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Abstract: A balanced chromosomal translocation disrupting DISC1 (Disrupted in Schizophrenia 1)
gene has been linked to psychiatric diseases, such as major depression, bipolar disorder and
schizophrenia. Since the discovery of this translocation, many studies have focused on understating
the role of the truncated isoform of DISC1, hypothesizing that the gain of function of this protein
could be behind the neurobiology of mental conditions, but not so many studies have focused in the
mechanisms impaired due to its loss of function. For that reason, we performed an analysis on the
cellular proteome of primary neurons in which DISC1 was knocked down with the goal of identifying
relevant pathways directly affected by DISC1 loss of function. Using an unbiased proteomic approach,
we found that the expression of 31 proteins related to neurodevelopment (e.g., CRMP-2, stathmin)
and synaptic function (e.g., MUNC-18, NCS-1) is altered by DISC1 in primary mouse neurons. Hence,
this study reinforces the idea that DISC1 is a unifying regulator of both neurodevelopment and
synaptic function, thereby providing a link between these two key anatomical and cellular circuitries.

Keywords: DISC1; neurodevelopment; synapse; CRMP-2; proteomics

1. Introduction

The Disrupted in Schizophrenia 1 (DISC1) gene was found mutated when studying a chromosomal
translocation t(1;11)(q42.1;q14.3) in a Scottish family; this translocation correlated with cases of
schizophrenia, bipolar disorder and major depression [1,2]. Further studies also found that the
truncation of this gene in an American family segregated with cases of schizophrenia [3].

Since the discovery of this translocation, many groups have invested their efforts in understanding
the role of DISC1 protein, with the hope of revealing new mechanisms that could explain the
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neurobiology behind mental disease. Therefore, DISC1 was proposed to be involved in diverse
processes such as neurogenesis [4,5], synapse regulation [6–10], neurite outgrowth [6,11,12], and neural
migration and proliferation [13–15]. Also, yeast two hybrid experiments [16] and other molecular
studies have revealed several important interacting partners of DISC1 including GSK3β [5], PDE4B [17],
Rac1 [8], Girdin [18] or TNIK [9] among others. Thus, DISC1 might act as a molecular scaffold,
providing cohesion and coordination among different biological events in the brain [19].

To acquire a deeper understanding of the mechanisms of action of DISC1, several proteomic analyses
have been conducted to specifically address the role of the truncated isoform of DISC1 on the cellular
proteome of neural cells [20,21]. In this study, we decided to specifically address the role of DISC1 loss of
function, for that we carried out an unbiased proteomic analysis in DISC1-silenced neurons.

We report that DISC1 alters the expression of many relevant proteins related to neurodevelopment
and synaptic function, reinforcing the idea that DISC1 is a key molecular link bridging neurodevelopmental
functions with the regulation of synaptic formation and neurosignaling processes.

2. Results

2.1. Proteomic Analysis

Cell extracts from control and DISC1 knockdown murine primary neurons (Figure S1) were
subjected to proteomic analysis. Four bidimensional gels for the silenced condition versus four of
the control condition were analyzed. 3474 identical spots per gel were detected (Figure S2) and 75 of
them were found differentially expressed with a fold change ≥2 and p value < 0.05 (Table S1). 68 of
these spots were identified using mass spectrometry, corresponding to 48 unique proteins (Table 1).
The functions of these proteins were mainly related to neurodevelopmental processes or synaptic
function (Table 1, Figure S3). Particularly, 19 of them were related to neurodevelopmental processes
(Table 1) and other 19 unique proteins were related to synaptic function (Table 1). Of note, 7 of these
proteins have shared functions (Table 1, Figure S3). Therefore, these results suggest that DISC1 plays
an important role linking these two processes.

Remarkably, some of the identified proteins have previously been described as DISC1 binding
partners, it is the case of 14-3-3 proteins [12] and LIS1 [22], while CRMP-2 has been identified as a
possible DISC1 interactor [16]. However, to the best of our knowledge, this is the first time that DISC1
has been found to also alter their expression. As well, we could identify some of the proteins as
substrates of similar enzymes; this is the case of stathmin, CRMP-2, and MAP1B. These proteins are
known to be phosphorylated by GSK3β to exert their functions.
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Table 1. Proteins involved in neurodevelopment or synaptic function identified through proteomic analysis of primary neurons 1.

Function Protein Fold Change p Value

Neurite outgrowth or neural
migration

Dihydropyrimidinase-related protein 5 (CRMP-5) 2.59 3.066 × 10−5

Dihydropyrimidinase-related protein 3 (CRMP-3) 3.12, 2.23 1.469 × 10−4, 2.894 × 10−4

Dihydropyrimidinase-relatedprotein 2 (CRMP-2) 2.21, 2.03 2.457 × 10−4, 0.059
Dihydropyrimidinase-related protein 1 (CRMP-1) 2.10 9.180 × 10−5

Tubulin alpha-1A chain (TBA1A) 2.01,2.99,2.13 0.0043, 1.326 × 10−4, 4.067 × 10−4

Tubulin beta-2B chain (TBB2B) Inf, 2.42 0.0065, 0.0156
Microtubule-associated protein (MAP1B) 2.04, 2.20,3.03 3.661 × 10−7, 2.894 × 10−4, 2.717 × 10−5

14-3-3 protein epsilon (14-3-3ε) 2.67, 3.19 6.713 × 10−5, 1.854 × 10−4

14-3-3 protein zeta/delta (14-3-3θ/∆) 8.42, 2.63, 3.26, 3.88, 3.89, 6.81,
3.82, 6.20

3.028 × 10−6, 2.334 × 10−4, 1.579 × 10−4 9.307 × 10−4,
0.021, 2.080 × 10−5, 0.0022, 2.572 × 10−6

14-3-3 protein gamma (14-3-3γ) 3.24, 2.30 6.104 × 10−5, 0.0084
Platelet-activating factor acetylhydrolase IB (Lis-1) 2.48 0.0049

Stathmin (STMN) 2.12, 4.64 8.206 × 10−4, 1.021 × 10−4

Syntaxin-7 (STX7) 2.13 0.0022
Tropomyosin alpha-3 chain (TPM3) 2.88 0.0115

Actin, cytoplasmic 2 (ACTG) 4.94, 2.95 4.398 × 10−5, 1.081 × 10−5

Cadherin-13 (CAD13) 2.31 0.0108
Calreticulin (CALR) 2.60 0.0088

Septin-5 (SEPT5) 2.15 0.0034
Apolipoprotein A-I (APOA1) 2.41 9.215 × 10−5

Dynamin 1 (DYN1) 4.33 1.440 × 10−4

Dynamin 1 (DYN1)

Dihydropyrimidinase-related protein 5 (CRMP-5) 2.59 3.066 × 10−5

Dihydropyrimidinase-relatedprotein 2 (CRMP-2) 2.21, 2.03 2.457 × 10−4, 0.059
Microtubule-associated protein (MAP1B) 2.04, 2.20, 3.03 3.661 × 10−7, 2.894 × 10−4, 2.717 × 10−5

Transitional endoplasmic Reticulum ATPase (TERA) 2.21 5.537 × 10−4

Stathmin (STMN) 2.12, 4.64 8.206 × 10−4, 1.021 × 10−4

Syntaxin-binding protein 1 (STXB1) 3.43 0.0010
Syntaxin-7 (STX7) 2.13 0.0022

Ras-related protein Rab-1A (RAB1A) 2.01 0.0023
Ras-related protein Rab-2A (RAB2A) 2.43 4.164 × 10−4

Ras-related protein Rab-11B (RB11B) 3.25 0.0305
Ras-related protein Rab-18 (RAB18) 3.23 5.527 × 10−4

Cadherin-13 (CAD13) 2.31 0.0108
Rho GDP-dissociation inhibitor 2 (GDIR2) 2.28 1.061 × 10−4

Phosphatidylethanolamine-binding protein 1 (HCNP) 3.84, 6.49 4.081 × 10−4, 2.377 × 10−4

Calreticulin (CALR) 2.60 0.0088
Adaptin ear-binding coat-associated protein 1 (NECP1) 2.51 6.028 × 10−5

Neuronal calcium sensor 1 (NCS1) 2.24 9.215 × 10−5

Dynamin 1 (DYN1) 4.33 1.440 × 10−4

1 All the proteins had a fold change > 2 and p value < 0.05. Fold change in red indicates that the protein is overexpressed in DISC1 silenced cells, while fold change in black indicates a
downregulation in DISC1 silenced cells.
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2.2. Ingenuity Pathway

To identify common molecular pathways regulated by DISC1 in our sample set we used the
Ingenuity Pathways Analysis (IPA) software. The 5 top canonical pathways involved in our analysis
are represented in Table 2. It is interesting that CRMP (collapsin response mediator protein) family
was highlighted in the analysis as part of the Semaphorin signaling in neurons, since this signaling
cascade is known to play an important role in neuronal differentiation and axonal growth [23,24].
Previous studies also concluded that the overexpression of the truncated isoform of DISC1 leads to
dysregulation of Semaphorin signaling [20]. This could be a corroborative evidence for the fact that
DISC1 expression has to be tightly and precisely regulated in a small window and that both, above and
below that window you have dysregulation of similar signaling pathways.

Table 2. Ingenuity top canonical pathways.

Name p Value Proteins

14-3-3 mediated signaling 4.99 × 10−7 TUBA1A, 14-3-3G, TUBB2B, PDIA3,1 4-3-3E, 14-3-3Z
Semaphorin signaling in neurons 5.28 × 10−6 CRMP3, CRMP1, CRMP2, CRMP5

Remodeling of epithelial adherent junctions 1.52 × 10−5 DNM1L, TUBA1A, ACTG1, TUBB2B
Cell cycle: G2/M DNA damage checkpoint regulation 1.75 × 10−4 14-3-3G, 14-3-3E, 14-3-3Z

PI3K/AKT signaling 1.87 × 10−4 14-3-3G, 14-3-3E, HSP90AA1, 14-3-3Z

The top molecular and cellular functions identified by IPA are represented in Table 3. The analysis
particularly highlighted proteins involved in neurite outgrowth and branching of neurons.

Table 3. Ingenuity Top 10 molecular and cellular functions.

Name p Value Proteins

Outgrowth of cells 3.94 × 10−8 DNM1L, TUBA1A, HBA1/HBA2, CRMP3, MAP1B, SET,
PDIA3, CRMP2, 14-3-3G, HSP90AA1, CRMP5

Patterning of dendrites 9.56 × 10−8 CRMP1, CRMP2, GDA

Outgrowth of neurites 1.94 × 10−7 DNM1L, TUBA1A, HBA1/HBA2, DPYSL3, MAP1B, SET,
PDIA3, CRMP2, 14-3-3Z, CRMP5

Branching of neurons 2.53 × 10−7 DNM1L, HNRNPK, CRMP3, MAP1B, PDIA3, CRMP1,
CRMP2, CRMP5, GDA

Organization of cytoplasm 7.08 × 10−7
CDH13, RAB2A, HNRNPK, CRMP1, CRMP2, CRMP5,

STMN1, CALR, TPM3, DNM1L, ACTG1, PEX5, CRMP3,
MAP1B, RAB1A, PDIA3, HSP90AA1, GDA

Fibrogenesis 8.53 × 10−7 CALR, CDH13, TPM3, ACTG1, CRMP3, MAP1B, APOA1,
CRMP2, GDA, STMN1

Endocytosis 1.39 × 10−6 CALR, CDH13, HNRNPK, MAP1B, RAB1A, APOA1,
CRMP2, VCP, HSP90AA1, NECAP1

Neuritogenesis 2.09 × 10−6 DNM1L, HNRNPK, CRMP3, MAP1B, PDIA3, CRMP1,
CRMP2, HSP90AA1, CRMP5, GDA, STMN1

Branching of neurites 2.50 × 10−6 DNM1L, HNRNPK, MAP1B, PDIA3, CRMP1, CRMP2,
CRMP5, GDA

Microtubule dynamics 3.39 × 10−6
CDH13, RAB2A, HNRNPK, CRMP1, CRMP2, CRMP5,

STMN1, TPM3, DNM1L, ACTG1, CRMP3, MAP1B, PDIA3,
HSP90AA1, GDA

2.3. DISC1 Alters the Expression of Neurodevelopmental Related Proteins

Considering the results obtained by IPA analysis we focused on the collapsin response mediator
proteins (CRMPs) to perform our validations. These proteins constitute a family of five homologous
cytosolic proteins (CRMP-1-5) involved in microtubule regulation. All of them are phosphorylated
and highly expressed in the developing and adult nervous system where they play important roles in
neuronal development and maturation [25]. Six spots corresponding to CRMP-5, CRMP-3, CRMP-2
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and CRMP-1 were differentially expressed in silenced vs. control cells (Table 1) in our study; in all
cases the proteins were upregulated in DISC1 silenced cells.

Particularly, CRMP-2 has been described as a candidate gene for susceptibility to schizophrenia [26]
and was found upregulated in a proteomic study performed with brain samples from patients with
bipolar disorder, schizophrenia and major depression [27]. We showed differential expression of multiple
CRMP2 isoforms upon DISC1 silencing (Figure 1) in primary neurons. The existence of different isoforms
of CRMP2 has been highlighted in several studies [28,29]. Here, CRMP2 was detected as three isoforms
(labelled 1 to 3). Isoforms 1 and 2, most likely corresponding to CRMP2A and CRMP2B [28] were found
to be downregulated in DISC1-silenced cells, while isoform 3 was upregulated. A similar pattern was
observed using antibodies that recognize CRMP-2 phosphorylated at Thr-514 (Figure 1). Therefore,
isoform 3 most likely corresponds to the spot that was differentially expressed in our proteomic analysis.

Some studies described this isoform as a calpain-associated degradation product [30,31],
while others highlight its role in neurite outgrowth inhibition [32]. If this is the case, it suggests
that DISC1 silencing leads to increased expression of CRMP-2 and, as a result, inhibition of neurite
outgrowth. Of note, Septin-5, a protein that directly interacts with CRMP-2, was also found
differentially expressed in our study (Table 1).
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Figure 1. DISC1 differentially affects CRMP2 isoform levels. (a) Western blot of CRMP2 and pCRMP2
proteins. The total content of CRMP2 falls in DISC1 silenced cells, and the smallest one, thought to be a
cleavage product, rises. The three isoforms are indicated (1–3). (b) Densitometric analysis of CRMP2
bands 2 and 3 (n = 4, * p < 0.05).

2.4. DISC1 Alters the Expression of Synaptic Function Related Proteins

We also consider of great relevance that endocytosis was highlighted under the top molecular and
cellular functions in our IPA analysis (Table 3). Endocytosis and exocytosis are crucial processes for
neurotransmission [33] and regulated by SNARE and SM proteins (Sec1/Munc18-like proteins) [34].
In particular, syntaxin-7 (member of the SNARE complex present on plasma membrane) and syntaxin
binding protein (STXBP, also known as MUNC18) were found upregulated in DISC1-silenced cells
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(Table 1). Other proteins that regulate the exocytic processes responsible for neuronal communication
are Rab proteins [35], which catalyze SNARE complex assembly [36]. In this study four different Rab
proteins were found differentially expressed in DISC1-silenced cells (Table 1).

2.5. DISC1 Silenced SH-SY5Y Cells Show Impaired Neurite Outgrowth

To further test that silencing of DISC1 results in disruption of neural development, we performed
a morphological study in SH-SY5Y cells in which DISC1 was silenced [37]. The absence of DISC1 in this
cell line resulted in morphological changes (Figure 2). Thus, upon retinoic acid-induced differentiation,
DISC1-silenced cells exhibited fewer and shorter neurites (Figure 2, Figure S4).
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Figure 2. DISC1-silenced cells show morphological impairment in neurite outgrowth assays. Cells were
treated with retinoic acid (RA) for 7 and 14 days and neurite length was measured using Image J.
(A) Fluorescence images of SH-SY5Y cells expressing control and DISC1 shRNAs treated with RA for
7 days and immunostained for βIII-tubulin (red); nuclei were stained using DAPI (blue). (B,C) Average
neurite length ± SD; (**** p < 0.0001, significantly different between control and DISC1-silenced cells,
n > 200 for each cell line). (D,E) Frequency (percentile) of cells according to neurite length at 7 days (D)
and 14 days (E) for each cell population; p < 0.0001 control vs. silenced 1 at 7 and 14 days, p < 0.0001
control vs. silenced 4 at 7 days, p < 0.001 control vs. silenced 4 at 14 days (Mann–Whitney U test).

3. Discussion

We have taken advantage of a well-established murine primary neuron DISC1 knock-down
experimental system [8,14,37] to carry out an unbiased proteomic analysis and thus, identify proteins
which have their expression affected by DISC1.

The results of our analysis highlight the importance of DISC1 both in neurodevelopment and
synaptic regulation. Both functions have been already ascribed to DISC1; however, this study describes
new important routes to explore, as the effect DISC1 silencing on the expression of CRMP family of
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proteins. This could be a powerful mechanism to further investigate considering the relevance this
family of proteins has in the neurobiology of mental disease [27,38–40].

Furthermore, DISC1 knockdown resulted in a neurite outgrowth deficit in RA-treated SH-SY5Y
cells. Previous studies have reported an impaired neurite outgrowth in cell models that overexpress
mutant isoforms of DISC1 [11,41] and an increase of neurite outgrowth was seen in PC12 cells that
overexpress DISC1 [42]. Therefore, our study reinforces the idea that the loss of function of DISC1 is
critical for proper regulation of neurite outgrowth. In this direction, other studies have previously
shown DISC1 silencing affected neurite outgrowth using PC12 cells [14]. We have to consider neurite
outgrowth in PC12 cells is a result of two processes, neural differentiation and subsequent neurite
extension, so the effects of silencing may be interpreted as measuring an effect on either/both processes.
In contrast, SH-SY5Y cells are already neuronal and forming neurites, so we could compare neurite
length and the effect is specific to neurite outgrowth.

At the same time, we have found that several proteins that participate in synaptic membrane
trafficking and synapse formation are altered in DISC1 silenced neurons, such as syntaxin 7, MUNC-18,
cadherin-13, and Rab proteins (Table 1), but we cannot conclude whether trafficking is up- or
downregulated in our system. Previous studies have shown that DISC1 enhances the transport
of synaptic vesicles, therefore we could expect that knocking down DISC1 expression produced an
attenuated vesicle transport in primary cortical neurons [43].

Summarizing, our study shows that DISC1 works as an important modulator of proteins that are
directly involved both in neurodevelopment and in adult synaptic regulation, representing a unifier
factor of two seemingly different categories.

4. Materials and Methods

4.1. Antibodies

Commercial antibodies specific for the following proteins were used: CRMP-2, p(Thr514)CRMP-2,
Stathmin, p(Ser38)Stathmin (1:1000; Cell Signaling Technology, Danvers, MA, USA); tubulin, GAPDH
(1:5000; Sigma-Aldrich, St. Louis, MO, USA); the human DISC1-specific antibody 14F2 has been
previously described [44]; the mouse DISC1-specific antibody D27 was a kind gift from Merck
(Kenilworth, NJ, USA). Goat anti-rabbit (1:2000; Dako Cytomation, Glosstrup, Denmark), sheep
anti-mouse (1:5000; GE Healthcare Amersham Bioscience, Uppsala, Sweden) and donkey anti-goat
(1:2000; Santa Cruz Biotechnologies, Santa Cruz, CA, USA) were used as secondary antibodies.

4.2. Cell Culture

SH-SY5Y neuroblastoma cells (European Collection of Cell Cultures, Salisbury, UK) were
maintained in 1:1 Earle’s Balanced Salt Solution (EBSS)- F12HAM (Sigma Aldrich) with 15% fetal
bovine serum (FBS) (Gibco, Life Technologies, Gaithesburg, MD, USA), 1% Glutamine (Gln) (Sigma
Aldrich), 1% non-essential amino acids (NEAA) (Sigma Aldrich), and 1% Penicillin-Streptomycin
(P/S) (Invitrogen). 293FT cells (Invitrogen) were maintained in Dulbecco’s Modified Eagle’s Medium
(DMEM) (Sigma Aldrich) with 10% FBS, 1% sodium pyruvate (Sigma Aldrich), 1% NEAA, 1% Gln,
and 1% P/S.

Murine cortex and hippocampal primary neurons were prepared from 14–15 days embryos
(see below ethical statement). Pregnant dams were killed by cervical dislocation in accordance
with institutional guidelines for care and use of animals. The embryos were maintained and
dissected in PBS Ca/Mg (Invitrogen) supplemented with 33 mM glucose. Pooled tissue was
mechanically dissociated, treated with trypsin (Invitrogen) and DNaseI (Roche Applied Science,
Mannheim, Germany) and resuspended in Neurobasal medium (Invitrogen) supplemented with 50X
B27 (Invitrogen), 0.55g/100mL glucose (Sigma Aldrich), 42 mg/100 mL sodium bicarbonate (Sigma
Aldrich), 1% P/S and 1% glutamine. The cells were plated on poly-D-lysine (Sigma Aldrich) coated
Petri dishes. Cultures were maintained in serum free medium at 37 ◦C in 95% air/5% CO2.
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4.3. Ethics Statement

Animal experiments were carried out in accordance with the European Union Council Directive
86/609/EEC, and were approved by the University of Santiago de Compostela Ethics Committee
(protocol 15005AE/12/FUN 01/PAT 05/JRR2, 5 January 2012).

4.4. DISC1 Silencing

For DISC1 knock-down in murine primary neurons, we chose a validated shRNA construct
developed by Akira Sawa’s group (DISC1 RNAi #1) that has been shown to specifically decrease
the amount of DISC1 in cortical neural cell cultures [8,14,37]. The commercial pLK0.1-puro
non-mammalian shRNA control construct from Sigma Aldrich (reference: SHC002) was used as
a scramble control. Lentiviruses were produced by calcium phosphate triple co-transfection of shRNA
(see Table S3 and Figure S1 in Supporting Information), VSVG and ∆R8.9 constructs into 293FT
packaging cells. Virus-containing medium was collected 48 h after transfection, and added (10 mL of
lentiviral solution/3 × 106 neurons) to the medium of primary neurons at 7 DIV. The medium was
changed 24 h after infection, and incubation continued for 72 h.

In SH-SY5Y cells, DISC1 was silenced using commercial Mission® shRNA lentiviral transduction
particles (Sigma Aldrich, reference NM_018662) containing two alternative PLKO.1-Puro-CMV shRNA
plasmids (Table S2 in Supporting Information). Mission® pLKO.1-puro non-mammalian shRNA
particles (reference: SHC002V) were used as control. Stable cell lines were generated for any of these
constructs after selection with puromycin as previously described [37].

4.5. Sample Preparation for Proteomic Studies

Cells (confluent 100 mm plates) were washed twice with cold PBS and solubilized in lysis buffer
(20 mM HEPES, 2 mM EGTA, 1 mM DTT, 1 mM sodium orthovanadate, 1% Triton X-100, 10% Glycerol,
2 µM leupeptin, 400 µM PMSF, 50 µM β-glycerophosphate, 100 µg/mL Trasylol). The cells were scraped
on ice for 10 min, incubated on ice for 30 min with periodic vortexing every 5 min and centrifuged for
20 min at 14,000 g, 4 ◦C. The supernatant was saved and the pellet discarded. The protein content was
determined using the BCA protein assay kit (Pierce Chemical). Proteins were precipitated with 60%
trichloroacetic acid (TCA) in acetone. After 2–3 acetone washes, proteins were dissolved in 500 µL of 2D
sample buffer (5 M urea, 2 M thiourea, 2 mM tributyl-phosphine, 65 mM DTT, 65 mM CHAPS, 0.15 M
NDSB-256, 1 mM sodium vanadate, 0.1 mM sodium fluoride, and 1 mM benzamidine). Ampholytes
(Servalyte 4–7) were added to the sample to a final concentration of 1.6% (v/v).

4.6. Proteomic Studies

The primary neuron cell lysates were subjected to two-dimensional gel electrophoresis (2-DE).
Protein quantitation was performed with the Coomassie plus protein reagent (Thermo Scientific,
Asheville, NC). Five hundred micrograms of protein were loaded onto each gel to allow detection of
low abundance proteins. Four gels per study group (DISC1 knock-down and control) were compared.
Immobilized pH gradient (IPG) strips (4–7, 24 cm, GE Healthcare, Uppsala, Sweden) were rehydrated
in the sample, and isoelectric focusing (IEF) was performed in a Multiphor (GE Healthcare) for 85 kVh
at 17 ◦C. Following focusing, the IPG strips were immediately equilibrated for 15 min in 4 M urea, 2 M
thiourea, 130 mM DTT, 50 mM Tris pH 6.8, 2% w/v SDS, 30% v/v glycerol. Later, the strips were placed
for 15 min in the same buffer, in which DTT was replaced by 4.5% iodoacetamide (Sigma Aldrich).
The IPG strips were placed on top of the second dimension gels and embedded with 0.5% melted
agarose. Proteins were separated in the second dimension by SDS-polyacrylamide gel electrophoresis
(PAGE) on 10% gels at run conditions of 10 ◦C, 20 mA per gel for 1 h, followed by 40 mA per gel for
4 h by using an Ettan Dalt 6 system (GE Healthcare). Following electrophoresis, gels were fixed in
10% methanol/7% acetic acid for 1 h, and stained overnight with Sypro Ruby fluorescent dye (Lonza,
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Switzerland). After staining, gels were washed for 1 h in 10% methanol/7% acetic acid, and scanned
in a Typhoon 9410 (GE Healthcare).

4.7. Differential Image Analysis

Image analysis was performed with the Ludesi REDFIN 3 Solo software (Ludesi, Malmö, Sweden).
The integrated intensity of each of the spots was measured, and the background corrected and
normalized. Differential expression of proteins was defined on the basis of ≥2-fold change between
group averages and p < 0.05.

4.8. Mass Spectrometric Analysis

Spots of interest were carefully excised and subjected to in-gel digestion with trypsin [45]. Tryptic
digests were analyzed using a 4800 MALDI-TOF/TOF analyzer (Applied Biosystems). Dried peptides
were dissolved in 4 µL of 0.5% formic acid. Equal volumes (0.5 µL) of peptide and matrix solution,
consisting of 3 mg alpha-cyano-4-hydroxycinnamic acid (α-CHCA) dissolved in 1 mL of 50%
acetonitrile in 0.1% trifluoroacetic acid, were deposited using the thin layer method, onto a 384
Opti-TOF MALDI plate (Applied Biosystems). MS spectra were acquired in reflectron positive-ion
mode with a Nd:YAG, 355 nm wavelength laser, averaging 1000 laser shots and using at least three
trypsin autolysis peaks as internal calibration. All MS/MS spectra were performed by selecting the
precursors with a relative resolution of 300 (FWHM) and metastable suppression. Automated analysis
of mass data was achieved by using the 4000 Series Explorer Software V3.5. MS and MS/MS spectra
data were combined through the GPS Explorer Software v3.6. Database search was performed with
the Mascot v2.1 search tool (Matrix Science, London, UK) screening SwissProt (release 56.0). Searches
were restricted to mouse taxonomy allowing carbamidomethyl cysteine as a fixed modification and
oxidized methionine as potential variable modification. Both the precursor mass tolerance and the
MS/MS tolerance were set at 30 ppm and 0.35 Da, respectively, allowing 1 missed tryptic cleavage site.
All spectra and database results were manually inspected in detail using the above software. Protein
scores greater than 56 were accepted as statistically significant (p < 0.05), considering positive the
identification when protein score CI (confidence interval) was above 98%. In case of MS/MS spectra,
total ion score CI was above 95%.

4.9. SDS-PAGE and Western Blotting

A total of 50 µg of protein was mixed with Laemmli sample buffer (BioRad), heated at 100 ◦C
for 10 min, spun, and the supernatant loaded on a 7.5% SDS-PAGE gel. Samples were subjected to
electrophoresis and transferred to polyvinylidenedifluoride (PVDF) membranes (Millipore, Bedford,
MA, USA). The conditions of the electrophoresis were 200 V, 1 h. Electrophoresis was performed using
a Mini-PROTEAN 3 cell electrophoresis system (BioRad). The transfer was performed in a Trans-blot
SD semi-dry transfer cell (BioRad) using the following conditions: 0.8 mA/cm2, 90 min. The PVDF
membranes were blocked in 5% non-fat milk in PBS-0.1% Tween solution overnight at 4 ◦C, then 4
washes of 5 min with PBS-0.1% Tween20 were performed, and the membrane was incubated with the
primary antiserum (in 5% BSA in PBS-0.1%Tween20) for 1 h at room temperature, washed again and
incubated with the peroxidase-conjugated secondary antibody (in PBS-0.1% Tween20), and subjected
to 4 washes of 5 min each with PBS-0.1% Tween20. Finally the membrane was incubated with the
chemiluminescence solution Luminata Forte Western HRP substrate (Merck Millipore). To develop the
membranes Hypercassette (GE Healthcare) and Amersham Hyperfilm ECL (GE Healthcare) were used.

4.10. Ingenuity Pathway

Ingenuity Pathway Analysis software (Ingenuity Systems, CA, USA) was used to investigate
interactions between all the 48 identified proteins. Interactive pathways were generated to observe
potential direct and indirect relations among the differentially expressed proteins. To test the enriched
pathways we consider as settings direct and indirect relationships that were experimentally observed.
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4.11. Neurite Outgrowth Assays

Stable SH-SY5Y cell lines generated using TRCN0000118997 (Silenced 1), TRCN0000119000
(Silenced 4) and non-target shRNAs were cultured for 7 and 14 days in medium containing 10 µM
retinoic acid (RA) (Sigma Aldrich). To analyze neurite outgrowth, images of live cells were taken
under a microscope and processed using Image J software (http://rsb.info.nih.gov/ij). Cells with and
without neurites longer than two cell bodies were counted in photomicrographs of the differentiated
control and DISC1-silenced cells.

4.12. Immunocytochemistry of SH-SY5Y Cells

Retinoic acid-treated cells were fixed in paraformaldehyde and immunostained for β3-tubulin
and nuclei were visualized using DAPI, as previously described by the authors of [46].

4.13. Statistical Analysis

One-way ANOVA was employed in the proteomic analysis to determine statistically significant
differences between groups of samples. For each spot ID, ANOVA p-value was calculated using the
quantified and normalized spots volumes for the matched spot in each of the images. Differential
expression of proteins was defined on the basis of ≥2-fold change between group averages and p < 0.05.

In the neurite outgrowth assay, three fields of up to 100 cells were analyzed for each condition
and the experiment was performed twice. Statistical analysis was performed using a non-parametric
unpaired Mann-Whitney U-test (two-tailed); results were considered significant with p < 0.05.

5. Conclusions

This study shows DISC1 disrupts the expression of a number of proteins involved in
neurodevelopment and synaptic function. Thus, DISC1 acts as a key modulator of two mechanisms
that have been critically implicated in the development of mental disease.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/1/
119/s1.
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