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ABSTRACT
The Ninth Interactive Infectious Disease workshop TIPICO was held on November 22–23, 2018, in
Santiago de Compostela, Spain. This 2-day academic experience addressed current and topical issues
in the field of infectious diseases and vaccination. Summary findings of the meeting include: cervical
cancer elimination will be possible in the future, thanks to the implementation of global vaccination
action plans in combination with appropriate screening interventions. The introduction of appropriate
immunization programs is key to maintain the success of current effective vaccines such as those against
meningococcal disease or rotavirus infection. Additionally, reduced dose schedules might improve the
efficiency of some vaccines (i.e., PCV13). New vaccines to improve current preventive alternatives are
under development (e.g., against tuberculosis or influenza virus), while others to protect against
infectious diseases with no current available vaccines (e.g., enterovirus, parechovirus and flaviviruses)
need to be developed. Vaccinomics will be fundamental in this process, while infectomics will allow the
application of precision medicine. Further research is also required to understand the impact of
heterologous vaccine effects. Finally, vaccination requires education at all levels (individuals, community,
healthcare professionals) to ensure its success by helping to overcome major barriers such as vaccine
hesitancy and false contraindications.
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Introduction

The Ninth Interactive Infectious Disease workshop TIPICO
was held on November 22–23, 2018, in Santiago de
Compostela, Spain. This 2-day academic experience chaired
by Dr. Federico Martinón-Torres brought together an inter-
national panel of 14 experts from different countries and 500
delegates, who addressed current and topical issues in the field
of infectious diseases and vaccination through debates, dis-
cussion, and fora.

The sessions covered different aspects from basic patho-
genic mechanisms to infectomics, systems biology, epidemiol-
ogy, prevention, and management of the infections caused by
enterovirus (EV), human parechovirus (HPeV), rotavirus
(RV), human papillomavirus (HPV), influenza virus,

flaviviruses, Neisseria meningitidis, Streptococcus pneumoniae,
and Mycobacterium tuberculosis. The present and future per-
spectives of vaccines, as well as barriers to vaccination (e.g.,
vaccine hesitancy), were also main topics addressed by
TIPICO.

Next milestones to reach through vaccination

Cervical cancer elimination is within reach

During his presentation, Dr. Xavier Bosch (Catalan Institute
of Oncology, Barcelona, Spain) provided an overview of the
current global status and progress towards the elimination of
cervical cancer. Bosch outlined that in May 2018, the
Director-General of the World Health Organization (WHO)
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made a global call for action towards the elimination of this
pathology as a public health problem;1 its elimination thresh-
old has been arbitrarily defined by experts as four cases per
100,000 women per year.2 This initiative aims to ensure that,
on one hand, all girls aged <15 years old are vaccinated
against HPV and on the other, that every woman over 30 is
HPV-screened and, if required, treated for precancerous
lesions. To achieve these objectives, an integrated policy of
“cervical cancer elimination” is required within the frame-
work of general health services which, in addition, should be
achievable for all countries within a sensible and encouraging
time frame. There is currently a strong socioeconomic gap in
the field, where sexual behaviors and herd effects are strongly
driven by regional cultural trends, with unequal screening
opportunities. Updated estimates indicate that, while 38% of
15–19-year-old females are vaccinated in high-income coun-
tries, this figure falls to 4% in low- and middle-income
countries,3,4 highlighting the need for special efforts in the
latter. Moreover, evidence also demonstrates the need to
include males in immunization programs. Despite some lim-
itations, mathematical models allow predictions to be made
on the effectiveness of already-implemented programs. Thus,
Australia could be the first country to reach cervical cancer
elimination by 2030.5 Based on its model, several worldwide
scenarios have been proposed. The optimal prediction from
models, explained Dr. Bosch, considers broad-spectrum vac-
cination coverage of 80–100% globally, plus two lifetime
screenings at 35 and 45 years old to reach a final total cover-
age of 70%. Finally, dose schedules will be critical in terms of
efficiency and vaccine availability. In this regard, preliminary
data from post-hoc phase 3 studies conducted in Costa Rica
and from other research projects demonstrated single-dose
protection for at least 7 years,6 justifying current clinical trials
investigating reduced dose schedules.

Can we currently beat meningococcal disease?

In this session, Dr. Federico Martinón-Torres (Hospital
Clínico Universitario de Santiago, Spain), Dr. Shamez
Ladhani (Public Health England, United Kingdom),
Dr. Rino Rappuoli (GlaxoSmithKline, Italy) and Dr. Jamie
Findlow (Pfizer, United Kingdom) discussed the main
advances in the vaccine prevention of meningococcal disease
(MD) after presentation of some relevant data. In Europe, two
quadrivalent conjugate meningococcal vaccines are available:
MenACWY-TT (Nimenrix®) and MenACWY-CRM
(Menveo®), which have been recently implemented in some
countries given the increased incidence of MenW cases (due
to a strain that originated in the United Kingdom [UK] and
currently expanding even outside Europe7,8) and to lesser
extent, of MenY cases. Additionally, two subcapsular antigen-
based vaccines against MenB are licensed: MenB-fHbp
(Trumenba®, indicated from 10 years of age and 4CMenB
[Bexsero®], indicated from 2 months of age). Finally, two
pentavalent alternatives are currently being developed, result-
ing from the combination of MenACWY-CRM and 4CMenB9

and of MenB-fHbp and MenACWY-TT.10 The UK represents
a good example of the effectiveness and safety of some of
these vaccines. As Dr. Ladhani explained, 4CMenB,

implemented with a 2 + 1 schedule in infants, demonstrated
83% efficacy and a 50% reduction in MenB cases just 10
months after its introduction in 2015.11 Three years later,
similar trends have been observed (unpublished data) with
a good safety profile. MenACWY was also introduced in 2015,
targeting adolescents, who are the main carriers. Early data
demonstrate that, even with low vaccine coverage (~36%),
MenW cases have decreased and herd protection is now
being observed (unpublished data). The experts then high-
lighted several important aspects of meningococcal vaccina-
tion. Dr. Rappuoli indicated that vaccination would be
desirable for everyone. However, from a public health per-
spective, infants, followed by adolescents, should be priori-
tized as target populations. It is also important to stress the
great potential of both MenB-fHbp and 4CMenB for provid-
ing cross-protection, for example against unrelated MenB
strains, but also against different serogroups. The data from
the UK suggest that the decrease in MenW cases in infants
might be linked to this cross-protective effect of 4CMenB.
Despite the general trend towards a decreased incidence of
MD in Europe, the experts debated the recent increase in the
number of MenW cases, and the urgent need for a preventive
policy to help halt this epidemic, as well as any future
increases. To that end, it is essential to ensure the continuity
of programs that have already been shown to be effective.
Furthermore, in Dr. Findlow’s words, predicting and moni-
toring local, national and international meningococcal out-
breaks, along with assessing their overall impact, would help
design appropriate immunization policies. Finally, researchers
discussed the recent implementation of MenACWY in the
UK, whose main target is the adolescent population.
Although adolescents are a challenging group in terms of
compliance with vaccination schedules, Dr. Ladhani was
hopeful that herd protection will occur rapidly once the teen-
agers targeted through the schools-based immunization pro-
gram (with vaccine uptake of 80–90%) enter higher education,
such as universities; additional results of the adolescent pro-
gram will become available later this year.

To conclude, Dr. Martinón-Torres remarked that the tools
to fight against MD are within reach. Consequently, selecting
the appropriate vaccination programs, as well as the perfect
time for their implementation and an appropriate surveillance
system are critical to ensure the success of the strategy.

Pneumococcal vaccination: fewer doses needed for
successful pneumonia prevention

Pneumonia is still a major cause of morbidity and mortality
worldwide,12,13 with Streptococcus pneumonia being the main
causative agent, at least in cases reported outside the hospital
setting (community-acquired pneumonia or CAP).14 In
TIPICO IX, two different sessions presented by Dr. Esther
Redondo (International Vaccination Center of Madrid, Spain)
and Dr. Shamez Ladhani (Public Health England, UK) pro-
vided updated information on pneumococcal vaccination with
the 13-valent pneumococcal conjugate vaccine (PCV13) in
Spain and the UK, respectively. Previous studies have demon-
strated the effectiveness of this vaccine in preventing pneu-
monia in Europe and the USA,15,16 even in adults aged >65

2406 F. MARTINÓN-TORRES ET AL.



years old.16 In Spain, an estimated 53% of cases of hospita-
lized pneumococcal pneumonia are caused by PCV13
serotypes,17 highlighting the potential benefits of including
the vaccine in the adult immunization program. As
Dr. Redondo explained, this has led to vaccination policy
changes at the regional level, with autonomous regions such
as Madrid recommending PCV13 in adults from 60 years of
age. In her opinion, to obtain successful outcomes, it is
fundamental that programs are designed according to the
epidemiological situation of the region/country. In England
and Wales, PCV13 replaced the 7-valent pneumococcal vac-
cine (PCV7) in the infant immunization schedule in 2010, and
was highly effective during the four first years of the
program.18 Despite an increase in invasive disease caused by
non-vaccine serotypes, Dr. Ladhani explained that invasive
pneumococcal disease is well controlled in the UK at
present.19 However, carriage of serotype 3 and 19A still
remains, and disease due to these may not be eliminated
with the current vaccine.20 Because of the high herd protec-
tion offered by PCV13, the UK is currently considering
a reduced priming schedule of PCV13 (1 + 1). Clinical trial
data demonstrate that post-booster responses in infants
primed with a single dose are equivalent or superior to
those seen following the standard UK 2 + 1 schedule and,
consequently, this reduced schedule might be an interesting
option for countries with a mature PCV program and estab-
lished herd immunity.21 Furthermore, mathematical modeling
supports only a small increase in cases across all age groups
over the next decade, where the impact of non-invasive pneu-
mococcal disease is likely to be equivalent to that of the
invasive disease.

Rotavirus vaccines do work

During his presentation, Dr. Timo Vesikari (Tampere
University, Finland) summarized the updates in the field of
RV vaccination. Since 2006, two live-attenuated RV vaccines
(Rotarix®, RotaTeq®) have been licensed,22 which have already
been introduced in 96 countries, according to the most recent
data released in August 2018.23 Implementation of the vaccine
has been found to have a great global impact on mortality,
preventing around 28,000 deaths in 2016.24 Vesikari high-
lighted the successful introduction of immunization programs
in Africa, where vaccination coverage has increased in recent
years,25 showing positive results in different countries such as
Malawi.26,27 However, its effectiveness on this continent, and
in developing countries in general, is variable, probably due to
several factors including malnutrition, passive transfer of
maternal antibodies and co-infections, among others.22 This
might explain the discouraging results obtained in certain
countries such as Pakistan.28

Both Rotarix™ and RotaTeq® have been found to confer
protection against several RV genotypes other than those
included in the vaccine, as evidenced by real-world data
from Finland29 and the USA30; see also.31,32,33 In
Dr. Vesikari’s words, the effectiveness of the vaccine may
depend mainly on dosing schedules instead of on genotype-
specific protection. In Europe, RV vaccination programs have
been successful in several countries, including Belgium, where

vaccination coverage with Rotarix™ (RV1) is estimated at
90%34 or the UK, with one of the highest vaccination coverage
rates reported (Rotarix™, RV1).35,36 Vesikari described the
situation of Finland as an example of the optimal performance
of an oral RV vaccine. Since the introduction of RotaTeq®
(RV5) in 2009, the number of infection cases has significantly
decreased, and vaccination coverage has reached 95%.
However, certain residual disease remains, with a recent out-
break in 5 to 12-year-old non-vaccinated children and in the
elderly not previously reported.37 In conclusion, Dr. Vesikari
highlighted that, despite the optimal results obtained world-
wide, neither total elimination of RV circulation nor protec-
tion against emergent genotypes has been achieved, stressing
the importance of continuing efforts at several levels.

New challenges and opportunities in infectious
diseases

The growing importance of picornavirus

Two talks by Dr. Shamez Ladhani (Public Health England,
UK) and Dr. Irene Rivero (Hospital Clínico Universitario de
Santiago, Spain) focused on the growing importance of two
picornaviruses: EV and HPeV. Both are a frequent cause of
disease in children,38 being responsible for some cases of
meningitis and sepsis-like illness in infants.39,40As Ladhani
explained, distinguishing between viral and bacterial menin-
gitis is often difficult. Moreover, diseases caused by EV and
HPeV are frequently associated with severe clinical
presentations.41,42Although long-term sequelae are rare, they
do occur, and are associated with severe neurological
presentations,43 making identification of individuals at risk
and patient follow-up of utmost importance. Importantly,
new outbreaks of different EV genotypes – EV D6844–46 and
EV 7144,47,48 – have been reported worldwide in recent years,
along with the emergence of some new HPeV serotypes.49

Dr. Rivero commented on the present situation in the field
of vaccination against these viruses, highlighting that no effi-
cacious treatment options are available. Consequently, current
efforts must be directed towards the development of effective
vaccines. Furthermore, the use of new breakthrough
approaches to identify diagnostic and prognostic markers, as
well as putative genetic factors of susceptibility, will be useful
for the management of diseases caused by picornaviruses.

Flavivirus mechanisms for human cell infection and
immunocompetent animal models

In his talk, Dr. Adolfo García-Sastre (Mount Sinai-NY
University, USA) explained the mechanisms used by flavi-
viruses to make humans their hosts, as well as the new
approaches towards prevention of the diseases caused by
them. Flaviviruses comprise more than 70 different viruses
that, taxonomically, form a genus in the family Flaviviridae.50

Some of their members include major causes of human dis-
ease, such as yellow fever virus (YFV), dengue virus (DENV)
and Zika virus (ZIKV), among others.51 The genomic struc-
ture of flaviviruses is simple, consisting of a single-stranded
RNA with a large open reading frame that results in a single
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polyprotein.52 This polyprotein is cleaved into three structural
proteins that are required for formation of the virion and
seven nonstructural proteins, of which NS5 is key for virus
replication.53 Importantly, NS5 is also a potent and direct
antagonist of IFN-I-dependent JAK-STAT signaling,54 an
immune mechanism that represents a powerful barrier to
virus infection.55 Surprisingly, as García-Sastre explained,
YFV, DENV, and ZIKV evolved to antagonize the IFN-I
pathway in different ways, all of them resulting in the inter-
ference of STAT2 activity (unpublished data). Based on this
evidence, his group has focused on further understanding
these mechanisms. The most recent data demonstrate that
YFV, DENV and ZIKV NS5 proteins do not bind mouse
STAT2, but do bind its human version.56 This discovery led
them to develop a humanized mouse model for ZIKV, based
on replacing mouse STAT2 with human STAT2. Thus, huma-
nized STAT2 mice might represent an immunocompetent
mouse model not only for ZIKV, but also for flavivirus infec-
tion, and consequently, a first step for pre-clinical develop-
ment of future vaccines.57

Infectomics

This session presented by Dr. Federico Martinón-Torres,
Dr. José Gómez-Rial (Hospital Clínico Universitario de
Santiago de Compostela, Spain) and Dr. Antonio Salas
(University of Santiago de Compostela, Spain), aimed to provide
an overview of how infectomics may help to solve infectious
disease. The management and diagnosis of infectious disease has
traditionally been done from a pathogen perspective.
Considering that the same pathogen may trigger a variable spec-
trum of disease, the current view assumes that host-genetic
factors may play a critical role in determining the outcome of
infectious disease dynamics. According to the authors, promis-
ing results have already been obtained in, for example, genomics,
first by way of genome-wide association studies (GWAS), where
some genetic variants associated with host susceptibility to MD
have been identified.58,59 More recently, whole exome sequen-
cing (WES) has allowed the identification of new susceptibility
factors in empyema caused by Streptococcus pneumoniae in
children60 and in respiratory syncytial virus disease.61 The
speakers summarized the main results obtained in the emerging
field of research in infectomics, understood as the study of
infectomes (encoded by both host and microbial genomes, and
a mirror of the interplay between pathogens and their hosts) by
using systems biology and high-throughput ‘omic’ approaches.62

It provides a global and integrative overview of the different
‘omic’ layers, including genomics, epigenomics, transcriptomics,
proteomics, glycomics, and metabolomics. Reconstruction of
global biochemical networks (‘trans-omic’ analysis)63 requires
the use of both multi-omic measurements and computational
data integration (systems biology). Infectomics will contribute to
precision medicine, a model that proposes the customization of
healthcare, with medical decisions, treatments, practices, or pro-
ducts being tailored to the individual patient. In this sense,
several studies have already demonstrated the existence of cell
host transcriptomic signatures in different infectious diseases,64–
67 which might be considered as the patient’s individual signa-
tures, with great potential to be used for more personalized and

precise treatment of the diseases. To conclude, the speakers
highlighted that, although translation to patients is slow, these
breakthrough approaches are slowly improving and being incor-
porated into routine diagnosis and prognostic methods.

Breakthrough approaches in vaccines

A universal influenza vaccine

Dr. García-Sastre (Mount Sinai-NY University, USA) discussed
the most recent advances towards the development of a universal
influenza vaccine. At present, most vaccines are designed to target
hemagglutinin (HA), one of the main surface glycoproteins on
influenza viral particles that mediate their fusion with the cell host
membrane.68 HA is comprised of globular head and stem (or
stalk) regions, and the hypervariability shown by its amino acid
sequences is largely responsible for epidemic and pandemic influ-
enza outbreaks; these are the consequence of antigenic drift or
shift, respectively,68 forcing updated vaccines to be produced
annually. Consequently, the development of an effective “univer-
sal” influenza vaccine capable of conferring protection against
both seasonal and newly-emerging pre-pandemic strains is of
utmost importance today. García-Sastre explained that
a universal influenza vaccine should be multivalent and include
antigens of both type A and type B viruses (including all virus
A subtypes). One possible way to achieve broad protection against
all influenza viruses is to develop new vaccines that induce pro-
tective antibodies against conserved regions of the HA, such as the
HA stem region.69 However, strategies to develop an HA stem-
based universal influenza vaccine must overcome the HA-head
immunodominance problem, that is, the ability of this region to
elicit a stronger immune response. Some of those strategies
include the use of headless constructs70–77 and repeated vaccina-
tion with influenza virus chimeric HA vaccines that induce pro-
tective antibodies against multiple subtypes of influenza virus.
This second strategy has been effective in mice and ferrets, con-
ferring protection against different influenza virus strains. Based
on these promising results, some vaccine candidates are currently
being evaluated in clinical trials.

The next generation of tuberculosis vaccines

During his presentation, Dr. Carlos Martín (University of
Zaragoza, Spain) summarized the main advances in the field of
tuberculosis (TB) vaccination. At present, tuberculosis one of the
top 10 causes of death worldwide, and the leading cause from
a single infectious agent (above human immunodeficiency
virus).78 Notably, only 5–10% of infected people develop the dis-
ease, and those infected individuals have a 79% lower risk of
progressive TB after reinfection than uninfected ones.79 The
Bacille Calmette-Guérin vaccine (BCG) is the only TB vaccine
currently available, with 89% coverage at birth worldwide.80

Nevertheless, despite providing strong protection against dissemi-
nated forms of the disease, BCG does not protect against respira-
tory forms of TB.81 In August 2018, the WHO published the
preferred product characteristics for new vaccines. Thus, these
should preferentially target, on the one hand, adolescents and
adults, since they constitute the main reservoir and transmitters
of the disease, and on the other, neonates and infants, in which

2408 F. MARTINÓN-TORRES ET AL.



new live-attenuated vaccines should replace BCG.80,82 Clinical
trials of several vaccine candidates have been unsuccessful over
the years.83 Recently, the results obtained in a phase 2b trial have
shednew light on the field, showing that theM72/AS01E vaccine is
able to provide 54.0% protection for latent TB-infected (LTBI)
adults against active pulmonary TB disease, without evident safety
concerns.84At present, 12 ongoing clinical trials are evaluating new
candidates.80 Dr. Martín focused on MTVBAC, a new live-
attenuated vaccine that contains mutations in two genes respon-
sible for the pathogen virulence; phoP and fadD26.85 This vaccine
has shown promising results in both animal models86–89 and
clinical trials. Thus, the initial findings of a phase 1a study con-
ducted in healthy adults in Switzerland have already been
published,90 and results from a phase 1b dose-escalation safety
and immunogenicity study to compare MTBVAC to BCG in
newborns in a TB-endemic region of South Africa are expected
for 2019 (ClinicalTrials.gov NCT: 02729571). Furthermore,
a phase 2a MTBVAC study in adults with and without LTBI in
South Africa (ClinicalTrials.gov NCT02933281) and a phase 2a
dose-defining safety and immunogenicity study of MTBVAC in
South African Neonates (ClinicalTrials.gov NCT03536117) are
currently underway. In the future, efficacy studies for BCG repla-
cement at birth and for boosters with MTVBAC in previously
BCG-vaccinated adolescents/adults will be required to demon-
strate better protection against pulmonary TB than the one offered
by BCG.

Assessing the heterologous effects of vaccines

During his presentation, Dr. Adam Finn (Bristol University,
UK) discussed the heterologous effects of vaccines, also known
as non-specific effects (NSE) or “off target effects”, defined as
effects of a vaccine beyond their intended target pathogen or
disease. Heterologous effects can be subsequently classified into
downstream effects and “lateral” effects. The former occurs
when, by preventing the target infection (directly or indirectly),
other infections which can otherwise follow the target infection
are also prevented (e.g., measles and influenza vaccines both
preventing bacterial respiratory infections and deaths). The lat-
ter include those effects reported when vaccines alter host sus-
ceptibility to off-target infections, such as BCG for example,
which in addition to conferring protection against TB, may
induce trained immunity and nonspecific protection from
infections91 such as sepsis and respiratory infections in animals
and infants.92 The new NSE paradigm may broaden our under-
standing of vaccines, although the importance and implications
of such effects remain controversial (reviewed by Pollard et al.93).
The more general concept that early life immunization with live
vaccines may have beneficial effects on mortality in low-income
settings, and that immunizationwith non-live vaccinesmay have
disbeneficial effects, especially in females, may prove to be an
oversimplification. For example, young children immunized
with non-live-adjuvanted monovalent H1N1 influenza vaccine
had enhanced responses to an unrelated H3N2 seasonal vaccine
a year later.94 The example provided by the RTS, S/AS01 vaccine
against malaria, which demonstrated promising results in
a recent clinical trial, is also intriguing.95Although efficacious,

the vaccine was unexpectedly associated with meningitis and
cerebral malaria safety signals that, curiously, were only apparent
in the older infant age group in the study, in whom a non-live
rabies vaccine was used as a comparator/control. This raises the
hypothesis that lateral beneficial NSE of the rabies vaccine could
be responsible.96A systematic review of the literature reveals
several other pieces of evidence that both uphold the notion of
rabies antigen-induced protection against unrelated infections
and mortality in several animal species, and at least one possible
biological mechanism.97–101 Dr. Finn concluded that further
studies are required to support the biological plausibility of this
hypothesis in animals and humans, leading, perhaps, to a large
placebo-controlled randomized clinical trial (RCT) of the rabies
vaccine in children in a high mortality setting that includes
meningitis, malaria, and other infections, with mortality as the
primary endpoint.

Vaccinomics

Thanks to the control of infections through the implementation of
hygiene measures, the use of antibiotics and the introduction of
vaccines, a remarkable improvement in health and an increase in
life expectancy have occurred in the last century. Dr. Rino
Rappuoli (GlaxoSmithKline, Italy) focused his talk on vacci-
nomics, defined as “the integration of immunogenetics and
immunogenomics with systems biology and immune profiling”
and based on the “omics” technologies and on bioinformatics for
the development of next-generation vaccines.102 Rappuoli
reviewed the milestones in the history of vaccine development,
from classical vaccinology in the 1930s103 to reverse vaccinology
in 2010, a new approach based on the ability to access the genomes
of microorganisms, first made possible in 1995, when Craig
Venter published the genome of the first free-living organism
(revised in104). The first pathogen addressed by the reverse vacci-
nology approach was Meningococcus B (MenB). Since then,
sequencing of the B cell repertoire, the high throughput discovery
of protective human antibodies and the increasing structural
characterization of protective antigens and epitopes have provided
the molecular and mechanistic understanding to drive the dis-
covery of novel vaccines that were previously impossible. This is
known as the reverse vaccinology 2.0 era.105 In addition, other
next-generation technologies for the development of new vaccines
are currently available, including structural biology, synthetic
biology and the development of adjuvants. To conclude his talk,
Dr. Rappuoli emphasized the need for a rational application of the
new technologies used for vaccine development. Thus, vaccines
should focus on new targets, such as the elderly and developing
countries,106 where life expectancy is reduced and infections are
a major cause of death. New vaccines should also target emerging
infections, and might be useful in the field of immunotherapeu-
tics, to prevent diseases such as cancer or neurodegenerative
diseases. In Rappuoli’s opinion, we are not prepared for the
challenge posed by the new technologies, as evidenced by the
unsuccessful initiatives towards the global implementation of
vaccines over recent decades. As a result, new policies are required
to take full advantage of them.
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The practice of vaccination: hesitancy and false
contraindications

Vaccine hesitancy

Despite the high vaccination coverage rates registered in the
European region according to the WHO, vaccine hesitancy
remains an important issue that is undermining individual
and community protection from vaccine-preventable diseases.
In this session, Robb Butler (UNICEF, New York, USA) went
into detail about this phenomenon, its causes, and the actions
that must be taken to respond to it, an objective also
addressed by a WHO SAGE working group (Strategic
Advisory Group of Experts on Immunization) created in
2012.107 Vaccine hesitancy occurs on the continuum between
high vaccine demand and complete vaccine refusal. It is
a complex phenomenon, influenced by multiple social, eco-
nomic, cultural, political and religious factors. According to
the SAGE working group,108 the three main determinants of
vaccine hesitancy are complacency, confidence, and conveni-
ence. Complacency may exist at individual, community,
healthcare center, and political level when perceived risks of
vaccine-preventable diseases are low, and vaccination is not
considered a worthwhile investment. Confidence is defined as
trust in the effectiveness and safety of vaccines and in the
administration system that delivers them. Finally, convenience
encompasses the factors that may affect vaccine uptake, such
as geographical accessibility and affordability among others.
Given this complexity, and in order to provide tools and
methods to design targeted strategies, the Guide to Tailoring
Immunization Programmes (TIP) was created.109 As Butler
also explained, to fully understand hesitancy, it is important
to know that individual decisions are often based on emo-
tions, where risk perception is critical. Individual risk percep-
tion is based on probability and severity; individuals perceive
risk according to how likely they believe it is that a specific
type of event will take place (probability), and how concerned
they are with the consequences of such an event
(severity).110,111 To facilitate risk perception, the human
being has developed ‘mental shortcuts’, also known as heur-
istics, that may sometimes lead to biased judgments and
decisions.110,111 All these factors must be considered when
designing strategies to combat vaccine hesitancy. Strategies
should always correct misinformation112–114 and deliver mes-
sages in the most culturally appropriate way. In this regard, it
is important to consider how different framing of the same
fact can lead to different risk-perception and behavior.115

Thus, emphasizing the positive rather than the negative
aspects of vaccines increases preference and support for
them.116–118 He also noted the power of narratives versus
scientific evidence and data. Furthermore, since our percep-
tions and behaviors are influenced by (often unconscious)
triggers that create certain emotions, it is advisable to utilize
those that create positive associations and avoid the negative
ones. To conclude, Butler stressed the importance of the
education sector in anchoring future resilient communities,
by reaching the parents of tomorrow with vaccination educa-
tion in school settings. He concluded by stating that every
immunization program should ultimately strive towards

building resilient demand – where the community’s func-
tional capacity is able to positively cope with significant anti-
vaccination rhetoric and guard its members against media
amplification and social copying/contagion associated with
vaccine safety fear-mongering, myths, and politicization of
vaccination, where it surfaces.

False contraindications

Dr. Martinón-Torres (Hospital Clínico Universitario de
Santiago, Spain) discussed false contraindications and their
influence on vaccination. False contraindications are com-
mon in routine clinical practice,119,120 and partly explain the
low vaccination coverage registered in some countries and
the missed opportunities for immunization. Importantly,
median missed opportunities are estimated at 32% by the
WHO,121,122 representing interesting targets for focusing
efforts to improve vaccine uptake. As Martinón-Torres
explained, education is critical to avoid missed opportunities
and to fight against false contraindications. In this regard, he
stressed the role played by healthcare professionals (HCPs),
whose proactive recommendation is fundamental. This
recommendation must be made based on a deep knowledge
of the topic, providing evidence that helps to support it.
Different initiatives have been promoted in an attempt to
improve these aspects. These include the ESPID Wiser
Immuniser online course, developed by the European
Society for Paediatric Infectious Diseases (ESPID) and
aimed at any HCP involved with vaccination, or the training
and educational material developed by WHO-Europe with
the intervention of the WHO collaborating center in
Vaccine Safety of Santiago de Compostela, Spain.123 All of
them have been endorsed by the WHO ETAGE (European
Technical Advisory Group of Experts on Immunization)
expert group.124 To conclude, Dr. Martinón-Torres stressed
that a combined global effort (communities, individuals,
HCPs, healthcare authorities) can help to improve the per-
ception of vaccines, and to eliminate doubts and false myths.

Conclusions

Vaccination is key to preventing andmanaging infectious diseases.
Although several vaccines have demonstrated their effectiveness,
such as RV, HPV, PCV13, BCG, influenza, and meningococcal
vaccines, there is still a need for better candidates that help to
prevent new emerging serotypes/strains, and for vaccines against
EV, HPeV and flaviviruses which, to date, have no preventive
alternative. The development of new vaccines will be possible
thanks to next-generation technologies and vaccinomics. The
emergence of infectomics will ostensibly allow precision medicine
that will positively impact on vaccination outcomes. The design
and implementation of appropriate immunization strategies is
also crucial for success, and requires awareness of the importance
of vaccination at all levels, which can only be met through educa-
tion. In this sense, education is also critical to combat vaccine
hesitancy and false contraindications, two important issues that
undermine protection from vaccine-preventable diseases.
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