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Abstract: Infectious diseases are the primary cause of mortality worldwide. The dangers of infectious
disease are compounded with antimicrobial resistance, which remains the greatest concern for human
health. Although novel approaches are under investigation, the World Health Organization predicts
that by 2050, septicaemia caused by antimicrobial resistant bacteria could result in 10 million deaths per
year. One of the main challenges in medical microbiology is to develop novel experimental approaches,
which enable a better understanding of bacterial infections and antimicrobial resistance. After the
introduction of whole genome sequencing, there was a great improvement in bacterial detection
and identification, which also enabled the characterization of virulence factors and antimicrobial
resistance genes. Today, the use of in silico experiments jointly with computational and machine
learning offer an in depth understanding of systems biology, allowing us to use this knowledge for the
prevention, prediction, and control of infectious disease. Herein, the aim of this review is to discuss
the latest advances in human health engineering and their applicability in the control of infectious
diseases. An in-depth knowledge of host—pathogen—protein interactions, combined with a better
understanding of a host’s immune response and bacterial fitness, are key determinants for halting
infectious diseases and antimicrobial resistance dissemination.
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1. Introduction

Over the last decade, theoretical and computational biology, combined with open access to biological
databases, have presented new opportunities in different areas of the field, such as genomics or evolutionary
biology. In the 1970s, bacterial dynamics emerged as its own discipline [1], focusing on the exploration of
bacterial population dynamics to gain a better understanding of the bacteria’s ability to manipulate, escape,
or evade a host’s immune response. These traits enable bacteria to transmit and re-infect, providing one of
many major questions that modeling tries to address. Other questions that modeling is trying to answer
include how bacterial populations evolve under antibiotic pressure, what the function of dose-effect is in
the outcome of infection, and what risk factors are associated with epidemics. In addition, models are
great tools for the generation of predictions that can be later tested in the laboratory, and in this context,
computational (in silico) models combined with systems biology aid clinical microbiology.

Appl. Sci. 2019, 9, 2486; doi:10.3390/app9122486 www.mdpi.com/journal/applsci


http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-7417-2460
https://orcid.org/0000-0003-1227-6437
http://www.mdpi.com/2076-3417/9/12/2486?type=check_update&version=1
http://dx.doi.org/10.3390/app9122486
http://www.mdpi.com/journal/applsci

Appl. Sci. 2019, 9, 2486 20f19

Systems Biology started to be developed before World War II, with researchers such as Ludwig
von Bertalanffy and, more recently, Mihajlo Mesarovic [2,3], under “the understanding that the whole
is greater than the sum of the parts” [4]. The increase in this field was prompted by improvements
of functional genomics [5,6], the completion of the human genome project, and the development of
high-throughput technologies.

Systems biology intends to unravel the interactions between components of biological systems,
as well as the dynamics of interactions, and the changes in systems (inter- and intra- species), by using
-omics tools [7]. It is important to consider that systems biology comprises several disciplines, such as
biological computing and mathematical biology.

One of the applications of in silico biological data is computational systems biology [8], which uses
computational techniques to develop algorithms, networks, and complex connections for cellular
and biological processes [9]. In the infectious disease field, the use of these tools is mostly applied to
diagnosis, treatment, and prevention.

In summary, mathematical models and computer simulations are mainly utilized to predict
changes in systems caused by different environmental conditions. The modelling of infectious
diseases [10] is helping us better understand the dynamics of host-pathogen interactions [11], and how
the immune response can be orchestrated to differentially respond to inter- and intra-bacterial species
interactions. Moreover, computational engineering enables us to predict the evolution or adaptation of
bacteria to new environments, including the acquisition of resistance [12] to any given antibiotic.

In addition, protein-ligand docking [13] is assisting in the generation of predictions that aim
to understand, in depth, the effects of the position and orientation of a ligand when it is bound to a
protein receptor or enzyme and how that position affects the overall efficiency of drugs [14]. This area
of study also enables the molecular study of host—pathogen interactions [15,16]. Targeted chemical
cross-linking (TX)—mass spectrometry (MS) or TX-MS is a new concept that integrates the complex
networks with the modelling of quaternary protein structures [16] (Figure 1).
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Figure 1. Targeted cross-linking procedure for targeted chemical cross-linking mass spectrometry (TX-MS).
Firstly, Protein-Protein Interactions (PPIs) were chemically cross-linked with heavy/light disuccinimidyl
suberate (DSS) to further digest the complex PPI cross-linkers. The digested peptide signals were targeted
and extracted from Liquid Chromatography (LC)-MS data. The chemically complex cross-linked elements
were subjected to MS analysis and subsequently modelled to generate tertiary structures, which were docked
to produce a compendium of possible quaternary structure models. For identification of the candidate
cross-linked peptides, the authors proposed the use of a guide for the molecular docking of crystal structures
of the targeted proteins. This research was originally published in Nature Communications. Hauri et al. Rapid
determination of quaternary protein structures in complex biological samples. Nat Commun. 2019 Jan 14;
10(1):192© Copyright Clearance Center’s. Reprint from [16].
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The aim of this review is to compile the latest discoveries and advances on health computational
engineering, new mathematical models, and the applications of these models in the biomedical field.
We also would like to introduce this information to medical doctors and clinicians, to promote the
use and implementation of these technologies at hospitals and health care systems. We will focus on
the most relevant and recent findings regarding antibiotic discoveries and human immune response
against infectious diseases and end with our perspective and opinions.

2. Overview of Mathematical Models to Predict Infectious Diseases

Epidemiology has been considered the gold standard for investigating diseases” dynamics in
varied populations, focusing mainly on the distribution and determinants of disease, to better prevent
and control these diseases. Moreover, epidemiology could be considered the first mathematical model
applied to the prevention and control of diseases [17]. Epidemic mathematical models have usually
been applied to the prediction of outbreaks, epidemics, and transmission, as well as the resurgence of
infectious disease [18]. Guidelines and vaccination programmes have been established to prevent and
control transmission. Although these first epidemiological models were “static” and representative of
neither different social or geographical spaces, nor their evolution over time [17,19], they have served
as a model to develop dynamic models that evolve over time (Figure 2).
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Figure 2. Schematic classification of mathematical models applied to epidemiology and medicine.
The figure shows the evolution from a simpler statistical fixed model, such as a regression
model, to a more sophisticated and dynamic learning machine or artificial intelligence models.
SIR, Susceptible-Infection-Recover.

Bayesian models are based on dynamic probabilistic models, in which a “theorem” describes the
probability of any event supported by prior knowledge related to that particular event. The variables
are random, and uncertainty can be measured [20]. The applicability of Bayesian models [21],
networks [22-24], or successful combinations [25], e.g., with gaussian variables [26], is too broad.
Certainly, Bayesian methods are more difficult to implement than traditional methods, especially in
epidemiology and infection diseases [27]. However, they have been applied in malaria studies [28],
to evaluate interventions applied to prevent human immunodeficiency virus (HIV) infection and its
collateral risk [29], as well as to evaluate the population dynamics of HIV [30].

Epidemiology (or non-epidemic) models are based on different statistical mathematical models,
such as (i) regression, mainly used to detect outbreaks [31], as well as (ii) the autoregressive integrated
moving average model, ARIMA, and seasonal SARIMA, both used to predict outbreaks and risk
factors [32,33]. Currently, more complex models are gainging popularity, including [34] (iii) models
based on a time series, which are more useful in antimicrobial studies to unravel trends [35], (iv) methods
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including cumulative sum and an exponentially weighted moving average (for example, in the
ARIBACA project, were this model was implemented to detect and forecast selected Caribbean
diseases, such as dengue [36]), and (v) spatial models, which are more sophisticated, including
place-specific models requiring multivariate techniques to model the spatial heterogeneity of all the
infection’s covariates [37] (Table A1).

Mathematical or mechanist models are more complex state-space models based on compartments
(S = susceptible, E = exposed, and I = infectious and recovered populations). The compartmental or
deterministic approach treats each different status of an epidemic as a different sub-population or
compartment of a population [38]. The stochastic approach takes random variables into consideration.
Susceptible-Infection-Recover (SIR) compartments and derivatives models are mainly used for
predictions about the spread of infectious diseases [39], vaccination impact [40], or both [41,42].
Importantly, population dynamics are inexorably subjected to environmental background and natural
phenomena, and rather than following random oscillations, they strictly follow deterministic laws.
The stochastic or random SIR model has the advantage of introducing “the random or the chance” as a
variable [43]. Then, stochastic models can more realistically predict epidemics [44], vaccination impact
on herd immunity [45], or the dynamics of protein—protein interactions (PPIs) during infections [46].
Certainly, increasing the complexity and number of variables allows for more realistic predictions that
enable us to extrapolate results to real situations. The models proposed by Barnard et al. [47] and
Sabini et al. [48] accurately predict epidemics and their spread (Table AT).

Finally, in the realm of artificial intelligence (Al) and machine learning systems, the studies
in [49,50] provide a wide range of novel approaches that are applicable to system biology [51,52] or
can be directly used in immunology [53] and the study of infectious disease, for prevention [54] or
diagnosis [55,56]. The great similarity between Al and machine learning makes it difficult to separate
the two, but in principle, Al aims to function as a human brain, working first on the acquisition of
knowledge to then solve problems; this process aims to increase the rate of success and not accuracy.
On the contrary, machine learning studies the use of big data to make an informed decision in order to
maximize performance. Deep learning is an improved subset of machine learning. The Support Vector
Machine [57] and delta bitscore DeltaBS [58] are examples of machine learning applied to a biological
system, which enable us to predict the adaptive phenotype of a new host-niche and its probability to
develop severe disease. The Support Vector Machine generates a probability, based on assigned scores
for each isolate, creating a unique measure of host specificity, to indicate which animals may more
easily exchange specific isolates [57,58]. DeltaBS is a training variable that allows the estimation of
combined effects on gene function. This model allows the identification of biological mechanisms for
adaptation, and the detection of new emerging lineages (by searching recurrent patterns of mutation
accumulation) by recognizing novel mutations linked to the same underlying shift [58] (Table A1).

3. Host-Pathogen Interactions

The mammalian immune system is a sophisticated, complex, and well-orchestrated network of
cells and antimicrobial molecules operating at different levels to protect it against disease [59-61].
Initially, the immune response is innately effective against “new threats”. The adaptive immunity
responsible for the memory response includes cellular and humoral immune responses. Unfortunately,
successful pathogens have developed subversive strategies to exploit, modulate, and/or evade immune
control and clearance [59], including evolutionarily optimized protein structures that bind with high
specificity to protein-like hosts [62]. In addition, the immune response is highly specific to host and
pathogen, hence why everyone has a unique immune system and will respond differently to immune
challenges, such as infection or sepsis.

Opver this century, the great advances and innovations in computational methods have contributed
to a comprehensive and deeper understanding of biologically complex systems and host—pathogen
interactions [7]. These new approaches allow us to understand the nuances of these specific
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interactions [6,9]. Meanwhile, new strategies are developing animal models to better understand and
confirm the host immune response against bacterial infections [7,10].

3.1. Modeling the Immune System

Mechanistic models are commonly used to predict the outcomes of individual immune responses.
Stochastic and mechanistic models can identify cell-to-cell differences, which can determine the response
of individual cells [63]. However, other studies focused on dynamic interactions to better explain
how invertebrate organisms can optimize an immune strategy to overcome infections. Through the
integration of all high-throughput multiomics data, it is possible to construct predictive models of the
networks and dynamic interactions between the biological components of host-pathogen systems,
allowing for a better understanding of complex biological systems.

Systems Biology can define PPIs to unravel interactions amongst several bacterial virulence factors
and host proteins involved in the inflammatory process, the complement system, or the immune
response [64]. Doubtlessly, both biological systems (host and pathogen) are highly complex and not
completely understood, limiting the possibilities of the input data on our models. This complexity
causes some important questions to remain unanswered, such as why the same microbe can be
commensal or pathogen, how two people from the same community could respond differently to the
same microbial threat, and the key immune components that dictate the outcome of the infectious
process [65].

The complexity of biological systems requires multidisciplinary teams to tackle vast amounts of
data and make sense of them. On the other hand, one the greatest limitations to implementing dynamic
projects in immunology and infectious disease is that a variety of high-level skill sets are needed.
Furthermore, experiments require many complex techniques in order to understand the mechanism
of immune response [66]. Simpler models allow us to include novel processes as new subsystems
and enable increasing complexity. For example, Alvarez et al. modelled the immune response after
stimulation with bacterial lipopolysaccharides to better understand the inflammatory process [67]
(Table A1). In this section, we focus on various immune system-related bacteria, mainly based on
proteomics data and databases. Certainly, “DNA is the blueprint for life, however proteins are the
bricks” [4].

Streptococcus pyogenes has been used as a model of system biology in different studies, because its
independent but interconnected virulence mechanisms promote different aspects of the colonization,
immune evasion, and spreading processes [68,69]. Moreover, its role as an immunomodulator
of the humoral immunity is well-known [70]. Sjoholm et al. have recently characterized the
human plasma-S. pyogenes bacterial surface PPI network by using an adsorption plasma approach in
combination with MS [71]. Later, the authors developed a dynamic model to study the stoichiometric
relationship between the bacterial surface and its adhered host proteins (Figure 3) [11] (Table Al).
In addition, shotgun MS is a highlight the proteogenomic or genomics field, and the strategies
developed by Malmstrom et al. work with generic data for integrating genome and proteome data [72].
After constructing a spectral library for S. pyogens, quantification is performed using sequential window
acquisition of all theoretical mass spectra (SWATH)-like data independent acquisition (DIA)-MS,
to increase insights into host—pathogen interactions. The SWATH-MS strategy was also used by
Malmstrom et al. to quantify the proteins involved in pathological conditions, like sepsis, to
understand how different pathophysiological processes can twist the PPI network and composition of
the plasma [73].
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Figure 3. The stoichiometric surface density models of Streptococcus pyogenes—human plasma
interactions. (A) The S. pyogenes surface (B) with plasma adsorbed to the surface; (C) the
S. pyogenes-M1-deletion mutant; and (D) S. pyogenes with plasma adsorbed to surface. Selective
Reaction Monitoring (SRM)-MS, which counted the number of bacteria, was used to build the model of
S. pyogenes’s surface interaction network in a host environment. The model was based on stoichiometric
relations between host proteins, surface proteins, and the surface of the pathogen. This research was
originally published in Molecular & Cellular Proteomics. Sjoholm et al. Targeted proteomics and absolute
protein quantification for the construction of a stoichiometric host-pathogen surface density model.
Mol Cell Proteomics 2017, 16, S29-S41© the American Society for Biochemistry and Molecular Biology.
Reprint from [11] with permission. All rights reserved.

Salmonella enterica has also been used as a pathogen model for PPI networks between the host
and pathogen because of its ability to survive into macrophages [74]. The authors first designed
two different mathematical models, assuming a Poisson distribution, to describe the dynamics of
the different subpopulation systems. They then estimated the relevant parameters, such as bacterial
division or death rates, in several organs [75] (Table A1). After the development of different mechanistic
models based on probability distribution, the authors predicted the dynamics of a macrophage infected
by S. enterica (the mean) [76]. Finally, they adjusted inferences according to divergences to validate
the model. Currently, the model can incorporate any variable or moment and reproduce better
experimental data with multiple replicates and random numbers of independent time points [46].

Recently, Golumbeanu et al. utilized a proteo-transcriptomic approach, in combination with a
Gaussian mixed-effects model, to investigate time-series patterns of gene expression. They analysed
both PPIs directions, virus and host, proposing a more detailed view of host response to HIV
infection, as well as the first step to understand regulatory mechanisms involved in it [77] (Table AT).
Understanding the mechanisms underlying sepsis and/or resistance will enable us to predict severity
and outcome of the infection [78,79]. We agree, modelling is presenting as a useful tool to be applied in
the clinical settings and can be used with animal infections models to reduce theories and confirm,
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hypotheses as well as examine the efficacy new drugs or treatment strategies. It is still unclear whether
bacteria evolve to become more or less harmful, and how much the host immune response can influence
in this within-host bacterial adaptation [80]. To answer these questions more human data regarding
infection and inflammatory processes are still necessary.

3.2. Predicting Sepsis

Sepsis is a systemic inflammatory response syndrome, because of the uncontrolled high level
of inflammation, usually triggered to fight an infection, which can dysregulate host response,
and consequently, organ dysfunction, multi-organ failed, and finally death. Certainly, sepsis is
a complex disorder resulting from a host over-responding to a threat, which also modulates host
immune system. According to World Health Organization, in 2015, more than 50% of deaths of
neonates and children aged under 5 years were due to sepsis (A70/13 document), and according to U.S.
Centers of Disease Control and prevention, one in every three patients admitted at American hospital
suffer sepsis.

The current protocol to treat sepsis is mainly focused on offering vital support, amines, antibiotics
of wide spectrum, and time expecting the patient to positively respond; and unfortunately, there are no
specific drugs capable to control the prognosis of this disease. Therefore, and after decades of consensus
and continues up-grades on the guidelines, to manage septicaemia, computational engineering has
begun to offer models that allow for the investigation of the disease, while aiming to control it. In this
section, we comment on the most relevant models focused on understanding the mechanism of
infection and sepsis.

Dynamic agent-based models (ABM) have been used to identify host—pathogen interactions
involved in sepsis [81,82]. Seal et al. developed a virtual environment that mimics the interface of a host
Pseudomonas aeruginosa in the gut milieu ABM (GM-ABM). The authors, in a meticulous study, used
ABM to model spatially diverse, dynamic, and multi-factorial systems, allowing them to further include
rules that dictate the interactions within the local environment and other agents. Before integration
into the GM-ABM, the experimental references were validated and integrated in vivo into GM-ABM,
which was used like a virtual animal model [83]. Shi et al. [84,85], using a Salmonella murine model,
integrated the adaptive immunity results obtained in vivo, and used mathematical models that allowed
them to define three different patterns, healing, persistent infection, and organ dysfunction. The model
quantified the levels of neutrophils and monocytes, too. Based on the results, they hypothesised that
the outcome of the septicaemia would improve if patients were given anti-inflammatory drugs in the
first 3-6 h post-infection [84]. Other studies used Klebsiella pneumoniae and Acinetobacter baumanii in
a five-compartment kinetic model to explore the pathogenesis and kinetics of a dialysis-like device.
Based on the extra-corporeal strategy to intensify the bacterial clearance, the results revealed a faster
bacterial clearance using a nanomagnetic device [86]. Cockrell and Ann proposed a different approach
using ABM as an Innate Immune Response (IIR), or an IIR-ABM. They represented a more realistic 2-D
model of the human endothelial-blood interface using five representative parameters (the damage and
resilience from host, and virulence from bacteria) [52] (Table A1).

Currently, machine learning and Al have gained greater significance in the infectious disease
research field. Using big databases for the extraction of different variables enables us to obtain patterns
of sepsis and the progression of the disease [87-89]. Although the machine learning approach appears
to be better than lineal regression models [90], it also has limitations. A general challenge is to
determinate the number of training examples necessary to fit the model. Another big challenge is to
improve the learning curves according to the greater complexity introduced by additional features or
more complex model architectures, such as clinical notes or vital sign data. The major limitation is to
address missing data (non-diagnosed infections) and variables (non-identified bacteria), which induce
a bias in the relationship between variables [91]. Different test performances and predictive accuracies
can result from collecting data for the clinical background of the patient, as well as different thresholds,
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such as positive urine culture (a 100 to 100,000 colony forming unit/mL) and the subjective diagnostic
criteria of microbiologists [92] (Table A1).

Sepsis is a complex process, and the possibility of applying traditional scores (for example,
Sequential Organ Failure Assessment (SOFA) or Acute Physiologic Assessment and Chronic Health
Evaluation (APACHE) scores) [93], combined with new scores and early diagnosis, provides future
hope for patients [91,94-96]. Recently, Mount Sinai Hospital lunched a precise post-op model to predict
prostate cancer disease progression and clinical failure [97]. In the future, this Al application could
be utilized to predict clinical failure due to sepsis. Kamaleswaran et al. [98] used physio-markers
to predict the onset of severe sepsis in critically ill children by a novel algorithm created by an Al
Nemati et al. [99] used an artificial intelligence sepsis expert for early prediction in adults. A group of
researchers from the Imperial College of London published the first Al to help physicians in sepsis care,
the Al Clinician” [100]. Overall, despite the limitations, Al provides individualised and personalized
treatments that could help to develop strategies to overcome sepsis (Table A1).

4. Antimicrobial-Pathogen Interactions: Overcoming Antimicrobial Resistance

Antimicrobial resistance (AMR) is a major public health concern, and at present, some bacterial
infections are untreatable (Figure 4). There is an imperative need for new antibiotics, and new strategies
are desperately needed to fight infectious diseases [101]. Previous research has focused on accurate
and early diagnosis to better combat infections [55], while some work has also been done to better
identify mechanism of resistance in bacteria, mycobacteria, viruses, and parasites. The consensus is to
focus on early detection of the microbe, as well as its possible mechanisms of resistance, in order to
provide the necessary antimicrobial treatment and avoid a further increase on AMR [12,102,103].
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Figure 4. Transmission cycle of antimicrobial resistance (AMR) and/or superbugs. Patient zero
(PZ) harbours AMR and/or a superbug. PZ comes to the Hospital because of an infectious disease.
The infection is finally overcome with wide-spectrum antibiotics, and PZ leaves the hospital. However,
the superbug has been able to spread by fomites, hands, and even directly person to person. Once PZ
is at home, he or she is still colonized and harbours the AMR. The superbug then spreads across the
neighbourhood, and so on. The superbug ends up at a waste treatment plant. In spite of treatments,
the superbug can survive and keep circulating across water for human consumtion. In addition,
the residual waste water is spit into rivers or seas, thereby maintaining the ARM and superbugs, and,
once more, the cycle starts again. Cartoons are available online [104,105].
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AMR is also a complex process that takes place at different levels of bacterial organization.
Interactions between microbes and antimicrobials are complex [106], and there are many subtleties to
be considered, including colonization, infection, bacterial fitness, and bacterial evolution [12,107,108].
According to environmental conditions, such as antibiotic pressure, bacterial evolution can address
independent rates of change and selection [109-111]. It is important to highlight that the bacterial
mutation rate is faster than the rate in humans, allowing for a rapid evolution that enables adaptation
to different threats, as well as immunity [65]. Knowledge of the proteins involved in mechanisms of
resistance, as well as the PPI network against antimicrobial pressure, can lead to new ways to improve
the development of novel and effective treatment strategies.

Molecular docking [112] focuses on structure-activity studies, screening, and the
optimization/modification of novel molecules. This process has promoted novel strategies to emerge in
the area of antimicrobial discovery. Zhang et al. [113], for example, combined different machine learning
models with molecular docking to select the best strategy, resulting on a novel and highly promising
approach. Likewise, TX-MS [16] could be applied to determine bacteria—antibiotic interactions and
the disruption of the network under different conditions, in order to unravel the molecular base of
mechanisms of resistance. Even so, nothing can predict the AMR ratio, not even the success of a new
drug or strategy.

Briefly, statistical models are extensively used to predict the transmission of superbugs and resistant
microbes in different settings, e.g., in an intensive care unit (ICU) [114,115]. Most of these models are
highly useful to predict and control outbreaks [35]. In addition, dynamics models based on systems
instead of compartments [116] are also beneficial to implement in a specific community or region [103].
The stochastic models are the most suitable, when considering variables such as cross-transmission or
temporary nursery staff, in the study of outbreaks [117] (Table A1l). Machine learning combined with
algorithms and in vitro experiments can help to develop new antimicrobial peptides [118] to predict
their activity over different pathogenic microorganisms [119], and at the laboratory level, they can
rapidly determine identification and antimicrobial susceptibility [120].

Based on a simple time series model, Arepyeva et al. [121] proposed a regressive sub-model to
anticipate certain statements and predict the rate of resistance associated with antibiotic consumption.
Ternent et al. [122] and Dasbasi et al. [123] hypothesized that hosts contribute to bacterial resistance,
including the development of novel PPIs between host and bacteria, which might mediate bacterial
clearance [122,123]. Treatment failure can be attributed to a delay in treatment, the wrong choice of
treatment, or a compromised immune response in the host [124]. Recently, more complex models based
on ABM have offered a dynamic and pragmatic alternative to the traditional SIR models, but have also
yielded an increase in heterogeneity and complexity [125]. Campos et al. [111] modelled an approach
to estimate antimicrobial resistance dynamics, focusing on the bacterial membrane. Moreover, this
membrane model could be applied to systems biology to understand the complexity of PPIs (Table Al).

Lastly, using Klebsiella pneumoniae as a model, a machine learning regression model was able to
predict the minimal inhibitory concentration (MIC) using Pathosystems Resource Integration Center
(PATRIC) [126] annotation, the Comprehensive Antibiotic Resistance Database [127], and the whole
genome sequence of K. pneumoniae for AMR gene prediction [128]. One year later, Nguyen et al. [129]
used a similar approach to determinate the MIC for Salmonella. Both studies also used eXtreme
Gradient Boosting or XGBoost as an algorithm for the machine learning model [130] with high
accuracy. Arango-Argoty et al. [131] used metagenomics data to determine the AMRs, and, importantly,
they identified a novel aspect to consider in these analyses—the heteroresistant population [132].
The clinical and scientific literature suggest that advancements in genome sequencing technologies
have made successfully rapid diagnostics available for infectious diseases and the prediction of AMR,
which is particularly beneficial for slow-growing microorganisms like Mycobacteria [133] or the small
colony variant of Pseudomonas aeruginosas [134], which is usually isolated from cystic fibrosis patients
or chronic obstructive lung diseases. This availability enables deep learning approaches to study the
spread and acquisition of AMR and predicted MICs with a high confidence interval, with no a priori
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information about the underlying gene content or resistance phenotypes, but enables us to identify and
diagnose AMR determinants to rapidly select antimicrobials directly from the organism sequence [135]
(Table Al).

5. Conclusions

Over the past decades, mathematical models have been developed and improved,
further increasing their complexity and better mimicking the biological, chemical, and physiological
environments that enable a more robust understanding of host-pathogen PPIs. Mathematical models
provide an in silico translational platform, which offers predictions that allow for the investigation
of antimicrobial resistance, host-pathogen interactions, and microbial pathogenesis. However,
the challenge is still to understand the interactions between host-pathogen-antibiotic microbiota over
time, which is the key to overcoming not only septicaemia but all infectious diseases. Deep learning
across big data can develop knowledge of each individual immune response to different infections and
provide enough information to unravel the molecular mechanism used by bacteria to overcome the
host immune response as well as its antimicrobial effect.

Certainly, we are in the initial stages of Al and are still learning how to build more realistic and
accurate models. We believe that during the next decade we will have the potential to connect patient
diagnosis with treatment using machine learning or Al, which will provide a key finding in translational
medicine, as well as tremendous progress towards personalized medicine. However, limitations
and disadvantages, such as the non-automatization of the clinical microbiology labs supplying the
subjective diagnosis, or the lack of electronic-informatized clinical backgrounds, must be addressed.
Overall, the expectation to implement Al is, nowadays, a fact rather than a perspective.
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Table Al. Advantages and limitations of individually mentioned mathematical models applied to modelling infectious diseases. It is shown the main advantages and

limitations together most relevant models. Likewise, it is only shown the individual models base on statistical mathematical model and not the combination among them.

Model Type Base on Advantages Limitations and Disadvantages Examples References
. . No spatial distribution of cases. Parametric and
. Incidence and prevalence studies. . . . -
Regression . . .. Predeterminate range of time, semiparametric [31,136,137]
Outbreaks studies. Simplicity. : .
without time trends models
Longitudinal studies. Outbreaks Time is stationary. Statistical testin
Autoregressive studies. Repetitive studies over . Y: lca’ feSng - ARIMA [32,33,136,137]
. . [P is based on the normal distribution.
the time during a specific interval. SARIMA
Estimates the trend and seasonal  Prediction towards to mean. i?\%[lz s ARCH Model
Statistical Time series effects; Possible prediction’s errors. [34,35,77,121,137]
estimates dynamic causal effects Determinist models.
Cumulative sum Con51de.rs the deviations. Initially, po trends trends or CUSUM [34,36,137]
Sequential. seasonality are assumed.
Simple, cumulative, weighted or
. o ! . SMA, CMA, WMA
Moving area exponential. Measure the Prediction-lag. and EWMA. [137,138]
moment.
Describes the mean according to SIR, SEIR, MSIR,
. an initial defined value (condition =~ Always the same result. It may MSEIR
L. Deterministic or parameters) and allows miss information. SIS, SEIS, SIR-carrier [39-41,67,103]
Mechanistic simpler fitting status
Stochastic Contains inherent randomness May not be predicted precisely Environmental and [11,42-45,75,117]

being more realistic

demographical
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Model Type Base on Advantages Limitations and Disadvantages Examples References
Focuses directly on individual
variable and their interactions, ABS
Simulation reflecting relationships in a IIR-ABM. CM-ABM [52,83,85,86]
hypothetical real world ’
Agent Based considers heterogenicity Complexity. Nonlinearity.
The components interact among .
Complex Systems them. Study of relationships and gfggg’o Il\;Iultl—layer, [47,48,84,111,116,125]
dynamisms. y 8y
Learns from big-data and makes
an informed decision. Training process
Learning and Accuracy Machine Learning [49,51,53,55,57,58,87—
Intelligence training ’ ’ Big data. Results rely on number of Deep Learning 92,128-131,133,134]
Big data. Results reveal hidden parameters. The youth of
patte.rr}s. ;?nd predict future approaches. External validation
Learning and possibilities studies to confirm the predictions. Al [50,56,98-100]

solving

Successful and intelligent

Improves data management

ARCH: autoregressive conditional heteroskedasticity; NMA: nonlinear moving average; CUSUM: cumulative sum; SMA: simple moving area; CMA: cumulative moving area;
WMA: weighted moving area; EWMA: exponentially weighted moving average; SEIR: exposed-SIR; MSIR: maternity-immunized-SIR; MSEIR: maternity-immunized SEIR; SIS:
susceptible-infection-susceptible; SEIS: susceptible-exposed-infection-susceptible; ABS: agent based simulation.
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