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Abstract 

Background:  Lack of effective tumor-specific delivery systems remains an unmet clinical challenge for successful 
translation of innovative therapies, such as, therapeutic oligonucleotides. In the past decade, exosomes have been 
suggested to be ideal drug delivery systems with application in a broad range of pathologies including cancer, due to 
their organotropic properties. Tumor-derived exosomes, having tumor-homing properties, can efficiently reach can‑
cer cells and therefore behave as carriers for improved drug delivery to the primary tumor and metastases. However, 
due to their complex composition, and still undefined biological functions, safety concerns arise hampering their 
translation to the clinics.

Results:  We propose here the development of exosome-mimetic nanosystems (EMNs) that simulate natural 
tumor-derived exosomes with respect to their structure and functionality, but with a controlled composition, for the 
targeted delivery of therapeutic oligonucleotides to lung adenocarcinoma cells (microRNA-145 mimics). Making use 
of the well-known liposome technology, EMNs can be engineered, loaded with the therapeutic compounds, and 
tailored with specific proteins (integrin α6β4) providing them organotropic properties. EMNs show great similarities to 
natural exosomes with respect to their physicochemical properties, drug loading capacity, and ability to interact with 
the cancer target cells in vitro and in vivo, but are easier to manufacture, can be produced at high yields, and are safer 
by definition.

Conclusions:  We have designed a multifunctional nanoplatform mimicking exosomes, EMNs, and proved their 
potential to reach cancer cells with a similar efficient that tumor-derived exosomes but providing important advan‑
tages in terms of production methodology and regulations. Additionally, EMNs are highly versatile systems that can 
be tunable for a broader range of applications.
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Background
Recent data regarding the outcome of cancer highlight 
the need for more effective and innovative therapies. It 
is generally accepted that selectively reaching tumor cells 
will allow for more effective treatments without toxic side 
effects [1]. Given their role in intercellular communica-
tion, exosomes fulfill the requirements of an ideal drug 
delivery system. They can (i) transport molecules, (ii) 

cross biological membranes, (iii) overcome peripheral 
macrophages, and (iv) reach specific cell types to release 
their content [2]. Exosomes loaded with anticancer 
drugs have already shown promise as a new therapeutic 
approach in animal models [3–7]. Using tumor-derived 
exosomes will provide additional competitive advantages 
for the selective delivery of anticancer therapies not only 
to the primary tumor but also to metastasis and even to 
the premetastatic niche, owing to their intrinsic organo-
tropic tumor-homing properties [8, 9]. Besides, tumor-
derived exosomes are also involved in a wide range 
of biological processes, including tumor progression, 
metastasis formation, and drug resistance, mechanisms 
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that still remain poorly understood, making it necessary 
to generate a deeper knowledge before considering their 
safe application in therapeutics [10, 11].

Referring to the application of exosomes as cancer 
drug delivery systems, and besides the increasing interest 
overseen over the last years, only plant-derived exosomes 
loaded with curcumin for the treatment of colon cancer 
are currently under clinical evaluation with an ongoing 
phase I clinical trial (NCT01294072). This low translation 
rate might be related to the tedious and time-consuming 
isolation processes, as well to the lack of standardization 
regarding the production, characterization, and qual-
ity control assessment of the isolated exosomes. Safety 
concerns, due to their still unknown compositions and 
undescribed functionalities, severely hamper the clinical 
application of tumor-derived exosomes.

The potential of nanotechnology for developing 
improved anticancer therapies can be summarized in an 
increasing number of nanomedicines approved for the 
treatment of cancer [12]. However, the concept of the 
‘magic bullet’, popularized by Paul Ehrlich at the begin-
ning of the XX century, is still an ambitious objective 
in the field of nanotechnology, drug delivery, and can-
cer [1]. Nanostructures that resemble tumor-derived 
exosomes, both structurally and functionally, can provide 
a real alternative for the development of targeted anti-
cancer therapies. It is generally accepted that exosomes 
are enriched in certain lipid species and share common 
groups of proteins, some of them responsible for their 
tumor-homing properties [9, 13, 14]. Therefore, by the 
combination of these materials and selection of an appro-
priate production methodology, it is possible to engineer 
EMNs.

We hence propose the development of EMNs, by inte-
grating key components of tumor-derived exosomes, 
and provide evidence of their potential for the targeted 
delivery of anticancer therapeutics to the target site, 
while overcoming the main limitations of their natural 
counterparts.

Results
Development and characterization of a nanoplatform 
structurally similar to exosomes
Our purpose was to design a nanoplatform that resem-
ble exosomes for their composition and physicochemical 
properties, of utility for the selective delivery of antican-
cer therapies. For reference, we isolated and character-
ized cell-derived extracellular vesicles (Additional file  1: 
Figure S1). WB analysis allowed confirming the effective-
ness of the isolation protocol (Additional file  1: Figure 
S1a), and extensive proteomic analysis (LC–MS/MS) led 
to the identification of other 90 exosomal protein mark-
ers described in the top 100 proteins of the ExoCarta and 

EV Vesiclepedia databases (Additional file 1: Figure S1b). 
Nearly 80% of the identified proteins were also classi-
fied as part of “exosome component” in the Gene Ontol-
ogy Cellular Component section of the FunRich tool 
(Additional file  1: Figure S1c). Exosomes with charac-
teristic cup-shape morphologies were observed by TEM 
(Additional file  1: Figure S1d), their yield of produc-
tion determined (Additional file 1: Figure S1e) and their 
physicochemical properties measured by DLS and LDA 
(Table 1).

We next attempted the preparation of EMNs. We took 
into consideration previously published lipidomics works 
describing the most common lipid species enriched in 
tumor exosomes compared to parent cells, to define their 
composition (Additional file  1: Figure S2a) [13–15]. We 
optimized the preparation methodology based on previ-
ous knowledge using the ethanol injection method (we 
studied the influence of several parameters, lipid concen-
tration, volumes, and the ratio of the components, in the 
physicochemical properties of the resulting liposomes), 
in order to obtain nanoplatforms structurally similar to 
exosomes in a single step (Additional file 1: Figure S2b). 
The properties of the obtained EMNs (schematically rep-
resented in Additional file 1: Figure S2c) are disclosed in 
Table 1. EMNs composition can be further modulated in 
order to obtain nanovesicles of different sizes and proper-
ties (Additional file 1: Table S1). Stability studies revealed 
great colloidal stability during storage (Fig. 1a), and upon 
incubation with cell culture media and human plasma 
(Fig.  1b). Characterization of 19 independent batches 
confirmed the excellent reproducibility of the formula-
tion (Fig. 1c). NMR results (1H and 31P NMR) prove that 
each lipid component was effectively incorporated into 
EMNs (Fig.  1d). While the spectrum corresponding to 
broken EMNs displayed relevant peaks corresponding to 
the free lipid molecules (according to the spectra of the 
pure components PC, SM, and CH, colored rectangles), 

Table 1  Physicochemical properties of exosomes and EMNs

Data presented as mean ± standard deviation; n = 3

PdI polydispersity index, ZP zeta potential, EMNs Exosome-mimetic 
nanosystems, F-EMNs functionalized EMNs with a specific integrin, miR145 
microRNA-145, EMNs + miR145 EMNs loaded with miR145, F-EMNs + miR145 
F-EMNs loaded with miR145
a  Size corresponds to number measurement in DLS

Size (nm)a PdI ZP (mV)

Exosomes from human plasma 98 ± 12 0.4 − 16 ± 1

Exosomes from cancer cell lines 91 ± 11 0.3 − 23 ± 2

EMNs 100 ± 8 0.2 − 7 ± 2

F-EMNs 110 ± 2 0.3 − 6 ± 1

EMNs + miR145 104 ± 2 0.3 − 16 ± 2

F-EMNs + miR145 113 ± 1 0.3 − 5 ± 2
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the intact EMNs spectrum did not display practically any 
peak (only a terminal methyl group), meaning that free 
unreacted lipids were not present in the suspension. The 
31P NMR spectrum was also acquired for a double-check-
ing, allowing to observe two peaks (broken EMNs) cor-
responding to the phosphorylated species of SM and PC. 
Moreover, this analysis resulted in a proportion of 0.48:1 

(SM:PC), similar to the theoretical proportion 0.44:1, 
revealing that each lipid was efficiently and completely 
incorporated in EMNs in the exact proportion used for 
their preparation (Additional file 1: Figure S3).

We provide a methodology for preparation of EMNs 
structurally similar to exosomes (Table 1, Fig. 2a), while 
overcoming important limitations: (i) a single batch of 

Fig. 1  Exosome-mimetic nanoplatforms characterization. a Hydrodynamic size (Z-average) of EMNs measured by dynamic light scattering (DLS) 
under storage conditions (4 °C) and b in culture media and human plasma, over the time (from t = 0 to 120 days, 5 h and 20 h, respectively; 
n = 6). c Hydrodynamic size measured by DLS of 19 independent batches of EMNs (green dots); horizontal bar represents mean ± SD. d 1H-NMR 
spectrum showing representative signals of each component found in intact (D2O) and broken EMNs (MeOD) compared to the spectrum of the 
pure components (PC, SM, and CH). Specific peaks of each component identified in the sample of broken EMNs were highlighted with colored 
rectangles (PC, yellow rectangles; SM, red rectangles; CH, purple rectangles)
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EMNs (2′2 ml), can be produced in 10 min, while the exo-
some isolation time from conditioned medium by serial 
ultracentrifugation (Additional file  1: Figure S1e, proto-
col detailed in Additional file  1: Methods) takes several 
days, therefore offering a time-saving efficiency of at least 
5 days for each production run; this production process 
is also faster than other current alternatives to exosomes, 
such as cell-derived nanovesicles by serial extrusion, 
which also requires time for cell growing and produc-
tion [16] (Fig.  2b), (ii) the production yield, measured 
by the number of obtained particles, is 1000-fold higher 

for EMNs than for exosomes (Fig. 2c), (iii) EMNs have a 
similar drug loading capacity than exosomes in the case 
of RNA (hydrophilic compound), and superior drug load-
ing efficiencies in the case of DNA modified with a cho-
lesterol chain (amphiphilic compound), and hydrophobic 
compounds such as curcumin (Fig. 2d), (iv) EMNs can be 
efficiently internalized by different cancer cells, and sub-
sequently, deliver their payload intracellularly (Additional 
file  1: Figure S2d) without showing toxicity (Additional 
file  1: Figure S2e), (v) lipids are cheap and well-charac-
terized materials, and finally and very importantly from a 

Fig. 2  Comparison between natural exosomes and EMNs. a Size distribution measured by DLS of natural exosomes and EMNs showing that we 
have obtained nanoplatforms of practically the same size than natural exosomes. b Time-consuming comparison for obtaining natural exosomes 
from cell lines and isolation by serial ultracentrifugation, cell-derived nanovesicles (NV) and EMNs. c The number of particles obtained in 216 ml 
of conditioned medium (16 h) of A549 exosomes and one batch of EMNs (2′2 ml). d Encapsulation efficiencies of therapeutic model molecules 
comparing the loading capacity of natural exosomes and EMNs. Bar charts represent mean ± standard deviation, n = 3
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translational perspective, (vi) industrial production pro-
cesses under GMP conditions are already well established 
for liposomes [17].

Association of bioactive macromolecules
We next increased the complexity of the formulation to 
include bioactive macromolecules, RNAs and proteins, 
to obtain EMNs with similar functionalities to simpli-
fied exosomes (Table  1). EMNs showed a good capac-
ity to associate different types of proteins, irrespective 
of their MW and pI, without observation of significant 
changes in their physicochemical properties (nanoparti-
cle size, distribution, and surface charge) and with asso-
ciation efficiencies over 80% (Additional file 1: Table S2, 
Additional file  1: Figure S4). This is particularly impor-
tant, allowing envisioning a versatile nanosystem that can 
be tailored with active proteins providing organotropic 
functionalities. Exosomal ITGα6β4, related with lung 
organotropism [9], was successfully bound to EMNs as 
verified by fluorescent WB (Fig. 3a shows a red signal in 
the loading well that corresponds to the protein bound 
to the EMNs), with the aim of increasing their targeting 
capability to the lung and enhancing their adhesive prop-
erties to recipient cells. The resulting EMNs functional-
ized with ITGα6β (F-EMNs), and labeled with NBD, had 
the capacity to mediate specific and effective interactions 
with laminin-5, according to a binding assay performed 
with laminin-5 coated plates. NBD-labeled plain EMNs 
were included in the experiment as the control formu-
lation (Fig.  3b). Additionally, F-EMNs were perfused 
through a 3D culture model, previously developed by 
our group [18], in order to evaluate their interaction with 
A549 cells that express laminin-5 under dynamic condi-
tions (Additional file 1: Figure S5a). Confocal images con-
firmed an efficient interaction of F-EMNs with the cells 
and show a good colocalization with laminin-5 (Addi-
tional file 1: Figure S5b).

Subsequent experiments were conducted to explore 
the potential of F-EMNs to transport RNAs to cancer 
cells. Besides cationic lipids are not present in the com-
position [19], we proved that EMNs efficiently associate 

therapeutic oncosuppressor miR145 by performing an 
agarose gel retention assay (Fig. 3c). Hence, we eventu-
ally engineered EMNs that simultaneously incorporate 
lipids, proteins, and RNAs, and resemble simplified 
exosomes with respect to their composition, physico-
chemical properties, and functionalities (Table 1). Con-
focal images proved that EMNs mediate an efficient 
delivery of miR145-Cy5 to A549 cells and support our 
notion that integrin functionalization indeed increases 
the adhesive properties in the case of F-EMNs as well 
as the transfection efficiency (Fig.  3d, e). Moreover, 
looking at the 3D reconstruction of the confocal images 
(Additional file  1: Figure S4c) and xz and yz-slices 
(Additional file 1: Figure S4d), a clear colocalization of 
NBD-labeled F-EMNs and miR145-Cy5 was observed, 
proving that the payload and the carrier are traveling 
together. Also, EMNs provide great opportunities for 
being further amendable to add different fluorophores 
for broader applications (Additional file  1: Figure S6 
depicts triple labeling of EMNs with TopFluor-SM, 
Cy5 and DiR). RT-PCR assays confirmed the superior 
behavior of F-EMNs for delivery of therapeutic RNAs 
to cancer cells, which rendered a fivefold increase in 
the expression of miR145 with respect to the con-
trol formulation without ITGα6β4 (EMNs + miR145) 
(Fig.  3f ). As expected, control cells transfected with 
miR145 in solution (miR145 free) or with EMNs loaded 
with a scrambled sequence (EMNs + miRscr) did not 
show differences in the expression of miR145 compared 
to untreated cells. This increase in the intracellular lev-
els of miR145 produced by F-EMNs was translated into 
a significant reduction of the clonogenic capacity of the 
transfected cells (Additional file  1: Figure S7a). Addi-
tionally, to evaluate whether F-EMNs could be trapped 
in the endolysosomal degradation pathway [20], a lys-
osomotropic agent that induces lysosomal membrane 
perturbation, called chloroquine [21, 22], was added 
to the cells previously transfected. Results of a colony 
formation assay showed that no significant differences 
were observed when chloroquine was added, proving 
that F-EMNs can efficiently escape the endolysosomal 

(See figure on next page.)
Fig. 3  Functionalization of EMNs with ITGα6β4 (F-EMNs) and delivery of miRNA145. a Fluorescent Western blot showing the effective association 
of ITGα6β4 with EMNs (F-EMNs) by ultracentrifugation at 120,000×g (pellet) compared to the supernatant (SN). b Specific interaction of F-EMNs 
to coverslips coated with laminin-5. EMNs and F-EMNs were labeled with the fluorophore NBD-CH (green). Scale bars represent 100 µm. c Gel 
retention assay showing the free microRNA145 compared to the miR145 encapsulated in EMNs that remains stacked in the well of the gel. d 
Confocal microscopy images after 4 h transfection of A549 cells with EMNs + miR145 and F-EMNs + miR145. Blue channel: nuclei (DAPI); green 
channel: EMNs and F-EMNs (NBD-CH); red channel: miR145 (Cy5). Scale bars represent 25 µm. e FACS quantitative analysis of the transfection 
efficiency of F-EMNs + miR145-Cy5 compared to EMNs + miR145-Cy5, and the control cells. f Real time-qPCR of miR145 levels in A549 cells after 
4 h transfection with miR145 free, a scramble sequence, EMNs + miR145 and F-EMNs + miR145. Data are representative of three independent 
experiments
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system (Additional file 1: Figure S7b). Moreover, at the 
protein level, F-EMNs loaded with miR145 significantly 
reduced the expression of N-cadherin in the trans-
fected cells, a protein that promotes tumor cell sur-
vival, migration, and invasion, and one of the targets of 
miR145 in lung adenocarcinoma [23] (Additional file 1: 
Figure S7c). Therefore, F-EMNs are able to deliver 
functional miR145 to cancer cells, overcoming the main 
barriers in gene delivery.

F‑EMNs have a similar capacity than tumor‑derived 
exosomes to transport therapeutic RNAs to cancer cells
Final experiments were established to compare tumor-
derived exosomes with engineered F-EMNs loaded 
with miR145, both represented in Fig.  4a. Cryo-TEM 
images revealed similarities with respect to the vesicle 
size, spherical shape, and membrane thickness (Fig. 4b). 
Transfection experiments in  vitro proved that miR145-
loaded F-EMNs are able to transport genetic material to 
tumor A549 cells in a comparable fashion to exosomes 
isolated from the same cell culture, as it can be seen by 
confocal microscopy pictures and FACS analysis (Fig. 4c, 
Additional file 1: Figure S8). Next, in vivo biodistribution 
experiments in mice bearing lung cancers (inoculation 

of luciferase-expressing A549 lung carcinoma cells into 
the tail vein of nude mice leading to tumor formation) 
show a comparable behavior of F-EMNs and tumor-
derived exosomes both loaded with miR145-Cy5. First 
experiments were conducted to determine the most 
suitable administration route. miR145-Cy5-loaded 
F-EMNs were administered either intraperitoneally 
(IP) or retro-orbitally (RO), since by these routes, lungs 
are not reached directly after injection. Results prove 
that F-EMNs + miR145-Cy5 could efficiently reach the 
tumors irrespective of the administration route (Addi-
tional file  1: Figure S9a), but a higher fluorescent signal 
in the liver, kidney, and spleen, was observed after RO in 
comparison to IP injection, indicative of a higher accu-
mulation in these organs following the first administra-
tion route (Additional file  1: Figure S9b). Importantly, 
we did not observe any signal in the heart, supporting 
the idea that F-EMNs treatment would avoid cardiotox-
icity, one of the main concerns related to the develop-
ment of cancer therapeutics [24]. According to these 
results, we decided to pursue with the IP modality, 
which also proved to be adequate for administration of 
other types of nanocarriers loaded with biomolecules 
[25]. We injected miR145-Cy5-loaded F-EMNs and 

Fig. 4  Comparison of natural exosomes and EMNs morphology and miR145 association. a Schematic representation of the composition and 
morphology of natural exosomes (upper) and functionalized miR145-loaded EMNs (lower). b Cryo-TEM images of natural exosomes loaded with 
miR145 (upper) and F-EMNs + miR145 (lower). Scale bar represents 100 nm. c Confocal images of miR145 delivery by natural exosomes (upper) and 
F-EMNs (lower) in A549 cells. Blue channel: nuclei (Hoechst); red channel: microRNA145 (Cy5). Scale bars represent 25 µm
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Fig. 5  In vivo biodistribution of natural exosomes and F-EMNs loaded with miR145-Cy5. a Representative image ex vivo (left) and quantification of 
the Cy5 emission (right) of the lung (tumor) after treatment with natural exosomes or F-EMNs. The luminescence signal (up) and Cy5 fluorescence 
(down) of the same tumor were shown. b Representative confocal microscopy images of lung tumor cryosections stained with DAPI (blue) and ki67 
(green) for analyzing the miR145-Cy5 intracellular uptake in vivo (red) in the metastatic cells after the same treatments indicated in (a). The arrows 
label the areas of miR145-Cy5 accumulation and the scale bar represents 10 μm. c Representative image ex vivo (left) and quantification of the Cy5 
emission (right) of the indicated organs. The scale bars (a, c) represent the luciferase intensity (left) and Cy5-fluorescence (right, arbitrary units). The 
data in graphs (a–c) denote the mean values ± SEM from n = 5 mice per condition and Cy5 fluorescence signal was normalized to the background 
obtained from tumors of mice control. *p < 0.05. Data without statistical significance were not indicated
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miR145-Cy5-loaded tumor-derived exosomes and con-
firmed that both treatments could mediate the accumu-
lation of miRNA in the lung and the tumor with similar 
efficiency (Fig.  5a). Immunofluorescent studies with the 
excised tissue revealed localization of miR145-Cy5 in 
the neighborhood of Ki67 positive proliferative tumor 
cells (Fig. 5b). In addition, there was a significant reduc-
tion in the fluorescence signal observed in the kidney 
and the liver for mice receiving F-EMNs + miR145-Cy5 
with respect to mice receiving exosomes, suggesting that 
F-EMNs can reach to the tumor efficiently, and probably 
provide lower systemic toxicities (Fig. 5c). 

Discussion
Given their role in intercellular communication, 
exosomes are being increasingly explored as delivery 
systems for biomedical purposes. The organotropism 
described for tumor-derived exosomes to the tumor site 
and premetastatic niche could hold the key for designing 
highly efficient anticancer therapies targeting metastatic 
cancer with minimum side effects [9, 26]. However, the 
main drawback for the application of this approach is the 
lack of more in-depth understanding of their molecular 
composition and function, raising safety concerns that 
must be resolved prior to promote their therapeutic 
application [10]. Moreover, the low yield, highly labori-
ous, costly, and time-consuming methods of production 
for cell-derived exosomes, together with a lack of stand-
ardization for relevant processes such are determin-
ing their physicochemical properties and drug loading 
capacity, are additional challenges to overcome [27–29]. 
Researchers have tried to overcome some of these chal-
lenges by pursuing different strategies such as the genera-
tion of nanovesicles by serial cell extrusion, or the use of 
cell membranes (e.g. from erythrocytes, platelets, mesen-
chymal cells-MSC) for the coating of polymeric nanopar-
ticles, rendering what they named exosome-mimics or 
synthetic exosomes [30–34]. However, these approaches 
do not overcome the challenges related to off-target sign-
aling from proteins present in the vesicle surface, or the 
undesirable delivery of additional species present in the 
lumen [29].

In an attempt to overcome technical limitations and 
regulatory issues related to the clinical use of exosomes 
in cancer drug delivery, we have pursued a rational 
design of EMNs based on the well-known liposome tech-
nology. Liposomes are the most widely studied types of 
nanosystems and have successfully been translated into 
clinical products [17]. Therefore, EMNs can benefit for 
the accumulated knowledge in industrial scaling-up and 
GMP production of liposomes. Moreover, considering 
that liposomes are typically used as controls for pre-
clinical evaluation of exosomes as drug delivery carriers, 

rational-designed EMNs can also have an application 
in this regard. Indeed, a recent review by Johnsen et  al. 
highlights the crucial need for an adequate choice of 
liposomal controls in preclinical exosome-based drug 
delivery studies before postulate any potential superior-
ity of exosomes over their liposomal counterparts [35]. 
Authors often choose over-simplified liposomes for their 
comparisons and rarely would choose a clinically relevant 
liposomal formulation. Gold standard liposome controls 
are urgently needed for a much fairer comparison.

EMNs provide additional opportunities of being fur-
ther amenable to surface functionalization as well as 
loading of therapeutic cargo for a broader application 
in other fields. From our perspective, rather than just 
for competitive purposes, our nanoplatform could also 
serve as a tool for a deeper understanding of the still 
not answer questions of exosomes, for instance, what is 
the role of specific lipid species or proteins in the mem-
brane surface of exosomes in trafficking, cellular uptake, 
or cell-to-cell interaction processes. The answers to these 
questions would benefit both fields for reaching sooner a 
novel clinically relevant drug delivery system.

Taking into account all these considerations, we have 
successfully engineered EMNs, mimicking simplified 
natural exosomes not only structurally, but also hold-
ing specific molecular features and functionalities 
(F-EMNs + miR145). EMNs are prepared in very mild 
conditions (e.g. avoiding pH changes and high-energy 
processes), using an optimized methodology that is fast, 
simple, and reproducible. Using the ethanol injection 
methodology, we are able to produce small nanoplat-
forms in few minutes without needing additional steps 
for adapting the size and lamellarity (e.g. extrusion or 
sonication) and keeping the amount of ethanol in the 
formulation below 10%, meaning that it does not need 
to be removed prior to in vivo administration [36]. This 
preparation method resulted in a substantially increased 
production yield and reduced preparation time with 
respect to isolated tumor-derived exosomes. Moreover, 
these nanoplatforms are only composed of natural lipids 
enriched in exosomes [13]. Their use has been widely 
reported in other clinical formulations, therefore hav-
ing a well-known safety profile. Importantly, the lipidic 
composition can be easily tailored, allowing incorpo-
ration of additional species that could be described in 
future for having relevant roles in trafficking, cell com-
munication, or cell-to-cell interaction processes, accom-
panying advances in the lipidomic field [15, 37]. Lastly, 
EMNs efficiently incorporate labile macromolecules 
(i.e. RNA and proteins). Encapsulation of therapeutic 
proteins into liposomes has been attempted with great 
success in the case of insulin, calcitonin, VIP, and inter-
leukins [38]. In our hands, we successfully functionalized 
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our nanoplatforms with the extracellular fraction of the 
transmembrane protein integrin α6β4, that can be found 
in tumor-derived exosomes conferring tumor hom-
ing properties and proved that its presence improves 
the adhesion properties of EMNs and ability to deliver 
the associated therapeutics to cancer cells. EMNs can 
also associate miRNAs with comparable efficiency to 
exosomes, besides they are neutrally charged. Typi-
cally, nanocarriers for gene delivery incorporate cationic 
compounds bearing intrinsic toxicity [39], but neutral 
ones have recently been claimed a much safer alterna-
tive avoiding off-target effects [40]. Transfection studies 
show that our nanoplatforms functionalized with integ-
rins, F-EMNs, can mediate an increase in the intracellu-
lar levels of miR145 of over 800-fold higher than the free 
miR145, and fivefold higher than the control formulation 
(EMNs). This increased expression related to relevant 
changes in cancer cells phenotype. In  vivo experiments 
carried out in a lung cancer mice model allowed us con-
firming that F-EMNs show a similar capacity to transport 
their therapeutic cargo (miR145) to the target as com-
pared to tumor-derived exosomes. Importantly, F-EMNs 
do not apparently provide cardiotoxicity and show a 
lower accumulation by the liver and kidney than their 
natural counterparts.

Conclusions
Overall, we have designed a multifunctional nanoplat-
form mimicking exosomes, F-EMNs loaded with RNAs, 
that can be manufactured and characterized in a con-
trolled manner for a safer biomedical approach, and have 
demonstrated to efficiently transport bioactive macro-
molecules to the target cells in a similar fashion to tumor-
derived exosomes. We provide the first proof-of-concept 
of the potential of this technological nanoplatform as a 
real alternative to exosomes for the development of safer 
and more efficient anticancer therapies, a technology that 
is versatile and can be adapted as we go deep in the study 
of exosomes and the molecular features related to their 
tumor-homing properties.

Methods
Materials
Phosphatidylcholine (Lipoid E PC) and sphingomyelin 
(Lipoid E SM) were obtained from Lipoid GmbH (Lud-
wigshafen, Germany). Cholesterol was purchased from 
Sigma-Aldrich (Madrid, Spain). C16 Ceramide, NDB-6 
Cholesterol, and C11 TopFluor Sphingomyelin, were all 
purchased in Avanti Polar Lipids (Alabaster, AL, USA). 
MilliQ® water (Simplicity 185, Millipore, Bedford, USA) was 
used throughout the study. Ethanol of analytical grade was 
purchased from VWR (Barcelona, Spain). DiR (DiIC18(7) 
(1,1′-Dioctadecyl-3,3,3′,3′-Tetramethylindotricarbocyanine 

Iodide)) and DiD (1,1′-dioctadecyl-3,3,3′,3′-
tetramethylindotricarbocyanine perchlorate) were 
acquired from Thermo Fisher Scientific (USA). miRNA-
145 (miR145; sense strand 5′-GUC​CAG​UUU​UCC​CAG​
GAA​UCCCU-3′, antisense strand 5′-GGA​UUC​CUG​GAA​
AUA​CUG​UUCU-3′), miRNA-145-Cy5 (miR145-Cy5,), 
miRNA-scramble (miRscr) and a model siRNA were syn-
thesized by Eurofins Genomics (Ebersberg, Germany). 
DNA-CH was kindly provided from Ramon Eritja (Nucleic 
Acids Chemistry Group, Institute for Advanced Chemistry 
of Catalonia, Barcelona, Spain).

Cell culture
SW480 (ATCC​® CCL-228), PC-3 (ATCC​® CRL-1435) 
and A549 (ATCC​® CCL-185) cells were grown in Dul-
becco’s modified Eagle’s medium (DMEM) high glu-
cose (Gibco, Thermo Fisher Scientific), supplemented 
with 10% fetal bovine serum (FBS) (Thermo Scientific, 
Spain), and 1% penicillin/streptomycin (Thermo Scien-
tific, Spain). Cells were maintained at 37 °C in a 5% CO2 
humidified atmosphere. Trypsin and Phosphate Buff-
ered Saline (PBS) were purchased from Sigma-Aldrich 
(St. Louis, USA). All cell lines were tested routinely and 
confirmed to be mycoplasma-free. The A549 cells were 
authenticated by STR-profiling according to ATCC 
guidelines.

EMNs preparation and characterization
Preparation of EMNs
EMNs with a well-defined composition (CH:PC:SM:Cer) 
were prepared following the ethanol injection methodol-
ogy. In brief, lipids were dissolved in ethanol, at defined 
ratios (0.9:1:0.4:0.03 w/w), and a total lipid concentration 
of 0.92 mg/ml. 200 μl of the ethanol solution was injected 
with an insulin syringe (0.5  ml, 0.33 × 12  mm ICO.C.1) 
into 2 ml of milliQ water, under magnetic stirring. EMNs 
were spontaneously formed.

Dynamic light scattering (DLS) and laser Doppler 
anemometry (LDA)
The hydrodynamic diameter, polydispersity index and 
superficial charge of the exosomes and EMNs were 
measured using a Zetasizer Nano ZS (Malvern Instru-
ments, UK). Measurements were performed in PBS 1X 
(exosomes) and MilliQ water (EMNs) at room tempera-
ture (RT). For the zeta potential measurements, samples 
were diluted in 1 mM potassium chloride (KCl).

Nanoparticle tracking analysis (NTA)
Particle size and concentration distribution of the EMNs 
and exosomes were also measured using NTA (v2.3; Mal-
vern Instruments, Malvern, UK) according to manufac-
turer’s instructions. Briefly, EMNs samples were vortexed 
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and diluted to a final dilution of 1:1000 in milliQ H2O 
and exosomes 1:100. Blank-filtered H2O was run as a 
negative control. Each sample analysis was conducted for 
60 s and measured five times using Nanosight automatic 
analysis settings. The detection threshold was set to level 
11 and camera level to 15.

Stability
A stability study was performed in human plasma and 
cell culture media (DMEM supplemented with 1% FBS) 
incubated at 37  °C. The colloidal properties of EMNs 
were determined using the Zetasizer Nano ZS each hour 
up to 5 h for human plasma and 20 h for DMEM. Stabil-
ity of the formulation under storage conditions was also 
tested in PBS 1X at 4  °C up to 3  months. All measure-
ments were performed in sextuples.

Nuclear magnetic resonance spectroscopy (NMR)
NMR experiments relying on 1H and 31P detection 
were measured on a Varian Inova 17.6 T spectrometer 
(750 MHz proton resonance) equipped with a triple reso-
nance HCP probe and z-gradient. The 13C NMR spectra 
were measured on a Varian Mercury 7.04 T (75.4 MHz, 
13C resonance) equipped with a double resonance ATB 
probe with z-gradient. The spectra were processed and 
analyzed with MestreNova software v11.0 (Mestrelab. 
inc.).

Cryogenic transmission electron microscopy (cryo‑TEM)
Samples were initially vitrified according to Dubo-
chet protocol [41]. Briefly, an aliquot of 3.5  μl of each 
sample was applied to glow-discharged holey grids for 
1  min, blotted, and rapidly plunged into liquid ethane 
at − 180 °C and kept at this temperature until visualiza-
tion. Images were obtained at 0°-tilt under minimum 
dose conditions using a field emission gun Tecnai 20 G2 
Microscope (FEI, Eindhoven, The Netherlands) equipped 
with a Gatan cold stage operated at 200  keV. Low-dose 
images were collected at a nominal magnification of 
~ 50,000× by using an FEI Eagle CCD camera with a 
step size of 15 μm. The original pixel size of the acquired 
images was 2.74 Å.

Loading of therapeutic molecules
Exosomes
Exosomes were loaded with different molecules. The 
hydrophobic drug Curcumin (Acros Organics™, Thermo-
Fisher Scientific) was loaded into exosomes (0.5% loading 
w/w) by incubation for 10  min in the dark. Curcumin–
exosomes were then isolated by ultracentrifugation at 
120,000×g for 1 h at 15 °C in an SW32 Ti rotor (Optima 
TL Ultracentrifuge, Beckman Coulter) and resuspended 

in MilliQ water. Exosomes were also loaded with nucleic 
acids (random siRNA, DNA-CH or miRNA145) by elec-
troporation as previously described [42]. Briefly, exo-
some pellet was resuspended in PBS 0.1X and gently 
mixed with the appropriated µl of siRNA, DNA-CH or 
miRNA (same loading than for EMNs) in a final volume 
of 400 μl into 0.4 cm electroporation cuvettes. Exosomes 
were then electroporated using a Gene Pulser II Elec-
troporator (Bio-Rad), at 300 V and 25 μF of capacitance. 
Lastly, exosomes were incubated in ice for 30  min to 
allow the exosome membrane to be fully restored. To 
get rid of free nucleic acids, exosomes were diluted with 
cold PBS and isolated again by ultracentrifugation at 
120,000×g for 90 min at 15  °C in 70.1 Ti rotor (Optima 
TL Ultracentrifuge).

EMNs
Loading with curcumin was accomplished by adding the 
drug (0.5% loading w/w) to the ethanolic lipidic phase 
prior injection into the aqueous phase. The suspension 
was then kept under stirring for 10  min in the dark at 
RT and ultracentrifuged at 35,000 rpm for 1 h at 15  °C. 
To associate siRNA and dsDNA to EMNs, the required 
amount of each nucleic acid was dried up (to eliminate 
the water content) using miVac DUP with Quattro pump 
(Genevac) and the organic phase was added, vortexed 
at 12  rpm for 1  min and injected in the aqueous phase 
together with the lipids. miR145 and miR-scramble (8 µg) 
was associated with EMNs by adding directly 8  µg of 
miRNA in the organic phase and injecting it in the aque-
ous phase. The formulation was kept 10 min under mag-
netic stirring.

Encapsulation efficiencies (%EE) of the drug and 
nucleic acids in the nanovesicles were determined indi-
rectly by the difference between the total amount of the 
theoretical amount added in the sample and the free 
amount found in the supernatant after isolation by ultra-
centrifugation. The free drug was detected by measur-
ing the fluorescence curcumin emits (λEx = 420  nm, 
λEm = 535 nm). Free nucleic acids were detected by using 
the SYBER Gold solution (λEx = 500 nm, λEm = 550 nm) 
and the  %EE was calculated following the next equation: 

Semi-quantification of miR145 encapsulated in EMNs 
was performed by agarose gel retention assay. Briefly, 
EMNs + miR145 were concentrated 10 times by a rota-
vapor and loaded onto a 2% agarose gel in TAE 1X buffer. 
Electrophoresis was performed at 100  V for 40  min. 
MiR145 was visualized by SYBR®Gold Nucleic Acid Gel 
Stain (Invitrogen) by UV transillumination and gel pho-
tography. Free miR145 was used as a control.

%EE = (W theoretic−W free)/W theoretic× 100.
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EMNs functionalization with proteins
EMNs were functionalized with different proteins, 
recombinant human integrin α6β4 protein (Vitro), 
Bovine Serum Albumin (BSA, VWR) and Lysozyme 
(Sigma-Aldrich) by incubation. Briefly, EMNs were pre-
pared as described above, and proteins were added to the 
formulation at a ratio 1:100 (protein:lipids) on an orbital 
shaker for 20  min at RT. To assess the protein asso-
ciation of ITGα6β4, F-EMNs were ultracentrifuged at 
60,000 rpm 1 h 15 °C in a Beckman 70.1 Ti rotor (Optima 
TL Ultracentrifuge) to isolate functionalized EMNs from 
free protein, and both fractions were loaded on 10% 
acrylamide gel and detected by fluorescent western blot-
ting using the primary monoclonal antibody ITGβ4 (G-7, 
Santa Cruz Biotechnology). Physicochemical proper-
ties of functionalized EMNs were also measured by DLS 
and LDA. EMNs + miRNA145 were functionalized with 
ITGβ4 following the same procedure.

Specific interaction integrin‑laminin
Coverslips were coated with 1 ml (10 µg/ml) of Laminin-
V (Cultrex®, Vitro) and incubated at 37 °C o/n. Coverslips 
were then washed twice with PBS 1X and 100 µl of EMNs 
with/without integrin functionalization (EMNs and 
F-EMNs) were added and incubated for 24  h at 37  °C. 
Then, the coverslips were washed again 3 × 5  min with 
PBS 1X and mounted on slides with 8 μl of Mowiol 4–88 
Reagent (Merck, Spain), dried at RT and conserved in the 
dark at − 20  °C to be analyzed later on by the  confocal 
microscopy.

miR145 transfection
Confocal microscopy analysis
A549 cells were seeded on coverslips in 24-well plate at a 
density of 8 × 104 cells/well in complete medium. The fol-
lowing day, the same quantity of EMNs or F-EMNs labeled 
with NBD-CH and loaded with miR145-Cy5 were incu-
bated with the cells in medium without supplement for 4 h 
in the dark. After incubation, medium was removed, cells 
were washed with PBS three times and then, fixed with 
paraformaldehyde (PFA; 4% v/v in PBS) in the dark at RT 
for 15 min prior to counterstain the nuclei with DAPI for 
10  min. Lastly, coverslips were mounted on clean slides 
with 8  μl of Mowiol, dried at RT, and conserved in the 
dark at − 20 °C to be analyzed later on by Confocal Laser-
Scanning Microscope (CSLM, Leica TCS SP5). Cells were 
also transfected with miR145-Cy5-loaded exosomes and 
F-EMNs, adding the same amount of miR145-Cy5 (8 µg) 
to the cells and following the just mentioned protocol.

FACS analysis
miR145-Cy5-loaded EMNs, F-EMNs and exosomes 
were incubated with the cells as described above. 

After incubation, the medium was removed, cells were 
washed with PBS three times and trypsinized. A549 
cells incubated with PBS instead of nanovesicles were 
also included as a control. Collected cells were fixed 
in 0.4% paraformaldehyde and kept at 4  °C until FACS 
analysis. The percent of Cy5 positive cells was deter-
mined by a FACScan flow cytometer (BD Biosciences). 
A minimum of 10,000 events per condition was meas-
ured. The analysis of the results was performed using 
FlowJo Software (TreeStar Inc., Ashland, USA).

Transfection
24  h before transfection, A549 cells were seeded on 
6-well plate at a low density of 25 × 104  cells/well in 
complete DMEM. The next day, complete medium 
was removed, cells were washed with PBS 1X and new 
medium without supplement was added. 8 µg of miR145 
associated with EMNs and F-EMNs, as well as miR145 
free in solution (as a control) were added to each well 
and incubated at 37 °C and 5% CO2 atmosphere for 4 h. 
After incubation, the culture medium was removed, 
cells were washed with PBS and fresh complete medium 
was added and further incubated for 96 h prior to being 
collected for analyses by RT-PCR and functional assays 
(colony forming assay and Western blot).

RT‑PCR analysis
Total microRNA was extracted from transfected A549 
cells using the microRNA Purification Kit (Norgen 
Biotek Corp.) following the manufacturer’s protocol. 
After nanodrop RNA quantification, the RNA was ret-
rotranscribed into cDNA using the qScript™ microRNA 
cDNA Synthesis Kit (Quanta Bioscience™) according to 
manufacturer’s instructions. Quantitative Real Time-
PCR was performed using PerfeCta SYBR Green Super-
Mix (Quanta Bioscience™) in an AriaMx Real-time PCR 
System (Agilent Genomics). The relative quantities of 
miR145 were normalized using the housekeeping RNU-6 
and using the comparative CT method. For miRNA 
quantitation, specific forward, reverse and universal 
primers were acquired from Eurofins (Fisher Scien-
tific): hsa-miR145-5p (5′-CGC​GCG​TTC​CAG​TTT​TCC​
CAGG-3′) and universal reverse PCR primer (5′-GTG​
CAG​GGT​CCG​AGGT-3′), and the housekeeping small 
RNA control primer RNU6 (5′-CTC​GCT​TCG​GCA​
GCACA-3′, 5′-AAC​GCT​TCA​CGA​ATT​TGC​GT-3′). 
The PCR conditions consisted of 2  min of initial dena-
turation at 95  °C, 40 cycles of denaturation at 95  °C for 
5  s and annealing at 60  °C for 30  s, and lastly, 1 min of 
activation at 95 °C, annealing at 55 °C for 15 s and elonga-
tion at 95 °C for 30 s. Each experiment was performed in 
triplicate.
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In vivo assays
Biodistribution
1 × 106 A549 lung cancer Luc cells, kindly provided by 
Dr. Anxo Vidal (Santiago de Compostela, Spain), were 
injected in 0.1  ml PBS into the tail vein of 7-week-old 
female nu/nu mice (Charles River). The tumor growth 
was follow-up by in  vivo bioluminescence imaging 
using the Xenogen IVIS (IVISR Lumina II). Mice were 
anesthetized and injected retro-orbitally with 1.5 mg of 
d-luciferin (15  mg/ml in PBS), images were taken dur-
ing 5  min with a Xenogen IVIS (IVISR Lumina II) sys-
tem coupled to Living Image acquisition and analysis 
software (Xenogen Corporation). For bioluminescence 
intensity (BLI) plots, photon flux was calculated as pre-
viously described [43]. Measurements were performed 
once a week starting 1 week after tail vein injection and 
up to 15  weeks. Mice were randomly divided into two 
groups and treated with miR145-Cy5-loaded F-EMNs 
(n = 5) or miR145-Cy5-loaded exosomes (n = 5). Each 
mouse was injected with a dose of 2.5 µg of miR145-Cy5. 
After 8 h, mice were sacrificed, and the biodistribution 
of miR145-Cy5 was quantified by ex  vivo fluorescence 
of different organs, lung + tumor, heart, spleen, kidney, 
and liver, using the using Xenogen IVIS. In each experi-
ment, mice treated with F-EMNs without miR145-Cy5 
were used as a control in order to reduce the background 
tissue.

Confocal analysis in tissue samples
At the end of the experiment, once the mice were sacri-
ficed and the fluorescence quantified, lung tumors were 
extracted and frozen in OCT (Tissue-Tek, Sakura). The 
xenografted tumors were stained with DAPI and Ki67 
(Rabbit Anti-Human Ki-67 Monoclonal Antibody (Clone 
SP6), #MAD-020310Q, Master Diagnostica) for the iden-
tification of metastatic cells. Images were captured in Cy5 
emission on an LSM710 Confocal microscope (Zeiss), 
analyzed and quantified using Fiji software.

Mice handling
The animal handling and the experimental procedures 
were approved by the internal ethical research and ani-
mal welfare committee (IIB, UAM), and by the Local 
Authorities (Comunidad de Madrid, PROEX424/15) 
which complied with the European Union (Directive 
2010/63/UE) and Spanish Government guidelines (Real 
Decreto 53/20133).

Statistics
Statistical analyses were performed with a GraphPad 
Prism® software (version 6.0c). All data are expressed 
as mean ± standard deviation (SD). Significant dif-
ferences between two groups were determined by 

a Student’s t-test and multiple comparisons among 
conditions were done using one-way analysis of vari-
ance (ANOVA) followed by Bonferroni post hoc test. * 
(p < 0.05), ** (0.05 > p < 0.001), *** (p < 0.0001) was con-
sidered statistically significant. All experiments were 
performed at least in triplicate.
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