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Background: The complement system is a central component of the innate immune system. Constitutive
biosynthesis of complement proteins is essential for homeostasis. Dysregulation as a consequence of genetic or
environmental cues can lead to inflammatory syndromes or increased susceptibility to infection. However,
very little is known about steady state levels in children or its kinetics during infection.
Methods: With a newly developed multiplex mass spectrometry-based method we analyzed the levels of 32
complement proteins in healthy individuals and in a group of pediatric patients infected with bacterial or viral
pathogens.
Findings: In plasma from young infants we found reduced levels of C4BP, ficolin-3, factor B, classical pathway
components C1QA, C1QB, C1QC, C1R, and terminal pathway components C5, C8, C9, as compared to healthy
adults; whereas the majority of complement regulating (inhibitory) proteins reach adult levels at very young
age. Both viral and bacterial infections in children generally lead to a slight overall increase in complement levels,
with some exceptions. The kinetics of complement levels during invasive bacterial infections only showedminor
changes, except for a significant increase and decrease of CRP and clusterin, respectively.
Interpretation: The combination of lower levels of activating and higher levels of regulating complement proteins,
would potentially raise the threshold of activation,whichmight lead to suppressed complement activation in the
first phase of life. There is hardly any measurable complement consumption during bacterial or viral infection.
Altogether, expression of the complement proteins appears surprisingly stable, which suggests that the system
is continuously replenished.
Fund: European Union's Horizon 2020, project PERFORM, grant agreement No. 668303.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://
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1. Introduction

The complement system is one of the oldest immune defensemech-
anisms and is highly conserved in all vertebrates [1]. This network of
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Research in context
Evidence before this study

Knowledge of the complement system in pediatric infectious dis-
eases is still limited; presumably due to the lack of methods to
study multiple complement proteins simultaneously. The comple-
ment system has different strategies to recognize specific patho-
gens, which could imply putative pathogen-specific depletion of
the affected complement proteins and pathways. For several com-
plement proteins conflicting results are reported on possible
gender-dependent effects and lower steady state levels during
childhood.

Added value of this study

In this studywe demonstrate the application of a newly developed
method to measure 32 complement proteins in multiplex using
sensitive and specific targeted mass spectrometry. We compared
healthy individuals ranging from 0 to 55 years of age and observed
lower complement levels in infants for a subset of the measured
complement proteins. However, we did not observe a gender ef-
fect for either the healthy or infected patient group. There was
no distinct complement level signature for specific infections.
We show that the complement levels remain stable during infec-
tion, with the exception of CRP and clusterin.

Implications of all the available evidence

The levels of several classical pathway proteins are lower in the
first year of life; whereas most inhibiting factors are already at
adult levels. This might indicate that complement activation is
more suppressed in newborns. During infections the levels of com-
plement proteins remain stable, except for CRP and clusterin,
which indicates that the complement proteins are continuously
replenished to maintain an immune response.
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proteins, forming a sophisticated biological reaction system, plays an
important role in the orchestration of both the innate and adaptive im-
mune defense and is involved in the repair or clearance of damaged
cells [2–4]. Not surprisingly, unpremeditated activation of the comple-
ment system results in inflammatory syndromes, autoimmunity
disorders, neuro-degenerative diseases, biomaterial rejection and
cancer development [5–7].

Most of the approximately 50 complement proteins are constitu-
tively expressed and mainly synthesized in the liver. The nearly 40 sol-
uble constituents are highly abundant in blood as circulating inactive
precursors. The complement system is activated via three main path-
ways: the classical, lectin and alternative pathway [7]. Activation of
each of these proteolytic cascades leads to cleavage of complement
components C3 and C5 which are key proteins in all activation path-
ways (Fig. 1). Tissue factors and coagulation proteins, such as kallikrein,
thrombin, factors XIa, Xa, IXa, and plasmin, can also directly cleave C3
and C5. This extrinsic complement pathway clearly indicates intercon-
nections between the complement and the coagulation system [8,9].

The specific cleavage products from the complement cascade act in
multiple ways. They can induce inflammatory responses (C3a, C5a), en-
hance phagocytosis (C3b), and create pores (C5b-C9) in the pathogen's
membrane leading to lysis [2]. Themain function ofmore than one third
of the proteins in this extensive system is inhibiting unpremeditated or
excessive activation, which emphasizes the importance of strict regula-
tion of this intricate ‘trigger-ready’ system.

Interestingly, the complement system uses several different ap-
proaches to recognize and inactivate specific types of bacteria and
viruses, as described by Stoermer et al. [10]. At the same time, various
pathogens have developed their own unique strategies to evade the
complement systemas reviewed by Bennett et al. [11]. The evolutionary
determined interplay between host and pathogen has resulted in this
refined complex protein system, produced for continuous immune sur-
veillance and homeostasis. This might have led to the pathogen-specific
activation pathways, reflected by altered expression levels of pathway-
specific components during infection. This would provide unique possi-
bilities to diagnose pathogen-specific infections based on the comple-
ment protein profile. However, little is known about how infection
influences the plasma complement protein levels.

Deficiencies in the complement system leading to reduced concen-
trations and/or less activity increase the vulnerability for infection, es-
pecially with invasive bacterial species like Neisseria meningitidis or
Streptococcus pneumoniae [5,12,13]. Particularly newborns and young
children are at high risk as their immune system is still under develop-
ment [14–16]. Yet, knowledge of the complement system in children
and its role in pediatric disease is still limited. Also little is known with
respect to the production and basal levels of the complement proteins.
Reference levels of all 40 circulating complement proteins are
unreported and many diagnostic laboratories use their own databases
to determine deviating concentrations. We therefore designed and de-
veloped a reproducible and specific method to measure complement
proteins in multiplex, enabling the measurement of large numbers of
plasma samples obtained from healthy individuals from different age
groups, as described in this study.

Studies of complement levels (mainly C1 to C9, factor B, D, H, I and
properdin) in newborns conducted between 1970 and 1995 described
that most complement levels are at 50–70% of the adult values, rising
to adult concentrations within 6 months [16–20]. Other studies in
young infants have reported complement C3, C7 and factor D at adult
levels or even higher [19,20]. In the last two decades, few studies have
been performed to determine normal complement concentrations in
children using standardized methods. Only recently studies have been
conducted in which no significant age-dependent differences were
found for C3, factor H, factor I and FHR-1 to FHR-5 [21,22].

Furthermore, publicly available basal complement levels in
adults, apart from C3 and C4 [23], mostly date back to the 1970's [24].
However, a recent publication describes complement levels in adults
(20–69 years) for 19 complement proteins measured by independent
ELISAs, but focuses more on pathway and gender differences [25]. In
conclusion, conflicting results are reported on several complement pro-
tein levels during childhood, possibly due to the use of less accurate
techniques such as radial immunodiffusion and immunoelectrophoresis
in older studies. Recent comprehensive studies on complement protein
levels are based on adult levels, so it remains unknown if there are dif-
ferences in complement levels in various age groups and if these levels
change during infection.

Only a limited number of complement proteins are currently used in
research and diagnosis, determined by singleplex ELISA or nephelomet-
ric tests [26]. Recently, liquid chromatography (LC), mostly combined
withmass spectrometry (MS) detection, is increasingly used for protein
quantitation in research and diagnostics [27–30]. Although mass spec-
trometry is not an immediate alternative for the ease-of-use and high-
throughput immunoassays, the requirement of a few microliters of
sample and its high specificity and reproducibility make LC-MS an at-
tractive option [31]. Furthermore, LC-MS is a highly suitable method
for multiplexed protein analysis, providing the possibility to capture a
profile of proteins. This is highly relevant in the case of multi-factorial
complement-mediated diseases, as a complete overview of all the com-
plement proteinsmeasured simultaneouslywill help to unravel mecha-
nisms of complement-mediated diseases and may facilitate diagnosis
and monitoring of treatment.

Our aim was to develop a multiplex reaction monitoring (MRM)
assay targeting the 40 soluble plasma complement proteins to obtain
a detailed protein abundance profile of the complement system. By
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using stable isotope labeled internal standards we were able to identify
and relatively quantify 64 targeted peptides, representing 32 comple-
ment proteins. Using this new assay, we compared the basal levels of
these complement peptides in both healthy adults and healthy children.
We also used this assay to perform a pilot study of 75 pediatric patients
diagnosed with either a bacterial or viral infection to study differences
in the complement system. Furthermore, we investigated patients in-
fectedwith invasive bacterial pathogens atmultiple timepoints tomon-
itor complement kinetics during infection in more detail. In overall
perspective, the complement system appears surprisingly resilient,
which is probably due to high protein turnover, sustaining homeostasis
in order to maintain its biological function. The high specificity and re-
producibility of this multiplex complement assay has the potential to
be applied for the diagnosis of complement-mediated diseases.

2. Materials and methods

2.1. Study approval for patients and healthy donors

For this study a group of 75 children (0–18 years) diagnosed with
either a definite bacterial infection (n=44), or a definite viral infection
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Additional clinical data fromall healthy subjects and patients enrolled in
this study are summarized in supplementary table S1.

2.2. Sample collection

Patient plasma samples were collected and frozen as described pre-
viously (EUCLIDS [32,33], IRIS [34] and VENTURIUS [35]). The selected
samples were shipped on dry ice and stored at −80 °C upon arrival.
Plasma samples from the pediatric healthy subjects [21] and healthy
adult volunteers were placed on ice immediately after collection and
were processed within 1 h (10 min, 2500g, 4 °C). Aliquots were stored
at−80 °C.

2.3. MRM method development

Out of N10.000 potential candidate peptides, representing 40 com-
plement proteins, we selected 120 candidate target peptides in silico,
with each 10 transitions, based on both technical and biological proper-
ties. We combined information from several sources (a.o. PeptideAtlas
[36], Uniprot [37], dbSNP [38] and built-in restriction options of Skyline
[39]), taking into account features including: uniqueness, length of the
peptide, susceptibility to possible post-translational or chemicalmodifi-
cations, SNPs, isoforms, incomplete proteolysis, and hydrophobicity.

After mass spectrometric analysis of pooled digested plasma (5 con-
trols and 5 patients) at least 2 peptides were selected for each protein
subunit (n = 86), using the most predominant charge state and the 5
transitions with highest intensity. C-terminally 13C15N stable isotope la-
beled “heavy”peptides (Thermo, JPT)were used to optimize instrument
settings for each peptide specific (cone voltage and collision energy)
and to spike the samples for identification and relative quantification.
Based on the results, a scheduled MRM method was created using re-
tention time windows of 2 min each and was designed in such way
that both endogenous and stable isotope labeled peptides could be an-
alyzed with 3 transitions per precursor and at least 8 data points per
chromatographic peak using dwell times of 30–50 ms.

2.4. Sample preparation

Sampleswere prepared in a randomized order. Total protein content
was determined using the 2D Quant kit (GE Healthcare). Proteins were
reduced with dithiothreitol (DTT) (1 μl 10 mM DTT/50 μg protein) for
30 min at RT. Reduced cysteines were alkylated through incubation
with 2-chloroacetamide (CAA) (1 μl 50 mM CAA/50 μg protein) in the
dark for 30 min at RT. Next, proteins were subjected to LysC digestion
(1 μg LysC/50 μg protein) by incubating the sample at RT for 3 h. Then,
samples were diluted with 3 volumes of 50 mM ammonium bicarbon-
ate and trypsinwas added (1 μg trypsin /50 μg protein) for overnight di-
gestion at 37 °C. Samples were spiked with a mix of C-terminally
13C15N-stable isotope (Arg-10 or Lys-8) labeled peptide standards
(Thermo, JPT) of the targeted complement component peptides. Subse-
quently, sampleswere desalted and concentrated using BondElut OMIX
tips (Agilent). The eluates were evaporated until a fewmicroliters using
a vacuum concentrator (Thermo) at 30 °C for 20 min and reconstituted
in 0·1% formic acid. Samples were stored at −80 °C until analysis. All
peptides containing a methionine were oxidized with 0·3% peroxide
prior to analysis to obtain 100% methionine oxidation [40] and were
measured separately.

2.5. Mass spectrometric analysis

Samples were analyzed in randomized order using the Waters
Acquity MClass UPLC Xevo TQ-S, equipped with an ionKey/MS sytem
using a Waters peptide BEH C18, 130 Å, 1·7 μm, 150 μmx100mm iKey
for chromatographic separation. The systemwas configured in direct in-
jectionmode. Peptideswere eluted from the column using a 20min lin-
ear gradient of 3 to 35% acetonitrile in 0·1% formic acid at aflow rate of 2
μl/min. The following MS conditions were used: ESI positive ionization
mode, capillary voltage 4.0 keV, source temperature 120 °C, cone gas
flow 30 l/h, nebulizer 7·0 bar, collision gas flow (0·15ml/min). Optimal
precursors and transitions and their corresponding cone voltage and
collision energy (CE) voltageswere set according to preceded optimiza-
tion experiments.

2.6. Data processing and statistical analysis

Raw data were analyzed using Skyline software v4.2.0.18305
(MacCoss Lab, University ofWashington, USA [39]). Typical settings ap-
plied included default peak integration, no peak smoothing, SSRCalc
window of 10 arbitrary units, Q1 mass window of 0.7 Th, Q3 window
of 1·0 Th, considered isotopes up to 3 amu. The dataset was manually
inspected to ensure correct peak detection and integration.

The respective peak areas of both transitions were summed for the
endogenous (L1 and L2) and spiked heavy labeled standard (H1 and
H2), and the (L1 + L2)/(H1 + H2) * 100 ratio was determined for each
peptide using an in-house developed MATLAB routine (version 2014b,
The MathWorks, USA).

For each peptide the relative fragment ion intensities of the endoge-
nous (light, L) and spiked heavy labeled standard (heavy, H)were com-
pared using Pearson's correlation. Transitions with a correlation of b0.6
(mainly due to high background signals) were considered as outliers
and were excluded from the method. The intra-assay (injections on
same day), inter-assay (injections on different days) and inter-
operator (sample preparation by three different technicians) variability
were assessed for each peptide by means of the coefficient of variation
(CV%) for five repeated measurements of one pooled digested plasma
sample (5 controls and 5 patients). The stability of the sample in the
auto-sampler was determined for each peptide by the CV% of 13 injec-
tions with intervals of 4 h (total 52 h) of a pooled digested plasma. For
all four tested specifications a cut-off CV of b20%was used for selection.
The linear regression coefficient of determination (R2) was assessed for
each peptide using a dilution series of a mix of all heavy labeled stan-
dards (0·5; 1; 5, 10; 50; 100; 250; 500; 750; 1000 fmol crude standard,
synthesized by Thermo and JPT) spiked into pooled digested plasma, in
duplicate.

The following statistical tests were performed and created using
standard packages in R (v3.5.2): Pearson's correlation, t-test withmulti-
ple testing correction, hierarchical clustering (1 - correlation as distance
metric), random forest analysis (all 64 features, 500 iterations) and
Principle Component Analysis (PCA). ANalysis Of VAriance (ANOVA)
with Bonferroni's correction for multiple testing was performed using
Graphpad 5.03.

2.7. Data sharing

The Skyline raw datasets can be found online in the Panorama public
repository: https://panoramaweb.org/ikHShd.url

ProteomeXchange ID: PXD014264. All raw and processed data can
be found in a Mendeley Data repository, DOI: 10.17632/bpsr9cdd27.2

3. Results

3.1. Patient and healthy control characteristics

For this study 43 controls and 75 patients were selected from five
European medical centers, situated in the Netherlands, UK and Spain.
The pediatric patients had either a bacterial or viral infection. The fol-
lowing pathogens were detected in these patients: Streptococcus
pyogenes, Neisseria meningitidis serogroup B, Streptococcus pneumoniae,
Staphylococcus aureus, adenovirus, enterovirus, rhinovirus, or respira-
tory syncytial virus. Gender, age and type of infection were equally dis-
tributed over all groups (Fig. S1). The mean age for the adult controls

https://panoramaweb.org/ikHShd.url
http://dx.doi.org/10.17632/bpsr9cdd27.2


307E. Willems et al. / EBioMedicine 45 (2019) 303–313
was 36 years, for the young controls and patients 3 years of age. Addi-
tional characteristics for patients and controls are shown in Table S2.

3.2. MRM assay design and validation

During development of the MRM assay, for each peptide target the
peak area, background interference, correlation between fragmentation
patterns, linearity, reproducibility, and robustness were assessed for
both the endogenous and internal standard signals for all transitions.
Based on these characteristics the two out of three best performing
transitions were selected for a total of 86 peptides (Fig. 2). The average
intra-assay variation (reproducibility), inter-assay variation (robust-
ness) and inter-operator (n=3)variationweredetermined by calculat-
ing the coefficient of variation from 5 repeated measurements for each
peptide. In total 22 peptides (26%) were excluded from the dataset be-
cause of poor linearity and/or reproducibility of all its tested transitions
(n=3), no detectable signal for the endogenous peptide (n=13), poor
peak integration (partially outside scheduled detection window or split
peaks) (n=3) and one technical control. This resulted in selection of 64
distinct peptides for 32 different proteins to be measured in multiplex
(Figs. 1, 2 and Table S3). For the ease of reading all peptide sequences
in this study are abbreviated to the first three amino acids within
brackets, as listed in Table S3.

3.3. Comparison to the current clinical standard

The MRM peptide levels of CRP (peptide ESD) were compared to
clinical CRP protein values of the same patients, determined at the
time of blood collection, measured with the highly standardized
Roche/Hitachi cobas c system. Six patients were excluded from this
analysis as no clinical CRP values were determined at the time of
blood collection. We observed a strong correlation between the clinical
CRP values and the levels of our LC-MS/MS analysis (Pearson's r of
0·798) (Fig. 3). This indicates that, at least for CRP, the results
from the MRM assay are comparable to clinical state-of-the-art
measurements.

3.4. Complement levels in healthy individuals: age associated effect

To establish basal complement levels in healthy subjects from differ-
ent age groups, we used the multiplex MRM assay to study all 64 pep-
tides in plasma samples from healthy donors from 0 to 55 years old.
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Fig. 2.Overview of all peptide targets in the multiplex MRM Complement assay. (a) Combined
endogenous peptide DVWGIEGPIDAAFTR (protein vitronectin),m/z 823·9123 (2+), fragments
standard DVWGIEGPIDAAFTR, m/z 828.9164 (2+), fragments y13, y10, y9, y8, b6. The peptide
as: signal intensity, low interfering background signal, linearity and reproducibility.
Although the assay often includes multiple peptides originating from
-different parts of- the same protein, we chose to analyze all MRM re-
sults at the peptide level instead of averaging all peptide results for
one protein. Not all peptides originating from the same protein will
give identical results. This is intrinsic to bottom-up proteomics due to
difference in peptide stability, ionization efficiency and existence of
multiple proteoforms [41–43]. Especially complement proteins have
multiple proteoforms due to the proteolytic cleavages in the activation
mechanism of the complement system.

When we compared the peptide levels between healthy adults (age
23–55) and healthy children (0–5) we found a high correlation,
reflected by a Pearson's r of 0·992 (Fig. 4a). Only when we compared
the adult group to the healthy infants (b1 year old), we observe a de-
crease for the majority of the peptide levels for infants (Fig. 4b). To
study the complement levels in more detail during early development
the child control group was divided into four separate age classes:
0–6 months, 7–12 months, 13–24 months and 2–18 years old, which
were then each compared to adult levels using ANOVA.Most of the pep-
tides show an increasing trend during aging (Fig. 4c–e) and a limited
number of these peptides had significantly lower levels in individuals
of ≤6 months: C1QA (SLG), C1QB (FDH), C1QC (FQS) C1R (GYG), C5
(ILS, ITH, ELS), C8 (MES, IPG), C9 (VVE, LSP, TSN), C4BP (LSL, ALL),
ficolin-3 (LLG), CFAB (DAQ, STG, YGL), and clusterin (ASS, IDS). The pep-
tides of C1QC, C1R, Ficolin-3, C4BPA, C4BPB, FB reach the adult levels
within one year (Fig. 4c), C5, C8A, C9 reach the adult levels after
N1 year (Fig. 4d) and C1QA, C1QB, C8B, clusterin in 2 years (Fig. 4e). Re-
markably, levels of two peptides situated in the beta chain of C5 ap-
peared to increase again in adulthood (N18 years old). Furthermore,
no gender associated effects were found for any of the peptides (Fig. 4f).

3.5. Complement levels in health and during infectious disease

The complement system acts as a cascade of chain-reactions and is
quickly activated upon contact with antibodies (classical pathway), ab-
errant carbohydrate structures (lectin pathway) or foreign substances
(alternative pathways). We investigated whether activation as a conse-
quence of infection has an influence on the circulating levels of comple-
ment proteins. The multiplex MRM assay was used to compare the
complement profiles between the group healthy (Fig. 5a) and infected
individuals (Fig. 5b) by means of univariate correlation matrix profiles
based on Pearson's correlation and hierarchical clustering. A change in
profiles was observed between the two groups, showing a stronger
20 25

LT
P

…

V
F

I…

S
LP

…

LS
P

…

V
F

I…

D
FA

…IL
L…

m
…

IL
L…

M
…

G
W

S
…

V
F

S
…

A
S

S
…

T
N

L…

D
V

W
…

LS
L…

LV
L…

Retention Time

0

50

100

150

200

In
te

ns
ity

 (
10

^3
)

0

50

100

150

200

In
te

ns
ity

 (
10

^3
)

Retention Time

22,6 22,8 23,0 23,2 23,4 23,6 23,8 24,0 24,2

22,6 22,8 23,0 23,2 23,4 23,6 23,8 24,0 24,2

b

c
y10 - 1086,5454+ (heavy)
y8 - 900,4813+ (heavy)
b6 - 700,3301+ (heavy) 

y9 - 957,5028+ (heavy)
y13 - 721,8687++ (heavy)

y10 - 1076,5371+
y8 - 890,4730+
b6 - 700,3301+ 

y9 - 947,4945+
y13 - 716,8646++ 

chromatogram of all 64 MRM targets. (b-c) Representative fragmentation spectrum of (b)
y13, y10, y9, y8, b6; (c) The corresponding C-term 13C15N-heavy isotope labeled internal
fragments y10 and y9were selected for further analysis based on best characteristics such



●

●

●●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●
●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●
●●

●

●●

●● ●
●

0

1

2

3

0 1 2 3
CRP clinical assay (log10)

C
R

P 
M

R
M

 a
ss

ay
 (l

og
10

)

Infection
●
●

Bacterial
Viral

Fig. 3. Correlation plot for the measurement of CRP by the highly standardized clinical
assay and by the MRM assay, targeting peptide ESDTSYVSLK. Patients with a bacterial
infection are indicated with red dots and patients with a viral infection are indicated
with blue dots. A correlation coefficient of 1 is depicted by the dashed diagonal line. The
Pearson r correlation of the targeted method and the clinical CRP standard is 0·798.

308 E. Willems et al. / EBioMedicine 45 (2019) 303–313
correlation between the peptides in the infected group as compared to
the control group, which is partly due to the slight increase in comple-
ment protein levels after infection.

On the contrary, some proteins were produced at lower levels in all
patients as compared to controls, including C1QB (FDH, GNL), C1QC
(FQS), C1R (GYG), C5 beta chain (ISL,ITH), C6 (ALN), C7 (LSG), clusterin
(ASS), which are primarily the same proteins as those produced at
lower levels during infancy (Fig. S4).

To further explore the differences between the controls and the pa-
tients with a viral or bacterial infection we performed principle compo-
nent analysis (PCA) (Fig. 6a). The PCA score plot shows a separation
between the control and patient sample clusters on the first PCA axis,
accounting for 22% of the variation in the data. This discrimination
was not influenced by gender (Fig. 6a). Both infection groups show a
large overlap for all the principle components. The similarity between
bacterial to viral infection for all peptides is emphasized by a correlation
plot (Fig. 6b). Here, out of the 64 peptides, CRP (ESD), C4BPA (YTC) and
clusterin (ASS, IDS) show an increased or a decreased ratio for a bacte-
rial infection, respectively. By means of a t-test we determined which
single peptideswere significantly different betweenpatientswith a bac-
terial or a viral infection. CRP (ESD) levels were higher in the bacterial
group as compared to the viral group, whereas clusterin (IDS) was sig-
nificantly lower (Fig. 6c).

In order to assess if a combination of peptides can be used to dis-
criminate the groups we used random forest analysis. The top five
highest classifiers were CRP (ESD), clusterin (IDS, ASS), collectin11
(VFI) and C1QC (FQS) (Fig. 6d). To test if the random forest model
based on all features could enhance the predictive power of CRP for bac-
terial infection we compared the area under the curve (AUC) of the re-
ceiver operating characteristic (ROC) curve for the clinical CRP levels
(AUC = 0·9046) to the slightly higher random forest model (AUC =
0·9216) (Fig. 6e). This showed that ourMRMassay is at least equally ef-
fective in predicting bacterial versus viral outcome as compared to the
current clinical standard.
3.6. Following the kinetics of circulating complement proteins during
bacterial infections

Apart from increased CRP (ESD) and reduced clusterin (ASS, IDS)
levels, no other of the 64 complement peptide levels were significantly
altered at the time the patient samples were collected for the clinical
study. However, this is only a snapshot of the complement system at
the start of infection, as the samples were taken shortly after admission
to the hospital. In order to study the complement peptides during infec-
tion, we measured the levels of the complement peptides at multiple
timepoints:within 24 h after hospital admission (T=1), 48 h after hos-
pital admission (T = 2), and at recovery (T = 3). We focused on infec-
tions with Streptococcus pyogenes, Neisseria meningitidis serogroup B,
Streptococcus pneumoniae and Staphylococcus aureus (Full overview in
Fig. S5).

In these longitudinal samples we observed that the peptide level of
CRP (ESD) was decreased in time to basal levels for most patients
(Fig. 7a), whereas clusterin peptide (ASS, IDS) levels increased
(Fig. 7bc), which seems to be the strongest and above basal levels for
S. pyogenes and S. pneumoniae. Also MASP1 (SLP) (Fig. 7d) and factor
H (SSN) (Fig. 7e) increased 2-fold after infection with S. pyogenes as
compared to the other infections. These patients stayed relatively longer
(average 31 days) in the hospital than the other patients (average
9 days), indicating a higher severity of infection. Although we expect a
decrease to normal levels after complete recovery, we do not have any
follow up samples to confirm this. Apart from these trends for
S. pyogenes, we were not able to find other changes between the differ-
ent types of infection or allocate distinct complement proteins that alter
significantly in time; themajority of complement proteins did not show
large fluctuations over time, as shown for ficolin3 (LLG) in Fig. 7f. Fur-
thermore, we did not observe a difference in patterns between infection
with Gram positive and Gramnegative bacteria. An overview of all pep-
tides is provided in Fig. S5.

4. Discussion

Multiple techniques and assays have been developed to measure
concentrations of single complement proteins. However, complement
proteins are part of a whole system acting in concert, which demands
for a sensitive measurement to determine global changes in levels in a
multiplex fashion. We used a targeted proteomics approach in which
the mass spectrometer is programmed to detect specific peptides de-
rived from the proteins of interest.

The MRM assay was technically validated based on linearity, intra-
assay variation (reproducibility), inter-assay variation (robustness)
and inter-operator variation. We found that 64 out of 86 targeted pep-
tides were suitable (CV b 20% for the above mentioned parameters) to
obtain a robust profile of 32 different complement proteins, indicating
the importance of a technical validation as part of the assay develop-
ment phase. Clinically determined CRP values of the patient cohort
were used as a benchmark for the biological validation. We found that
the CRP peptide levels measured by the MRM assay strongly correlated
with the CRP levels measured by the highly standardized clinical assay.
These technical and biological validation results provided a good foun-
dation to continue with the data analysis of other complement levels
in both healthy individuals and patients with infectious disease.

To our knowledge this is the first time that 32 complement proteins
have been studied simultaneously in healthy individuals ranging from 0
to 55 years of age. We found some conflicting results in the literature
concerning basal complement levels in young infants, the age that
these levels reach adult levels and their dependency on gender
[16,25]. In our study, no gender differences were observed for either
the (pediatric or adult) control group or the patient group for any of
the MRM complement peptides. Although gender-dependent differ-
ences in immune responses are known [44], it seems that this is not
reflected by the expression levels of complement system components.
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Fig. 5. Comparing the complement peptides in health and disease. (a) Correlationmatrix of all 64 peptides for all healthy controls. (b) Correlationmatrix of all 64 peptides for all patients.
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When we compared the age differences in our healthy individuals,
we observed an equal distribution of complement levels among the pe-
diatric and adult group. However, when looking at infant levels specifi-
cally, we did observe significantly lower levels for approximately one
third of the peptides; partially confirming earlier studies reporting
lower levels in infants for most complement proteins [16].

To explain the biological background of the differences in levels be-
tween age groups for this distinct subset of complement proteins,we in-
vestigated possible associations with specific pathways, the location of
protein production and the chromosomal locus. No specific relation
with the site of production or chromosomal locus was found. However,
there was a small trend in pathway specificity: lower infant levels were
found for peptides from proteins at the beginning of the classical
pathway (C1QA, C1QB, C1R). The majority of these peptides also de-
creased to lower levels during infection; whereas peptides that were
at adult level during infancy stay at those adult levels during infection.
Furthermore, it appeared that the majority of regulating (inhibitory)
proteins, such as C1-inhibitor, factor D, factor H, factor I, were already
at adult levels in newborns. This indicates that strict control of comple-
ment activation is important right after birth.

Moreover, from the data on the kinetics of complement proteins
measured at hospital admission during infection and after recovery
we deduce that this high rate of homeostasis of regulating proteins is
also maintained during invasive bacterial infections.

Expression of the complement proteins appears surprisingly stable
in patients challenged with bacterial or viral infections. This indicates



Fig. 7.Kinetics of complement protein levels during bacterial infectionwith eitherN.meningitidis (n=3 individuals), S. aureus (n=2), S. pneumoniae (n=3) or S. pyogenes (n=3),with
T1 (hospital admission), T2 (48h post-admission) and T3 (recovery), compared to average child control values (± std.dev. indicated by gray area), depicted for the peptides (a) CRP (ESD),
(b) clusterin (ASS), (c) clusterin (IDS), (d) MASP1 (SLP), (e) factor H (SSN), (f) ficolin3 (LLG). A heat map overview of all peptides is included in Fig. S5.
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that there is no measurable consumption and suggests continuous re-
plenishment of complement proteins. Furthermore, as expression of
complement proteins is determined by constitutive rather than respon-
sive expression it is conceivable that complement regulation takes place
through both activation and post-translational modification. An excep-
tion to this observation is an increase and decrease of CRP and clusterin
levels, respectively. CRP is currently used as clinical biomarker for bacte-
rial infection. However, the exact function of clusterin in the context of
infectious diseases is still unclear. Clusterin - or apolipoprotein J - is a
stress-induced chaperone protein, which prevents the formation of
the MAC-complex within the membrane by inhibiting C7, C8 and C9
[2]. Reduced levels of clusterin have previously been observed for sepsis
patients [45] and even complete absence duringmalaria infections [46].
Also direct interaction of clusterin and pathogens [47,48], or their pro-
duced proteins [46,49], have been reported. In those cases clusterin
prevented pathogen (protein) induced inflammatory responses [46],
cell damage [45] or apoptosis [49]. Additional studies are required to
further elucidate on its protective properties in infectious diseases.

Although we hypothesized that there might be pathway-specific al-
tering complement levels in bacterial and viral infections, we only iden-
tified small differences in complement levels measured in plasma from
children in this pilot study. The complement system did not seem to
have pathogen-specific activation pathways reflected by altered expres-
sion levels of specific complement proteins.

A ROC curve based on the random forest model, trained on the
highest discriminators, performs similarly to the current clinical assay.
The MRM assay is thus a promising method to simultaneously profile
the complement system and to serve as a diagnostic tool. However,
this pilot study was conducted to demonstrate a new approach to
study the complement system in a multiplex fashion. For diagnostic
purposes the assay requires additional optimization such as the use of
highly purified internal standards for absolute quantification and auto-
mation of the sample preparation procedure to enhance throughput
and further reduce technical variability.
Especially for diagnostic purposes, absolute quantification is re-
quired in order to compare results analyzed at different laboratories
and obtained with quantitative tests. Due to advancements in technol-
ogy and development of new applications, Jannetto et al. envision an in-
creasing trend in the implementation of mass spectrometry for clinical
applications [50]. Although several mass spectrometers are listed as
in vitro diagnostic medical devices, currently only one quantitative
LC-MS assay kit has FDA clearance [51]. A standardized approach for de-
velopment and verification was recently published by the Clinical and
Laboratory Standards Institute (CLSI) to further enhance the implemen-
tation of this technology in clinical laboratories [51].

For instance, this MRM assay could then be a unique tool for moni-
toring other complement mediated diseases such as age-related macu-
lar degeneration (AMD), angioedema, antibody-mediated rejection, or
autoimmunediseases like: rheumatoid arthritis (RA) atypical hemolytic
uremic syndrome (aHUS), systemic lupus erythematosus (SLE) [52].
Furthermore, this MRM assay could help in quickly confirming a
(suspected) complement deficiency, since this process now is very labo-
rious consisting of several consecutive ELISAs to find the affected pro-
tein(s).

The requirement of little amounts of sample and the reducing condi-
tions of the sample pretreatment prior to this mass spectrometric assay
facilitate measurement of various sample types. With this multiplex
assay we are currently able to measure complement peptides in
serum, plasma, CSF, throat samples, nose swabs, urine and cell culture
medium (data not shown). This creates opportunities to use this multi-
plex assay to investigate complement levels in other, less invasive, parts
of the body and as readout of both in vitro experiments as well as (aug-
mentation of) clinical diagnostics.

Acknowledgments

We thank the PERFORMconsortium for their collaboration and fruit-
ful discussions. We are thankful for the patient samples from the



312 E. Willems et al. / EBioMedicine 45 (2019) 303–313
VENTURIUS, IRIS, and EUCLIDS study. We also would like to thank all
healthy volunteers and the patients for donating their blood for these
studies.

Funding sources

This research, part of the PERFORM project, has received funding
from the European Union's Horizon 2020 research and innovation pro-
gram under grant agreement No. 668303. The samples were collected
previously funded by: the European Seventh Framework Programme
for Research and Technological Development (FP7) under EUCLIDS
Grant Agreement no. 279185; Virgo consortium, funded by the Dutch
Government project number FES0908 and by the Netherlands Geno-
mics Initiative (NGI) project number 050-060-452; and the Immunopa-
thology of Respiratory, Inflammatory and Infectious Disease Study
(IRIS).

Declaration of interests

Dr. Alkema reports grants from European Commission, during the
conduct of the study; Dr. van der Flier reports grants from CSL Behring,
grants from Shire, outside the submitted work; Dr. Emonts reports
grants from EU FP7, grants from European Union's Horizon 2020 re-
search and innovation programme, during the conduct of the study;
personal fees from Newcastle upon Tyne Hospitals NHS Foundation
Trust, personal fees from Newcastle University, outside the submitted
work; Dr. Irene Rivero-Calle reports other from Ablynx, other from Jan-
sen, other from GSK, other from Medimmune and other from Sanofi
Pasteur; personal fees and other from Pfizer, personal fees and other
from MSD; all outside the submitted work.

Author contributions

Conceptualization, E.W. andM.I.J.; Methodology, E.W., J.G. andM.I.J.;
Investigation, E.W. and J.K.; Validation, E.W. and J.K.; Software,W.A. and
A.S.; Formal Analysis, W.A.; Visualization, E.W. and W.A.; Resources, M.
F, R.H.L.A.P., L.P.H., E.V., R.G.M., J.A.H., V.J.W., I.M.L.A, G.F., M.E., N.P.B., I.R.,
F.M.T.; Writing – Original Draft, E.W. and M.I.J.; Writing – Review &
Editing, E.W., M.I.J, J.G., W.A., M.F., E.V., R.G.M., V.J.W., I.M.L.A., G.F.,
M.E., H.J.T.C.W., R.G., and A.G.; Funding Acquisition, M.F. R.G., M.I.J and
M.L.; Supervision, J.G., and M.I.J.

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.ebiom.2019.06.008.
References

[1] Nonaka M, Kimura A. Genomic view of the evolution of the complement system.
Immunogenetics 2006;58(9):701–13.

[2] Ricklin D, Hajishengallis G, Yang K, Lambris JD. Complement: a key system for
immune surveillance and homeostasis. Nat Immunol 2010;11(9):785–97.

[3] Merle NS, Church SE, Fremeaux-Bacchi V, Roumenina LT. Complement
system part I–molecular mechanisms of activation and regulation. Front Immunol
2015;6.

[4] Merle NS, Noe R, Halbwachs-Mecarelli L, Fremeaux-Bacchi V, Roumenina LT.
Complement system part II: role in immunity. Front Immunol 2015;6.

[5] Skattum L, van DeurenM, van der Poll T, Truedsson L. Complement deficiency states
and associated infections. Mol Immunol 2011;48(14):1643–55.

[6] Ricklin D, Lambris JD. Complement in immune and inflammatory disorders: patho-
physiological mechanisms. J Immunol 2013;190(8):3831–8.

[7] Hajishengallis G, Reis ES, Mastellos DC, Ricklin D, Lambris JD. Novel mechanisms and
functions of complement. Nat Immunol 2017;18(12):1288.

[8] Amara U, Flierl MA, Rittirsch D, et al. Molecular intercommunication between the
complement and coagulation systems. J Immunol 2010;185(9):5628–36 (0903678).

[9] Conway E. Reincarnation of ancient links between coagulation and complement. J
Thromb Haemost 2015;13:S121–32.

[10] Stoermer KA, Morrison TE. Complement and viral pathogenesis. Virology 2011;411
(2):362–73.
[11] Bennett KM, Rooijakkers SH, Gorham Jr RD. Let's tie the knot: marriage of comple-
ment and adaptive immunity in pathogen evasion, for better or worse. Front
Microbiol 2017;8:89.

[12] BottoM, KirschfinkM, Macor P, PickeringMC,Würzner R, Tedesco F. Complement in
human diseases: lessons from complement deficiencies. Mol Immunol 2009;46(14):
2774–83.

[13] Emonts M, Hazelzet J, de Groot R, Hermans P. Host genetic determinants of Neisseria
meningitidis infections. Lancet Infect Dis 2003;3(9):565–77.

[14] Levy O. Innate immunity of the newborn: basic mechanisms and clinical correlates.
Nat Rev Immunol 2007;7(5):379.

[15] Strunk T, Currie A, Richmond P, Simmer K, Burgner D. Innate immunity in human
newborn infants: prematurity means more than immaturity. J Matern Fetal Neona-
tal Med 2011;24(1):25–31.

[16] McGreal EP, Hearne K, Spiller OB. Off to a slow start: under-development of the com-
plement system in term newborns is more substantial following premature birth.
Immunobiology 2012;217(2):176–86.

[17] Davis CA, Vallota EH, Forristal J. Serum complement levels in infancy: age related
changes. Pediatr Res 1979;13(9):1043.

[18] Johnston RB, Altenburger KM, Atkinson AW, Curry RH. Complement in the newborn
infant. Pediatrics 1979;64(5):781–6.

[19] Shapiro R, Beatty D, Woods D, Malan A. Serum complement and immunoglobulin
values in small-for-gestational-age infants. J Pediatr 1981;99(1):139–41.

[20] Zilow G, Zilow EP, Burger R, Linderkamp O. Complement activation in newborn in-
fants with early onset infection. Pediatr Res 1993;34(2):199.

[21] Westra D, Volokhina EB, Van Der Molen RG, et al. Serological and genetic comple-
ment alterations in infection-induced and complement-mediated hemolytic uremic
syndrome. Pediatr Nephrol 2017;32(2):297–309.

[22] van Beek AE, Kamp A, Kruithof S, et al. Reference intervals of factor h and factor h-
related proteins in healthy children. Front Immunol 2018;9.

[23] Ritchie RF, Palomaki GE, Neveux LM, Navolotskaia O. Reference distributions for
complement proteins C3 and C4: a comparison of a large cohort to the world's liter-
ature. J Clin Lab Anal 2004;18(1):9–13.

[24] Rother K, Till GO. The complement system. Springer Science & BusinessMedia; 2012.
[25] Da Costa MG, Poppelaars F, Van Kooten C, et al. Age and sex-associated changes of

complement activity and complement levels in a healthy Caucasian population.
Front Immunol 2018;9.

[26] Harboe M, Thorgersen EB, Mollnes TE. Advances in assay of complement function
and activation. Adv Drug Deliv Rev 2011;63(12):976–87.

[27] Rezeli M, Végvári Á, Ottervald J, Olsson T, Laurell T, Marko-Varga G. MRM assay for
quantitation of complement components in human blood plasma—a feasibility
study on multiple sclerosis. J Proteomics 2011;75(1):211–20.

[28] Rezeli M, Végvári Á, Silajdžić E, et al. Inflammatory markers in Huntington's disease
plasma—a robust nanoLC–MRM-MS assay development. EuPA Open Proteom 2014;
3:68–75.

[29] Yang L, Stewart T, Shi M, et al. An alpha-synuclein MRM assay with diagnostic po-
tential for Parkinson's disease and monitoring disease progression. PROTEOMICS-
Clin Appl 2017;11(7-8):1700045.

[30] Zhang P, Zhu M, Geng-Spyropoulos M, et al. A novel, multiplexed targeted mass
spectrometry assay for quantification of complement factor H (CFH) variants and
CFH-related proteins 1–5 in human plasma. Proteomics 2017;17(6).

[31] Cross TG, Hornshaw MP. Can LC and LC-MS ever replace immunoassays? J Appl
Bionalys 2016;2(4):108.

[32] Boeddha NP, Schlapbach LJ, Driessen GJ, et al. Mortality and morbidity in
community-acquired sepsis in European pediatric intensive care units: a prospec-
tive cohort study from the European Childhood Life-threatening Infectious Disease
Study (EUCLIDS). Crit Care 2018;22(1):143.

[33] Martinón-Torres F, Salas A, Rivero-Calle I, et al. Life-threatening infections in chil-
dren in Europe (the EUCLIDS project): a prospective cohort study. Lancet Child
Adol Health 2018;2(6):404–14.

[34] Herberg JA, Kaforou M, Wright VJ, et al. Diagnostic test accuracy of a 2-transcript
host RNA signature for discriminating bacterial vs viral infection in febrile children.
Jama 2016;316(8):835–45.

[35] Ahout IM, Brand KH, Zomer A, et al. Prospective observational study in two Dutch
hospitals to assess the performance of inflammatory plasma markers to determine
disease severity of viral respiratory tract infections in children. BMJ Open 2017;7
(6):e014596.

[36] Desiere F, Deutsch EW, King NL, et al. The peptideatlas project. Nucleic Acids Res
2006;34(suppl_1) (D655-D8).

[37] Consortium U. UniProt: the universal protein knowledgebase. Nucleic Acids Res
2017;45(D1) (D158-D69).

[38] Sherry ST, Ward M-H, Kholodov M, et al. dbSNP: the NCBI database of genetic vari-
ation. Nucleic Acids Res 2001;29(1):308–11.

[39] MacLean B, Tomazela DM, Shulman N, et al. Skyline: an open source document ed-
itor for creating and analyzing targeted proteomics experiments. Bioinformatics
2010;26(7):966–8.

[40] Wilffert D, Reis CR, Hermans J, et al. Antibody-free LC-MS/MS quantification of
rhTRAIL in human and mouse serum. Anal Chem 2013;85(22):10754–60.

[41] Aebersold R, Agar JN, Amster IJ, et al. Howmany human proteoforms are there? Nat
Chem Biol 2018;14(3):206.

[42] Hortin GL, Sviridov D, Anderson NL. High-abundance polypeptides of the human
plasma proteome comprising the top 4 logs of polypeptide abundance. Clin Chem
2008;54(10):1608–16.

[43] Smith LM, Kelleher NL, Linial M, et al. Proteoform: a single term describing protein
complexity. Nat Methods 2013;10(3):186.

[44] Fish EN. The X-files in immunity: sex-based differences predispose immune re-
sponses. Nat Rev Immunol 2008;8(9):737.

https://doi.org/10.1016/j.ebiom.2019.06.008
https://doi.org/10.1016/j.ebiom.2019.06.008
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0005
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0005
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0010
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0010
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0015
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0015
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0015
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0020
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0020
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0025
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0025
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0030
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0030
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0035
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0035
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0040
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0040
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0045
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0045
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0050
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0050
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0055
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0055
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0055
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0060
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0060
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0060
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0065
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0065
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0070
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0070
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0075
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0075
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0075
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0080
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0080
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0080
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0085
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0085
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0090
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0090
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0095
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0095
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0100
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0100
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0105
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0105
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0105
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0110
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0110
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0115
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0115
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0115
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0120
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0125
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0125
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0125
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0130
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0130
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0135
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0135
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0135
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0140
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0140
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0140
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0145
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0145
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0145
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0150
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0150
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0150
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0155
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0155
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0160
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0160
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0160
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0160
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0165
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0165
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0165
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0170
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0170
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0170
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0175
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0175
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0175
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0175
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0180
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0180
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0185
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0185
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0190
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0190
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0195
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0195
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0195
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0200
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0200
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0205
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0205
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0210
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0210
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0210
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0215
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0215
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0220
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0220


313E. Willems et al. / EBioMedicine 45 (2019) 303–313
[45] Jiří Ž, Michal F. Changes in the serum levels of clusterin in children with sepsis.
Pediatr Pol 2013;88(1):6–13.

[46] Kassa FA, Shio MT, Bellemare M-J, Faye B, Ndao M, Olivier M. New inflammation-
related biomarkers during malaria infection. PLoS One 2011;6(10):e26495.

[47] Partridge SR, Baker MS, Walker MJ, Wilson MR. Clusterin, a putative complement
regulator, binds to the cell surface of Staphylococcus aureus clinical isolates. Infect
Immun 1996;64(10):4324–9.

[48] Li D-Q, Ljungh Å. Binding of human clusterin by Staphylococcus epidermidis. FEMS
Immunol Med Microbiol 2001;31(3):197–202.
[49] Tripathi S, Batra J, Cao W, et al. Influenza A virus nucleoprotein induces apoptosis in
human airway epithelial cells: implications of a novel interaction between nucleo-
protein and host protein Clusterin. Cell Death Dis 2013;4(3):e562.

[50] Jannetto PJ, Fitzgerald RL. Effective use of mass spectrometry in the clinical labora-
tory. Clin Chem 2016;62(1):92–8.

[51] Lynch KL. CLSI C62-A: a new standard for clinical mass spectrometry. Clin Chem
2016;62(1):24–9.

[52] Ekdahl KN, Persson B, Mohlin C, Sandholm K, Skattum L, Nilsson B. Interpretation of
serological complement biomarkers of in disease. Front Immunol 2018;9:2237.

http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0225
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0225
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0230
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0230
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0235
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0235
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0235
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0240
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0240
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0245
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0245
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0245
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0250
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0250
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0255
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0255
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0260
http://refhub.elsevier.com/S2352-3964(19)30383-4/rf0260

	Biosynthetic homeostasis and resilience of the complement system in health and infectious disease
	1. Introduction
	Evidence before this study
	Added value of this study
	Implications of all the available evidence
	2. Materials and methods
	2.1. Study approval for patients and healthy donors
	2.2. Sample collection
	2.3. MRM method development
	2.4. Sample preparation
	2.5. Mass spectrometric analysis
	2.6. Data processing and statistical analysis
	2.7. Data sharing

	3. Results
	3.1. Patient and healthy control characteristics
	3.2. MRM assay design and validation
	3.3. Comparison to the current clinical standard
	3.4. Complement levels in healthy individuals: age associated effect
	3.5. Complement levels in health and during infectious disease
	3.6. Following the kinetics of circulating complement proteins during bacterial infections

	4. Discussion
	Acknowledgments
	Funding sources
	Declaration of interests
	Author contributions
	Appendix A. Supplementary material
	References


