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ABSTRACT

There is a growing body of evidence suggesting that patterns of gene expression vary within and between human popula-
tions. However, the impact of this variation in human diseases has been poorly explored, in part owing to the lack of a stan-
dardizedprotocol toestimatebiogeographical ancestry fromgeneexpression studies.Hereweexamineseveral studies that
provide new solid evidence indicating that the ancestral backgroundof individuals impacts gene expression patterns. Next,
we test a procedure to infer genetic ancestry fromRNA-seq data in 25 data sets where information on ethnicity was report-
ed. Genome data of reference continental populations retrieved from The 1000 Genomes Project were used for compari-
sons. Remarkably, only eight out of 25 data sets passed FastQC default filters. We demonstrate that, for these eight
population sets, the ancestral background of donors could be inferred very efficiently, even in data sets including samples
withcomplexpatternsof admixture (e.g.,American-admixedpopulations). Formostof thegeneexpressiondata setsof sub-
optimal quality, ancestral inference yielded odd patterns. The present study thus brings a cautionary note for gene expres-
sion studies highlighting the importance to control for the potential confounding effect of ancestral genetic background.
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INTRODUCTION

There is growing body of evidence indicating that ethnicity
can impact gene expression. Human populations show
millions of DNA polymorphisms and variable patterns of
allele frequencies, and a number of these markers fall at
regulatory DNA positions (Spielman et al. 2007), which
could ultimately lead to differential gene expression pat-
terns. The study by Spielman et al. (2007) based on the
analysis of >4000 genes indicated that genetic variation
among populations contributes to differences in gene ex-
pression phenotypes; most of the variation observed was
due to allele frequency differences at cis-linked regulators.
The subsequent study by Price et al. (2008) on “African-
American” cell lines, however, indicated that both cis
and transmarkers have highly significant effects, although
they estimated that ∼12% of all heritable variation in hu-
man gene expression was due to cis variants. The large-
scale study by Stranger et al. (2007) confirmed that gene
expression levels are hereditable and indicated an abun-
dance of cis-regulatory variation in the human genome,
whereas Storey et al. (2007) estimated that ∼17% of genes

are differentially expressed among populations. Most
recently, Serrano-Gómez et al. (2017) found five genes
modulated by genetic ancestry in breast tumors from
Colombian women.
Amajor hindrance for gene expression studies is that the

most of them do not consider ethnicity or ancestral back-
ground to be a variable of interest in their analysis. There
are only very few attempts at monitoring ancestry in tran-
scriptomic studies; see, for example, Serrano-Gómez
et al. (2017) on breast cancer patients and Barral-Arca
et al. (2018) in an infectious disease context.
In contrast, procedures to infer biogeographical ances-

try (BGA) from DNA data are very popular in human pop-
ulation genetics at continental or regional geographical
scale (Galanter et al. 2012; Reich et al. 2012; Lazaridis
et al. 2014; Pardo-Seco et al. 2014a. 2016), and in forensic
genetics (e.g., investigation of crime scene evidence;
Sánchez et al. 2006; Phillips et al. 2009; Pardo-Seco
et al. 2014b). Usually, ancestry can be efficiently inferred
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using dense single nucleotide polymorphism (SNP) data
derived from genotyping studies (Reich et al. 2012;
Pardo-Seco et al. 2014a, 2016) or massive sequencing
studies (Lazaridis et al. 2014; Salas et al. 2017), but also
by genotyping panels of ancestry informative markers
(AIMs) (Sánchez et al. 2006; Phillips et al. 2009) or a reason-
able number of random SNPs uniformly distributed along
the genome (Pardo-Seco et al. 2014b).

At the same time, although DNA polymorphisms are
generally genotyped/sequenced, there are now bio-
informatic procedures that allow inferring DNA variation
indirectly from RNA data obtained from large-scale se-
quencing projects (RNA-seq). This strategy has two main
advantages: It is inexpensive, and it can be applied when
no DNA data is available (e.g., using RNA data sets re-
trieved from public repositories). However, these proce-
dures are still uncommon in the field of gene expression
studies. This might be due to a variety of factors, including:
(i) the very little effort made to date at evaluating the effi-
ciency of these procedures, and/or (ii) the trend to believe
that ethnicity does not impact gene expression patterns,
despite the existing evidence against this belief. To the
best of our knowledge, our recent study, Barral-Arca et al.
(2018) constitutes the only one where inferred DNA varia-
tion was used to estimate genome ancestry in a gene ex-
pression context. This study explored a 2-transcript host
cell signature to distinguish viral from bacterial infections
(Barral-Arca et al. 2018) in a RNA-seq Mexican data set
(see also Herberg et al. 2016).

The aim of the present study is to formally test the pre-
liminary procedures used in Barral-Arca et al. (2018) by
way of exploring a broader set of RNA-seq data sets repre-
senting worldwide populations. In addition, we show new
evidence clearly indicating the impact of ethnicity onmod-
ulating gene expression.

RESULTS

Characteristics of the data sets and quality control

Thequalityof thegeneexpressiondata sets canhavean im-
portant impact on the inference of SNP variation. Of the
25 data sets initially explored (Fig 1A; see Materials and
Methods), only eight (32%) passed the default FastQC
quality filters (https://www.bioinformatics.babraham.ac
.uk/projects/fastqc/) (Supplemental Fig. S1; see also
Conesa et al. 2016), while as many as 17 (68%) did not
(Supplemental Fig. S2).

The eight data sets that met all the quality requirements
(Supplemental Fig. S1) represent populations from differ-
ent continental regions and provided a high number of
SNPs (>4000 after applying additional genome filters indi-
cated above; Table 1; Supplemental Table S1). The small
number of SNPs shared by all of these data sets (Fig. 1B;
Supplemental Table S3) makes it inviable to process all

the data sets for a common set of SNPs. Therefore, all
the analyses were carried out by comparing each of the
eight data sets individually against the reference continen-
tal populations. Figure 1C shows the distribution of the
SNPs in chromosomes in the eight data sets.

We further explored the data sets that did not satisfy
the quality filters with the aim of evaluating the impact
of low quality RNA-seq data on ancestry inference.
Although the quality of the data was suboptimal for variant
calling in 17 data sets, four of them still yielded patterns of
ancestry according to expectations (see section below).

Ethnicity correlates with gene expression patterns

In contrast to genomic studies where matched ethnic sam-
ples are generally required, e.g., case-control studies
(Martinón-Torres et al. 2016; Aung et al. 2017), only a
few gene expression studies reported the ethnicity of the
donors. For the sake of illustrating the role of the ancestral
background in gene expression, we selected two studies
on tuberculosis (TB) where ethnicity for individual samples
was declared in the GEO database, and where more than
one ethnic group was considered in the same study (hence
using the same methodology).

The study by Berry et al. (2010) investigated the immune
response of patients infected by Mycobacterium tubercu-
losis (GEO: PRJNA422129). The MDS plot shows ex-
pression patterns of the active TB cohort (Fig. 2A); its
Dimension 1 (accounting for ∼20% of the variation) is re-
sponsible for the major separation between South African
and UK expression patterns, while Dimension 2 (which ex-
plains a notable 13% of the variation) separates a few UK
cases from the rest. Their latent cohort of TB patients
(Fig. 2B) was also ascribed to two well differentiated clus-
ters in its Dimension 1 (accounting for ∼18% of the varia-
tion), which again clearly separates their gene expression
patterns according to their different geographic origins.

In their follow-up study on TB infected patients (GEO:
PRJNA422130), Singhania et al. (2018), used a similar sam-
pling scheme, with some overlapping of samples with their
previous study (Berry et al. 2010). There is a marked sub-
structure of expressionpatterns in the control female group
in the Singhania et al. (2018) study (Fig. 2C), which perfectly
allocates the female controls in the vertex of an equilateral
triangle according to ethnicity. In control males (Fig. 2D),
the expression patterns of South Asians aremuchmore dis-
persed than in Kenians and Indians. Their male cases in-
cluded donors from Afghanistan, South Asia, Sudan and
Tanzania.Dimension1 (∼26%of the variance)differentiates
these clusters by main continental ancestries; one pole is
dominated by the African samples (Sudan and Tanzania),
while Asian ones (Afghanistan and South Asia) plot on the
opposite (Fig. 2E). Dimension 2 (∼14% of the variation) fur-
ther distinguishes the two African samples and indicates a
higher dispersion for the South Asian donors.
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Finally, the effect of ethnicity is not only visible in RNA-
seq data. For the sake of illustrating the same issue in ex-
pression arrays, we examined the study by Obermoser
et al. (2013) in regard to influenza and pneumococcal vac-
cines. Theeffect of ethnicity is clearwhenexamining (i) their
control females, with a clear differentiation between “Afri-
can-American” and “Caucasian” in Dimension 2 (∼8%;
Supplemental Fig. S3A), (ii) their control males, with a simi-
lar pattern (Dimension 2; ∼11%) but this time separating
Asians from “Caucasians” (Supplemental Fig. S3B), and
(iii) their Pneumovax vaccinated males (Supplemental Fig.
S3C) and females (Supplemental Fig. S3D), where Dimen-
sion 2 completely separates their “Caucasian” from their
Asian donors again.

It is most remarkable that, although ethnicity informa-
tion is clearly specified in the GEO repository, this informa-

tion is not used at all, or not even mentioned in the main
text of the associated publications.

Functional characteristics of the SNPs inferred
from RNA-seq data

Eight population sets passed through all the quality filters
specified above. We examined the functional characteris-
tics of these data sets (Table 2). Since these SNPs were in-
ferred from RNA-seq data, one could expect the main
proportion of them to be located at exonic regions.
Surprisingly, when considering all the SNPs from all the
eight data sets together, 25.3% were intergenic, and only
3.1% fell at intronic regions. Furthermore, a total of 74%
of them do not have exonic function. These percentages
vary considerably depending on the data set considered

TABLE 1. RNA-seq data sets used in the present study and characteristics of the inferred SNPs

ID no. ID in figures GEO acc. no. Tissue Country No. SNPs

1 Afghanistan PRJNA422130 Blood Afghanistan 22,375

2 Burkina-Faso PRJNA392116 Blood Burkina-Faso 58,841
3 China_1 PRJNA296108 Blood China 7807

4 China_2 PRJNA412314 Tumor China 39,198

5 China_3 PRJNA134241 Tumor China 5591
6 Colombia_1 PRJNA395937 Tumor Colombia 229

7 Colombia_2 PRJNA279199 Blood Colombia 4214

8 “A.-American” PRJNA341854 CD4+T cells “African-American”; USA 6703
9 “Hispanic” PRJNA341854 CD4+T cells “Hispanic”; USA 6703

10 Kenya PRJNA422130 Blood Kenya 24,171

11 Malaysia PRJNA238241 Adipose tissue Malaysia 39,576
12 Mexico PRJNA285798 Blood Mexico 18,180

13 Russia PRJNA350714 Paraffin-embedded tumor Russia 558

14 S. Africa_1 PRJNA422129 Blood South Africa 51,763
15 S. Africa_2 PRJNA309415 Innate lymphoid cells South Africa 181

16 S. Korea_1 PRJNA218851 Tumor South Korea 44,063

17 S. Korea_2 PRJNA163279 Tumor South Korea 7
18 Spain – Blood Spain 43,681

19 Sudan PRJNA422130 Blood Sudan 2029

20 Sweden PRJNA354367 Blood Sweden 27,703
21 Taiwan PRJNA318782 Tumor Taiwan 7

22 Tanzania PRJNA422130 Blood Tanzania 10,944

23 Uganda PRJNA422130 Blood Uganda 17,618
24 UK PRJNA294293 Tumor United Kingdom 10,210

25 Zambia PRJNA392660 Tumor Zambia 18,536

Extended information on this table is provided in Supplemental Table S1. ID code: used in map of Figure 1A.

FIGURE 1. Gene expression data sets explored in the present study for the inference of ancestry. (A) The map shows the geographic location of
the 25 RNA-seq data sets that were initially recruited from GEO; the correspondence between these ID codes and the GEO accession numbers,
and the characteristics of the data sets are provided in Supplemental Table S1. (B) Only eight out of these 25 data sets passed all the quality filters,
and these were used for the subsequent studies. The histogram shows the number of shared SNPs (the final set after applying all the filters) be-
tween data sets (see Supplemental Table S1 for more information). (C ) Distribution of SNPs in chromosomes for the eight data sets used to infer
the ancestry of donors (their GEO ID code is indicated; Supplemental Table S1).
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(Table 2). To illustrate this phenomenon, we allocate the
reads for the eight different studies corresponding to the
housekeeping gene CHMO2A (charged multivesicular
body protein 2A). Different studies have different coverag-
es outside the exon regions (Supplemental Fig. S4). The
same patterns are observed for other genes (data not
shown).

Inference of ancestry from RNA-seq data

Figure 3 shows MDS plots and ancestry analysis for the
eight populations that passed through all the quality
filters specified above. Three European ancestry popula-
tion sets, namely Spain (Salas et al. 2016), Sweden (GEO:
PRJNA354367; Shchetynsky et al. 2017), and UK (GEO:
PRJNA294293; Wood et al. 2016), are represented
in Figure 3A–C. The three data sets fall within the cluster
defined by the European populations in The 1000
Genomes Project (1000G) reference populations. In the
case of Sweden, there is one individual that shares a visible
proportion of ancestry membership with the East Asian
population.

Three additional data sets represent gene expression
data of patients from Asia, two of them from China (Fig.
3D–F), and one from Korea (Fig. 3G). In all three cases,
the profiles fall within the East Asian clade defined by the
reference 1000G populations. The plot built on data set
China_1 consists of only 7807 SNPs (GEO: PRJNA29
6108; Yu et al. 2017); this explains a subtle but visible dis-
persion of the plots compared to, e.g., China_2 (a plot built
on 39,198 SNPs; GEO: PRJNA412314 [Hong et al. 2018]).
Korean profiles (GEO: PRJNA218851; Kim et al. 2014) fall
also entirely within the Asian cluster.

Two additional data sets represent admixed popula-
tions: Colombia (GEO: PRJNA279199; Rojas-Peña et al.
2015) and Mexico (GEO: PRJNA285798; DeBerg et al.
2018). These two sample sets provide the opportunity to
calibrate themethod for the detection of complex patterns
of admixture from gene expression data. From the MDS
plot it is clear that the Colombians samples include patient
profiles of different ancestries (Fig. 3G). For instance, three
individuals have a clear African ancestry, which is not un-
usual given the impact of the transatlantic slave trade in
America (Salas et al. 2004, 2005), and in this country in par-
ticular (Salas et al. 2008). The other individuals display a
variable admixture contribution from a European and a
Native American component (East Asia is used here as a
surrogate ancestral population of Native Americans).

Again, this pattern of admixture is common in South
American populations (Reich et al. 2012). The Mexican
data set has a different population admixture pattern
(Fig. 3H). Thus, Mexican samples have a main Native
American component (much higher than theMexican sam-
ple from 1000G [MXL]), with a minor dispersion (of some
of the samples) toward the European pole; this pattern is
also expected according to different studies indicating
an important Native American background in Mexican ge-
nomes with variable admixture with Europeans and minor
sub-Saharan African influence (Sandoval et al. 2009).

Figure 4 summarizes the main ancestries observed in
these eight data sets. The three European data sets show
a main European ancestry, while the four Asian data sets
show a predominant Asian ancestry. Conversely, the two
American samples show both differential proportions of
ancestry in agreement with their different patterns of
admixture.

Four data sets did not pass the quality filters, but
the patterns of ancestry could also be inferred (Supple-
mental Fig. S5). The Russian sample set (GEO: PRJNA
350714; Supplemental Fig. S5A; Nikitina et al. 2017)
only yielded 558 SNPs but still all the samples fall within
the European cluster; the fact that this MDS plot is built
on a few hundred SNPs explains the global scattering of
the data points on the plot compared to other plots
(e.g., in Fig. 3). Supplemental Figure S5B indicates pat-
terns of ancestry for “Hispanic” and “African-American”
data sets (GEO: PRJNA341854; Rastogi et al. 2018). What-
ever the pseudo-ethnic category “Hispanic” means from
the biological point of view (Salas et al. 2007), their pat-
terns of genetic variation fit well with expectations: Most
individuals have a three-way continental admixture pat-
tern, with significant membership within the European
cluster. On the other hand, some of the “African-Ameri-
can” samples fall within the African reference set, but oth-
ers have a more variable and complex pattern of ancestry;
it is also remarkable that one “African-American” profile
falls neatly in the Asian pole of the plot. The South African
sample (GEO: PRJNA422129; Supplemental Fig. S5C;
Berry et al. 2010) falls entirely within the African cluster.
The sample set from China (GEO: PRJNA134241; Huang
et al. 2011) also fit completely within the East Asian cluster.

Finally, inferring ancestry fromdata sets that did not pass
all the quality filters can lead to artifacts that are difficult to
interpret fromagenetic point of view. Supplemental Figure
S6 displays all the MDS plots and ancestry barplots for 13
suboptimum data sets. Compared to expected patterns

FIGURE 2. Analysis of gene expression patterns in two case studies where information on ethnicity was available, indicating that ethnicity status
per se impacts gene expression patterns. For each study, we show a PCA plot (right) built with the most highly expressed genes between ethnic
groups and using the Deseq function “plotPCA,” while the heatmaps were built using a minimum subset of the most highly expressed genes
(including all is not possible because of space limitations) that allowed to visualize different patterns between population sets (left): (A) Active
TB from Berry et al. (2010), (B) latent TB from Berry et al. (2010), (C ) control female group from Singhania et al. (2018), (D) control male group
from Singhania et al. (2018), and (E) male TB cases from Singhania et al. (2018).
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of variation (Fig. 3), these plots lack structure (e.g., Supple-
mental Fig. S6A,B) or the samples form outlier clusters
clearly separated from the three main continental groups
(e.g., Supplemental Fig. S6E–G) denoting artificial patterns
of variation. Somedata setsmight represent real variability,
as is the case of the samples from Malaysia (Supplemental
Fig. S6K) or Afghanistan (Supplemental Fig. S6L), but the
fact that the original RNA-seq data sets are in suboptimal
conditions calls for caution with these patterns.
In general, it may be argued that these genetic/ancestry

analyses themselves could also serve as an additional qual-
ity filter per se.

DISCUSSION

We provide new evidence suggesting that ancestral back-
ground can impact gene expression patterns. Notably, this
evidence stands in contrast with the fact that only a very
small number of gene expression studies control for ances-
tral background information in their experiments; when
this information is available, it is not used at all. Thus, there
are studies where cases entirely represent a given conti-
nental ancestry while their control group was recruited
from another continental ancestral background. For in-
stance, in the very recent study by Tian et al. (2017), the au-
thors investigated the immune response of patients
infected by dengue virus. Their patients were recruited in
Sri Lanka, whereas their controls were sampled in San
Diego (USA). The MDS plot in Supplemental Figure S7 in-
dicates that these two groups differentiate clearly in
Dimension 2 (23%). The extent towhich the differences be-
tween cases and controls were due to ethnicity instead of
the presence of the pathogen remains to be investigated.
Here we demonstrate that it is possible to infer DNA

variation from RNA-seq data, and that this variation can
be used to estimate ancestry background of patients.
Although the DNA information from samples represents
mainly coding region variation (which shows more evolu-
tionary constraints and therefore less variation than non-
coding region variants), the procedure performs well
with only a few thousand SNPs available or even a few hun-
dred, a finding that is consistent with those advanced by
Salas (2019). Moreover, the procedure performs also cor-
rectly when analyzing populations with complex patterns
of admixture, as is the case of many American populations.
A remarkable finding of the present study is that an im-

portant proportion of the investigated RNA-seq data sets
shows deficiencies in terms of data quality. Exploring the

consequences of this finding within the framework of
each individual study is beyond the scope of the present
study, but the issue deserves further attention in future in-
vestigations. We observed that low quality RNA-seq data
produce unusual patterns of ancestry; this therefore led
to the conclusion that unusual patterns of genetic variation
inferred from RNA-seq data can be used as an additional
quality control of the data.
Ancestral background is usually inferred in cases and

controls by directly genotyping a set of SNPs (e.g.,
AIMs). However, here we demonstrate that ancestry can
be deduced from RNA-seq data. This has several advan-
tages for future gene expression studies. On the one
hand, it avoids the need of obtaining ad hoc samples for
DNA genomic analyses from donors (there could be
many situations where only a RNA sample can be ob-
tained). On the other hand, once the RNA-seq data have
been generated, inferring DNA variation from expression
patterns is inexpensive; it only requires the use of a few
computational tools already available in the public
domain.

MATERIALS AND METHODS

RNA-seq data sets and evaluations of data quality

Figure 5 summarizes the process followed in the present study to
infer ancestry proportions from RNA-seq data. First, gene expres-
sion data were retrieved from the GEO (Gene Accession

FIGURE3. MDSplots and ancestry analysis for each of the eight data sets that overcome all the quality filters; their GEO ID numbers are indicated
on top of each MDS analysis together with the number of SNPs involved in each analysis. In the admixture barplots (right) the label of the test
population is bolded and their ancestral memberships barplots slightly separated from the barplots of the reference continental populations
(from 1000G). (A) Spain; (B) Sweden (GEO acc. no: PRJNA354367); (C) UK (GEO acc. no: PRJNA294293); (D) China_1 (GEO acc. no:
PRJNA296108); (E) China_2 (GEO acc. no: PRJNA412314); (F) Korea_1 (GEO acc. no: PRJNA218851); (G) Colombia_2 (GEO acc. no:
PRJNA279199); and (H) Mexico (GEO acc. no: PRJNA285798).

FIGURE 4. Summary of ancestral memberships for the eight data sets
explored in the present study.
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Omnibus; https://www.ncbi.nlm.nih.gov/geo/) database (Edgar
et al. 2002). The vast majority of RNA-seq studies do not record
the population background of their samples. We manually
searched for RNA-seq data sets that have information on ethnicity
or sampling location available and rejected studies that used
inaccurate ethnic terminology (e.g., “latin” people) (Salas et al.
2007). Finally, the databases were chosen with the idea to
represent all the continents and different tissues. We initially
collected data from 25 RNA-seq data sets (corresponding to
20 independent studies) representing populations from different
continental regions (Table 1; Fig. 1A; Supplemental Tables S1,
S2). Two out of 20 studies (Berry et al. 2010; Singhania et al.
2018) examined expression patterns of groups of individuals
from different ethnicities at the same time; therefore, their sam-
pling design allows us to evaluate the impact of ethnicity in gene
expression patterns.

For variant calling analyses, it is particularly relevant to initially
evaluate the quality of the data. We examined the quality of the
RNA-seq data by way of exploring per base sequence quality
plots and using FastQC (Brown et al. 2017) and MultiQC
(Ewels et al. 2016) software. Quality score plots show the distri-
bution of base quality values for each position in the input
sequence.

A medium level of duplication might be unavoidable because
some sequences occur more frequently than others. Therefore,
to detect transcripts with extremely low expression level, it is nec-
essary to over-sequence the library, which could generate large
amounts of the most common sequences such as housekeeping
genes. FastQC and MultiQC were used to produce duplication
level plots. These plots show for each sample set the fraction of
reads observed at different duplication levels. This procedure al-
lows the identification of fragments of adapters remaining on the
reads, contamination, or any kind of enrichment bias (due to, e.g.,
PCR over amplification). The software raises a warning (orange
line) if duplicated sequences constitute more than 20% of the to-

tal library and it will report an error (red line) if they represent more
than 50% of the total (Supplemental Figs. S1 and S2).

RNA-seq reads prior to variant calling were processed using
Opossum (Oikkonen and Lise 2017). Although the Opossum soft-
ware deals with duplicate sequences, we have empirically ob-
served that when the duplication level is too high (>50% of the
total), it yields weak results in terms of the SNPs inferred. This
could be caused by: (i) Removal of duplicates from the library
may lead to an extremely poor library, hence the SNPs inferred
are very few, biased and not evenly distributed across the ge-
nome, and/or (ii) overamplification of the library increases the
chances of PCR errors and artifacts.

Annotating DNA variation from RNA-seq data sets
and statistical treatment of SNP data

Variants were inferred from the processed RNA-seq data using
the variant caller software Platypus (Rimmer et al. 2014). The num-
ber of annotated markers inferred from the different data sets var-
ies from a few hundred (PRJNA318782; Supplemental Table S1)
to more than 4000K variants (PRJNA163279).

SNPs without rs code, low genotyping rate (below 10%), and in
LD (r2 > 0.75) were removed from the analysis. Eliminating LD al-
lows us to mitigate the effect of ascertainment bias which could
be particularly important in genome data inferred from gene ex-
pression patterns.

SNPdata fromcontinental referencepopulationswere retrieved
from 1000G (http://www.internationalgenome.org). Reference
genome data from 1000Gwere processed as per previous studies
(Pardo-Seco et al. 2014a, 2016). Subsequently, each SNP popula-
tion data set was individually intersected with SNP data from the
1000G reference populations.

Next, we computed identity-by-state (IBS) values between each
population data set and the reference populations using the soft-
ware PLINK (Purcell et al. 2007). Multidimensional scaling (MDS)

FIGURE 5. Bioinformatic procedure to infer ancestry using RNA-seq data.
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analysis using this matrix of IBS values was used to represent the
clustering gene expression patterns and geographical affinities
between the test data and the reference continental populations.
MDS plots were built using the function cmdscale (library stats)
from R (http://www.r-project.org).

We additionally investigated admixture patterns for each data
set using populations in 1000G as reference data sets represent-
ing main continental regions. Admixture proportions were ob-
tained by using a maximum likelihood estimation of individual
ancestries from multilocus SNP data and using the ADMIXTURE
software (Alexander et al. 2009), and fixing the number of prede-
fined clusters (K ) to the number of continental regions considered
for each analysis.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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