pro-apoptotic routes of stem cells, inducing their apoptosis and
erasing them;meanwhile, the derived differentiated cells survived
and maintained their functionality (82).

In conclusion, although the therapy with iPSCs is yet on
preclinical experimentation, the use and the evaluation of this
cell therapy is increasing significantly every year, since this new
approach is a faster way to generate human stem cells (83–85).
However, because this is a relatively recent discovery, the use of
iPSCs for cell therapy still presents some issues that need to be
explored such as the optimal time window, optimal cell/dose, or
tumorigenicity (86). In case of stroke, it is also not clear if the
therapeutic effect observed in ischemic animal models treated
with iPSCs is mediated by cell renewal and/or by replacement of
the damaged tissue (87) as the transplanted cells disappear few
weeks after administration (30).

Currently, the proper differentiation iPSCs to the cell line
of interest (e.g., neuronal, epithelial, etc.) with reduced division
capacity seems to be the most convenient way to address
these limitations.

iPSCs AND CADASIL

Within the field of stroke, 25–30% of events are caused by
cerebral small vessel diseases (SVDs). Although stroke is a well-
studied disease and its mechanisms and underlying processes
are well-known, there are some pathologies that can be the
cause of cerebral infarcts like SVDs, which present a lack of
approaches and understanding (88). Despite the impact that
these SVDs have on the brain, nowadays there are no specific
treatments for them. Furthermore, there are limited therapeutic
options for secondary prevention compared with those for
other common causes of stroke. As a result, even though it is
the cause of the onset of the stroke in many cases, currently
there are no solutions or treatments available. The few studies
that have been carried out on these diseases point to the
study of monogenic variants of SVDs, in order to provide
valuable insights into the molecular mechanisms underpinning
idiopathic SVDs.

One of these variants is the cerebral autosomal dominant
arteriopathy with subcortical infarcts and leukoencephalopathy,
commonly known as CADASIL. CADASIL patients develop
leukoencephalopathy, migraines with aura, recurrent ischemic
strokes, motor disability, and dementia as main symptoms.
Currently, there is no treatment for this disease. These symptoms
are caused by progressive weakness of the small brain vessels,
which coincide spatially with granular osmiophilic material
(GOM). This vessel weakness is due to a continuous aberrant
accumulation of the extracellular component of the Notch3
protein membrane in the GOM (89). In CADASIL, the NOTCH3
gene presents a mutation in one of its exons that results in a loss
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or a gain of a cysteine residue. This mutation leads to an incorrect
process of the metabolic pathway when the Notch3 signal is
triggered, which ends with the accumulation of the extracellular
domain of the protein in the GOM (89, 90).

Although there are several mouse models of CADASIL
(knockouts for several and different mutations), it has been
impossible to find any solution to the progressive accumulation
of the extracellular domain of Notch3. In this line, iPSCs may

shed a light over this disease. The main cell types affected in
CADASIL are the vascular smooth muscle cells (VSMCs), which
express the mutation, and the vascular endothelial cells (VECs),
which interact with the VSMCs. With cell modeling, it would
be possible to generate these cells from reprogrammed iPSCs
from adult somatic cells of a CADASIL patient and perform
mono and co-cultures that would allow one to study and better
understand the molecular mechanisms of this disease and clarify

TABLE 1 | Main clinical trials that are currently being carried out or that have already finished.

Name of trial Design N = Patients

recruited

n = patients

treated

Cells Time Dosage

(cells)

Deliver Follow-up Efficacy Adverse

effects

Intra-arterial stem cells in

subacute ischemic stroke

(NCT00761982) (91)

RCT Subacute MCA

stroke N = 20

(n = 10)

BM-MNCs 5–9 days 1.59 × 108

cells at 0.5 to 1

mL/min

I.A. 6 months Inconclusive N/A

Stem cell therapy for acute

ischemic stroke patients

(inVeST) (NCT0150177) (92)

RCT Subacute stroke

N = 120 (n = 58)

BMSCs 18.5 days 2.8 × 108 cells I.V. 6 months No Safe

Reparative therapy for acute

ischemic stroke with

allogeneic mesenchymal

stem cells from adipose

tissue: a safety assessment

(NCT01678534) (93)

RCT Acute stroke N

= 20 (n = 10)

MSCs ≤2 weeks 1 × 106

cells/kg at 4–6

mL/min

I.V. 2 years ↑Neurological

outcomes

Safe

Safety/feasibility of

autologous mononuclear

bone marrow cells in stroke

patients (NCT00859014)

(94)

Open-label Acute MCA

stroke N = 10

BM-MNCs 24–72 h 7 × 106 to

1 × 107

cells/kg over

30min

I.V. 6 months Inconclusive Safe

Intravenous transplantation

of mesenchymal stem cells

preconditioned with early

phase stroke serum: current

evidence and study protocol

for a randomized trial

STARTING-2

(NCT01716481) (95)

PROBE Acute and

chronic stroke N

= 60 (n = 40)

MSCs ≤90 days 1 × 106 cell/kg I.V. 3 months Going on N/A

Safety and efficacy of

multipotent adult progenitor

cells in acute ischemic

stroke (MASTERS): a

randomized, double-blind,

placebo-controlled, phase 2

trial (NCT01436487) (96)

RCT Acute stroke N

= 129 (n = 67)

MAPC 24–48 h 4 × 108 or

12 × 108 cells

I.V. 3 months No Safe

Intra-arterial

immunoselected CD34+

stem cells for acute

ischemic stroke

(NCT00535197) (97)

Prospective,

open-label

Severe anterior

circulation stroke

N = 5

Autologous

immunoselected

CD34+

stem/progenitor

cells

≤7 days 1 × 108 cells

over 10min

I.A. 6 months ↑Clinical

outcomes

Safe

Human neural stem cells in

patients with chronic

ischemic stroke (PISCES): a

phase 1, first-in-man study

(NCT01151124) (98)

Open-label Stable disability

after stroke N =

13 (n = 11)

CTX0E03 6–60 months 2 × 108,

5 × 108,

10 × 108, 20 ×

108 cells at 5

µL/min

Putamen ≥24

months

↑NIHSS Hyperintensity

in brain

Clinical outcomes of

transplanted modified

bone-marrow-derived

mesenchymal stem cells in

stroke: a phase 1/2a trial

(NCT01287936) (99)

Open-label Stable, chronic

stroke N = 18

BMSCs 6–60 months 2.5 × 108,

5 × 108,

10 × 108 cells.

Deposits of 20

µL of cells over

10min each

Peri-infarct

zone

24 months ↑Clinical

outcomes

endpoints

Safe
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the confusing and sometimes contradictory information that the
mouse models provide (90). Also, over these cultures, a drug
screening may be performed to see if any drug is able to slow
down or even stop the accumulation of the extracellular domain
of Notch3. Lastly, it would also be possible, by genetic editing, to
repair themutation within the iPSCs and, once differentiated into
VSMCs, administer them in Notch3 knockouts mice to see if the
healthy VSMCs replace the damaged endogenous ones.

At the moment, there are just two recent studies where,
for the first time, the reprogramming of adult somatic cells
from a patient with CADASIL to iPSCs was made, proving that
NOTCH3 mutation is not a limitation to the reprogramming
(11, 12). The generation of this iPSC line offers an unprecedented
opportunity for studying andmodeling both CADASIL and other
pathologies related to the vascular risk of stroke.

CLINICAL TRIALS

Currently, there are no clinical trials for stroke with iPSCs. This
is due to the fact that the iPSCs are yet in a relatively early stage
of study, and that they present several problems yet to solve and
previously described regarding their safety.

However, in the last decade, different clinical trials have been
carried out or are being carried out all over the world, mainly with
MSCs (Table 1). These trials are shedding light about quantities,
routes of administration, and efficacy at different times with stem
cells, as well as their safety.

Some of the already finished trials, despite their limitations,
show results that seem to point into the right direction. For
example, the InVeST trial designed to evaluate the effect of
intravenous BMSCs injection did not show a beneficial effect
but proved the safeness of BMSCs use in humans (92). In 2016,
another clinical trial with BMSCs, apart from corroborating
the safeness of BMSCs administration, found improvements in
clinical outcome (NIHSS, ESS, and Fugl–Meyer scores) with
stroke patients. However, it was a non-randomized small trial
(n = 18), so its results should be taken with caution (99).
On the other hand, the PISCES study (98) tried to prove the
beneficial effect of human NSCs in patients who have had a
first ischemic stroke in the last 6–60 months. After a follow-up
of 2 years, they found improvements in neurological function
and no adverse effects in cell dosage up to 20 million cells.
Nonetheless, it was also a small trial (n = 13, split into four
different groups depending on cell dosage), and in two patients, a
slight increase in hyperintensity in pre-existing peri-infarct white
matter hyperintensity was found, although there were no clinical
changes associated to this MRI changes.

As it can be deduced from the trials above, in general, the
ongoing and finished clinical trials present in their majority some
limitations that must be solved in the subsequent trials. While all
trials provide the number of transplanted cells and their route of
administration, some of them omit the cell dosage. On the other
hand, some of the clinical trials in which no benefit is found point
to a late injection time. To this regard, choosing the first days
after stroke as the moment for injection may be a critical point in
order to obtain benefits from the injection, but it also involves the

risk that the action of the cytokines that happens during the first
days after stroke may mask the real effect of the cell dosage. Also,
there is the risk that the patient could be subjected to unforeseen
surgeries, like hemicraniectomy, that may alter the cell dosage
effect. Besides, and in the same way as happens in preclinical
experiments, the choice of the administration route is also a key
factor, and while new trials base their choice in previous trials,
there is still work to do to establish secure criteria for route of
administration and cell dosage based on the cell type.

Finally, current clinical trials are, in general, small trials
waiting for their expansion or the creation of new and bigger
ones with a higher recruitment capacity that may corroborate the
results obtained by these pioneering trials.

DISCUSSION

In recent years, a multitude of studies about stem cells and iPSCs
are being carried out within the field of cerebrovascular diseases.
These studies have been proving the efficiency to induce both
neuroreparative and neuroprotective effect, but they also have
permitted to refine some important issues like the number of cells
and the most appropriated route of administration depending on
the cell type, which has allowed various centers all over the world
to start different clinical trials, getting closer to the final goal, a
consolidated cell therapy for stroke. However, the ongoing trials
are yet too small to be really conclusive, and bigger ones with a
wider number of patients would have to be carried out in order
to achieve more conclusive results.

There are still several important limitations to consider in
case cell therapy on stroke becomes a reality in clinical practice.
Stroke is a cerebrovascular pathology and, as such, it is not
a chronic disease that may be treated over time. In stroke,
the therapeutic window for recanalization or neuroprotective
treatments comprehends the first hours after stroke, and that is
why the treatment should be ready at the arrival of the patient
to the hospital. In this case, the availability of stem cells would
not reach this period of time, since their use would implicate
their previous extraction from the patient for a neuroreparative
treatment of these cells; it would also be hardly achievable to have
the cells on time, since the reprogramming and/or differentiation
can take up to 6 months easily. To solve this problem, researchers
addressed the possibility of establishing universal stem cell
banks, derived from an universal pull of iPSCs coming from
a population set that would cover all the combinations of the
human leucocyte antigen alleles (HLA), avoiding any chance of
immune rejection (100, 101).

Another problem to take into consideration would be
the future commercialization of the cells. The pharmaceutical
industry tends to be interested in drugs of easy distribution
and maintenance, while the cells, being living organisms, would
require a special treatment on this regard. This would not
make them especially attractive for the industry, and even if
the maintenance cost could be handled by the hospitals, the
distribution cost would still exist.

In the last few years, a new field of research has been
developed, focused on the extracellular vesicles released by adult
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stem cells, since it is through them that they exert their main
benefits. The use of these vesicles will replace the need to use adult
stem cells, obviating their associated problems. However, this
technology comes with other problems that need to be solved,
like the vesicle dosage (which is unsettled), time and mode of
application, or their biodistribution (102).

FUTURE PERSPECTIVES AND
ALTERNATIVES

Cell therapy (especially MSCs and NSCs) in stroke based on
the use of stem cells has advanced considerably but, to become
a reality, while wider and deeper clinical trials are carried out,
limitations such as immediate availability and distribution of
stem cells for clinical use must be overcome. Extracellular vesicles
released by MSC are emerging as a novel alternative to cell
therapy as they could have similar beneficial effects to MSC but
with lower risk effect (in terms of vessel occlusion); they are easier
to handle with respect to cells and can also be used as biomarkers
to evaluate stroke recovery after cell therapy.

The potential risk of tumorigenicity associated with the direct
use of iPSCs as cell therapy for human treatment represents the
main limitation for immediate clinical use. The improvement
in genome editing techniques, such as CRISPR/Cas9, has

expanded the use of iPSCs derived from patients to generate
healthy cells that can provide a useful channel for precision
therapy with potentially lower tumorigenic risk. The use of
the iPSC-based disease model in stroke-related pathologies as
CADASIL is expected to provide potential therapeutic strategies
for cerebral SVDs.
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