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Abstract: The evaluation of mediastinal lymph nodes is critical for the correct staging of patients with
lung cancer (LC). Endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA)
is a minimally invasive technique for mediastinal staging, though unfortunately lymph node
micrometastasis is often missed by cytological analysis. The aim of this study was to evaluate
the predictive capacity of methylation biomarkers and provide a classification rule for predicting
malignancy in false negative EBUS-TBNA samples. The study included 112 patients with a new or
suspected diagnosis of LC that were referred to EBUS-TBNA. Methylation of p16/INK4a, MGMT,
SHOX2, E-cadherin, DLEC1, and RASSF1A was quantified by nested methylation-specific qPCR in
218 EBUS-TBNA lymph node samples. Cross-validated linear regression models were evaluated to
predict malignancy. According to EBUS-TBNA and final diagnosis, 90 samples were true positives
for malignancy, 110 were true negatives, and 18 were false negatives. MGMT, SHOX2, and E-cadherin
were the methylation markers that better predicted malignancy. The model including sex, age, short
axis diameter and standard uptake value of adenopathy, and SHOX2 showed 82.7% cross-validated
sensitivity and 82.4% specificity for the detection of malignant lymphadenopathies among negative
cytology samples. Our results suggest that the predictive model approach proposed can complement
EBUS-TBNA for mediastinal staging.

Keywords: DNA methylation; mediastinal and hilar lymph node; staging; diagnosis; lung cancer;
biomarker; endobronchial ultrasound; bronchoscopy

1. Introduction

Lung cancer (LC) is the leading cause of cancer death worldwide [1]. Approximately 80% of the
cases are non-small cell lung cancer (NSCLC), with lung adenocarcinoma being the most prevalent
type. Correct mediastinal and hilar staging is critical for choosing the best option for management
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and treatment of patients with NSCLC who are potential candidates of curative therapeutic strategies
that include surgery, radiotherapy, chemotherapy and multimodal treatments [2,3]. Endobronchial
ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) and endoscopic ultrasound-guided
fine needle aspiration (EUS-FNA) are minimally invasive techniques that have shown high diagnostic
value for mediastinal staging in patients with LC [4,5]. Sampling of mediastinal lymph nodes with these
procedures associates with reduced morbidity compared to surgical biopsy (usually mediastinoscopy
or video-assisted thoracoscopy), which is the current gold-standard for mediastinal lymph node
staging [6]. It has been demonstrated that samples obtained with EBUS-TBNA are adequate for
accurate characterization of cytopathology and molecular testing, including methylation biomarkers,
and can have a role in diagnosis, prognosis, and response to chemotherapy [7–12].

Epigenetic alterations are known to contribute to tumor development, progression, and metastasis
in NSCLC [13]. DNA methylation is one of the most common epigenetic mechanisms studied.
Aberrantly methylated genes are attractive candidate markers, as cancer-specific methylation occurs at
all stages of tumorigenesis, appears to be stable, yields an amplifiable signal, and can be assayed with
high accuracy [14,15]. Promoter hypermethylation plays an important role in the inactivation of tumor
suppressor genes, and methylation profiles have been considered promising biomarkers in LC [14,16].

Cytological analysis of lymph node samples obtained with EBUS-TBNA shows sensitivity between
85% and 100% for the detection of lymph node malignancy [17–19]. However, metastatic involvement
cannot be ruled out in all negative cytological adenopathies, reporting negative predictive values
(NPV) ranging from 11–97%. The proportion of negative cytological samples that are actually false
negatives result in incorrect staging, and in cases with high suspicion of metastasis, surgical staging is
required. Methylation analysis has the potential to increase the diagnostic performance of cytology in
EBUS-TBNA samples.

In this study, we selected six tumor suppressor genes that have been reported to be inactivated
by promoter hypermethylation in NSCLC. The genes analyzed are involved in important cellular
functions: p16/INK4a is a key regulator of the cell cycle and has been associated with poor prognosis in
NSCLC patients [20]; MGMT codifies a critical enzyme that repairs DNA alkylation damages and its
hypermethylation is associated with an increased risk of NSCLC and is more prevalent in advanced
stages [21,22]; SHOX2 has DNA-binding transcription factor activity and has been described as a
valuable biomarker for LC diagnosis and staging [23,24]; E-cadherin has a key role in cell-cell adhesion
and tissue differentiation, and its hypermethylation contributes to cancer progression [25]; DLEC1
is implicated in cell proliferation and differentiation, and is frequently methylated in LC lymphatic
metastasis [26,27]; and RASSF1A is involved in the regulation of apoptosis and its methylation is
associated with poor survival [28,29].

The aim of our study was to analyze methylation in p16/INK4a, MGMT, SHOX2, E-cadherin, DLEC1,
and RASSF1A in EBUS-TBNA samples, and determine their ability to detect metastatic infiltration
(micrometastasis). We also evaluated the predictive capacity of clinical and epidemiological variables,
and together with methylation biomarkers, provide a classification rule for predicting malignancy in
negative cytological samples (false negatives).

2. Results

2.1. Clinical Characteristics of Patients and Lymph Nodes

We included in our study 218 lymph node samples obtained from 112 patients. Epidemiological
and clinical data from patients and adenopathies are summarized in Table S1 and Table 1, respectively.
Men comprised 83.9% of the study cohort, and the mean age was 64.92 ± 9.89 years. The most
frequent location of the primary tumor was the upper right lobe, and adenocarcinoma was the most
prevalent histology. The most frequent lymph node station aspiration sites were 4R (36.2%) and
subcarinal (33.9%). According to cytology, 90 samples (41.3%) were positive for malignancy (true
positives, TP). Among the 128 negative for malignancy lymph node samples, 18 (8.2%) were found to
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be malignant (false negative results, FN). Among the 18 FN, malignancy was surgically confirmed
in 9 lymph nodes, while the other 9 cases experienced adenopathy growth during follow-up. Out
of these, malignancy was confirmed by a new EBUS-TBNA in three cases, and in the other six cases
the diagnosis of malignancy was assumed by the LC Multidisciplinary Committee. Therefore, the
prevalence of malignant lymph nodes in this cohort was 49.5% (108 samples).

Table 1. Characteristics of lymph nodes.

Adenopathy (n = 218) n (%)

Mediastinal
Hilar

186 (85.3%)
32 (14.7%)

Adenopathy

2R, 2L, 4R, 4L, 7
10, 11, 12

8, 9

182 (83.5%)
32 (14.7%)
4 (1.8%)

Adenopathy Short Axis (mm), mean ± SD 12.1 ± 4.9

Number of Punctures, mean ± SD 1.9 ± 1.1

SUV Adenopathy, mean ± SD 4.2 ± 3.1

Metastatic Node

Adenocarcinoma
Squamous cell

Large cell

71 (32.6%)
29 (13.3%)
8 (3.6%)

EBUS-TBNA Results

Metastatic nodes (true positives, TP)
Negative (true + false negatives, TN + FN)
Non metastatic nodes (true negatives, TN)

Metastatic nodes (false negatives, FN)

90 (41.3%)
128 (58.7%)
110 (50.5%)
18 (8.2%)

SUV: standard uptake value.

Patients with lymph node metastasis (men vs. women: 77.3% vs. 22.7%) and non-metastatic
lymph nodes (men vs. women: 93.5% vs. 6.5%) were more frequently men (p = 0.034) (Table 2).
Metastatic lymph nodes had a greater short axis diameter (p = 0.065) and a greater SUV in PET scanning
(p = 0.046) compared to non-metastatic lymph nodes. We also found that the difference between SUVs
from the tumor and adenopathy was increased in non-metastatic lymph nodes (p = 0.172).

Table 2. Comparison of patients and lymph nodes characteristics according to EBUS-TBNA and
final diagnosis.

Variable (%), mean ± SD Metastatic Lymph Node Non-Metastatic Lymph Node p-Value

Sex, male 51 (77.3%) 43 (93.5%) 0.034
Age, mean ± SD 66.0 ± 10.7 63.1 ± 8.5 0.754

Tobacco habit, actual or former smoker 57 (86.4%) 43 (93.5%) 0.358
Tumor diameter (mm), mean ± SD 34.5 ± 18.2 36.7 ± 22.7 0.681

SUV Tumor, mean ± SD 10.2 ± 5.1 10.69 ± 6.4 0.423
Adenopathy location, ipsilateral 56 (84.8%) 38 (82.6%) 0.254

Adenopathy short axis (mm), mean ± SD 13.3 ± 5.5 11.4 ± 5.0 0.065
SUV Adenopathy, mean ± SD 6.0 ± 3.9 2.7 ± 1.3 0.046
Ratio SUVa/SUVt, mean ± SD 0.7 ± 0.7 0.5 ± 0.6 0.391

Difference SUVt-SUVa, mean ± SD 4.5 ± 5.4 8.1 ± 6.6 0.172

SUV: standard uptake value.

2.2. Methylation of Candidate Genes and Evaluation of the Diagnostic Performance

The six methylation candidate genes p16/INK4a, MGMT, SHOX2, E-cadherin, DLEC1, and RASSF1A
were analyzed in all the lymph node samples. Mean, median, and IQ range is shown in Table 3
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according to the cytology result and the final diagnosis. The dot plot in Figure 1 represents the
methylation values for each gene and group. In general, TP showed a larger mean/median for all genes
in relation to the other groups. Comparison of methylation values between TP, FN, and TN resulted in
statistically significant differences for all candidates, except MGMT.

Table 3. Normalized methylation percentages of candidate genes according to EBUS-TBNA and
final diagnosis.

Gene

TP (n = 90) FN (n = 18) TN (n = 110) p-Value1 AUC1 AUC2

NMP Mean NMP Mean NMP Mean p-Value2 (95% CI) (95% CI)
NMP Median NMP Median NMP Median (108 vs. 110) (18 vs. 110)

(IQ range) (IQ range) (IQ range)

p16/INK4a
9.69 0.29 0.62 0.603 0.629
0.09 0.12 0.04 0.030 (0.535–0.668) (0.539–0.713)

(2 × 10−4–0.60) (1 × 10−3–0.63) (9 × 10−4–0.13) 0.079

MGMT
2.10 0.53 0.14 0.542 0.611

1 × 10−4 0.02 6 × 10−5 0.302 (0.474–0.610) (0.521–0.696)
(7 × 10−6–0.04) (6 × 10−5–0.15) (4 × 10−6–0.05) 0.131

SHOX2
25.26 6.75 0.49 0.862 0.732
13.52 0.76 0.39 <0.0001 (0.809–0.905) (0.646–0.806)

(2.73–34.37) (0.32–2.58) (0.10–0.70) 0.002

E-cadherin
0.76 1.97 0.80 0.602 3 0.531
0.19 0.38 0.54 0.006 (0.533–0.667) (0.440–0.620)

(0.03–0.56) (0.18–2.52) (0.13–1.01) 0.681

DLEC1
11.07 0.005 0.17 0.655 0.521
0.01 1.5 × 10−4 2×10−4 <0.0001 (0.581–0.718) (0.431–0.610)

(2 × 10−5–4.04) (0–0.032) (4 × 10−6–6 × 10−3) 0.773

RASSF1A
8.28 0.08 1.04 0.575 0.613 3

6 × 10−4 8 × 10−7 4 × 10−6 0.003 (0.505–0.642) (0.523–0.697)
(6 × 10−7–5.30) (0–0.02) (9 × 10−7–0.014) 0.126

TP: true positives; FN: false negatives; TN: true negatives; NMP: Normalized methylation percentage; p-Value1:
Kruskal–Wallis test for comparing TP, FN, and TN; p-Value2: Mann–Whitney U test used to compare FN and TN;
AUC1: area under the curve for the diagnosis of malignancy (TP and FN vs. TN); AUC2: under the curve for the
diagnosis of malignancy (FN vs. TN). 3: a lower result in the test (less methylation) implicates a more positive test.
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Figure 1. Representation of the methylation percentage of the six candidate genes analyzed, grouped
according to EBUS-TBNA and final diagnosis. TP: true positive; FN: false negative; TN: true negative.
Median methylation is represented with a horizontal blue line for TP, a green line for TN, and a red line
for FN. The six FN patients in which malignancy was not histologically confirmed are represented as
filled red circles. In the y-axis, Please change 10E-009 into scientific notion 1.0×10−9.
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When we compared samples with negative cytology (TN vs. FN), differences in methylation were
only found for SHOX2, observing increased values in FN, and suggesting its utility for the detection of
malignancy. The area under the curve (AUC) for all methylated genes is provided in Table 3 for the
diagnosis of malignancy based on all samples, and for negative cytology cases (FN vs. TN). Overall, the
marker that better performed in both contexts was SHOX2, with an AUC = 0.862 (95% CI 0.809–0.905)
for detecting malignancy in all lymph node samples, and an AUC = 0.732 (95% CI 0.646–0.806) in the
case of negative cytology samples. Methylated DLEC1 showed the second best AUC when all samples
were included, though its performance was the worst for negative lymph nodes. The individual
performance of the six methylated genes (sensitivity and specificity based on the Youden index) is
provided in Table S2, indicating that the diagnostic yield of the individual methylation markers is not
optimal for the detection of malignancy.

2.3. Performance of A Multivariate Model to Predict Malignancy in Negative Lymph Node Samples

Epidemiological, clinical, and methylation variables available for lymph node samples were first
evaluated in an univariate analysis limited to negative cytology samples, with the aim of determining
the importance of each variable for predicting malignancy. Table 4 summarizes these analyses, where
we only included variables that are possible determinants for malignancy in cytology negative lymph
node samples.

Table 4. Univariate analysis of epidemiological and clinical variables, and methylation candidates in
cytological negative samples according to EBUS-TBNA and final diagnosis.

Variable TN FN OR (95% CI) p-Value

Sex, male 103 (93.6%) 11 (61.1%) 9.36 (2.8–31.7) <0.001
Age, mean ± SD 63.3 ± 8.8 70.3 ± 9.6 1.09 (1.027–1.156) 0.004

Location of primary tumor, UL 78 (70.9%) 14 (77.8%) 0.67 (0.22–2.07) 0.488
Tumor histology, adenocarcinoma 44 (60.3%) 6 (46.2%) 0.55 (0.17–1.85) 0.346
Tumor diameter (mm), mean ± SD 34.9 ± 19.8 40.8 ± 20.2 1.01 (0.99–1.04) 0.241

SUV primary tumor, mean ± SD 11.3 ± 6.3 13.2 ± 3.9 1.05 (0.97–1.14) 0.234
Adenopathy short axis (mm), mean ± SD 11.5 ± 4.7 9.7 ± 2.7 0.9 (0.788–1.028) 0.120

SUV adenopathy, mean ± SD 2.9 ± 1.5 4.0 ± 2.4 1.37 (1.04–1.79) 0.025
p16/INK4a, mean ± SD 0.6 ± 5.04 0.3 ± 0.3 0.976 (0.82–1.17) 0.791

MGMT, mean ± SD 0.1 ± 0.7 0.5 ± 1.5 1.35 (0.91–2.01) 0.142
SHOX2, mean ± SD 0.5 ± 0.5 6.8 ± 23.3 2.90 (1.56–5.39) 0.001

E-cadherin, mean ± SD 0.8 ± 1.1 2.0 ± 4.0 1.27 (0.98–1.64) 0.068
DLEC1, mean ± SD 0.2 ± 1.1 5 × 10−3

± 1 × 10−2 0 (0–0) 0.529
RASSF1A, mean ± SD 1.0 ± 9.5 0.1 ± 0.2 0.638 (0.10–3.98) 0.631

TN: true negative; FN: false negative; OR: odds ratio; UL: upper lobe; SUV: standard uptake value.

According to the criteria for variable selection (p-value < 0.15), the epidemiological variables with
the largest associations with diagnosis of malignancy were sex and age; the clinical variables most
associated with diagnosis were short axis diameter of adenopathy and SUV of adenopathy, while the
strongest associations among the methylation variables were found for MGMT, SHOX2, and E-cadherin.
Based on these results, we built multivariate predictive models and evaluated its performance in terms
of AUCs using 10-fold cross-validation (Table 5 and Figure 2).

The three models included the two epidemiological and clinical variables; additionally, Model 1
included the three methylation genes (SHOX2, E-cadherin, and MGMT), Model 2 included the two
genes that were the most associated with diagnosis (SHOX2 and E-cadherin), while SHOX2 was the
only methylation marker included in Model 3. After 10-fold cross-validation, these three prediction
models showed similar AUCs, over 0.80. Based on the Youden index, the model that best performed
was Model 3, which included the following variables: sex, age, short axis diameter of adenopathy, SUV
of adenopathy, and methylated SHOX2. This model showed a cross-validated specificity of 82.7% and
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82.4% sensitivity for the detection of malignant lymphadenopathies among negative cytology samples,
with a 96.8% negative predictive value and a 42.4% positive predictive value.

Table 5. Multivariate regression models for the detection of malignancy in cytological negative
lymph nodes.

Model Variables Included
Apparent AUC AUC Specificity 1 +PV 1

Cut-Off 1
(95% CI) 10-fold CV Sensitivity 1

−PV 1

1
Sex, age, adenopathy short axis, SUV of 0.958

0.815
73.6% 32.6%

>0.021adenopathy, MGMT, SHOX2, E-cadherin (0.907–0.986) 87.5% 97.6%

2
Sex, age, adenopathy short axis, SUV of 0.953

0.812
83.6% 40.0%

>0.066adenopathy, SHOX2, E-cadherin (0.900–0.983) 75.0% 95.8%

3
Sex, age, adenopathy short axis, SUV of 0.951

0.827
82.7% 42.4%

>0.076adenopathy, SHOX2 (0.897–0.981) 82.4% 96.8%

SUV: standard uptake value; AUC: area under the curve; CV: cross-validated; +PV: positive predictive value;
−PV: negative predictive value; 1: cross-validated, corresponding to the Youden index.Cancers 2019, 11, 1408 7 of 14 
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of malignancy in cytological negative lymph nodes.

3. Discussion

Mediastinal lymph nodes are the most common sites of metastasis, so an accurate evaluation is a
critical component for correct staging of NSCLC patients. The EBUS-TBNA examination is considered
a key tool in clinical practice guidelines on mediastinal diagnosis and staging, with sensitivity ranging
from 88–91% [17,18,30,31]. Various studies have shown that, even when changes are observed on CT
or PET, the reliability of negative EBUS-TBNA results varies widely, depending on a wide range of
variables related to the tumor (type, site, stage, and size), the lymphadenopathies (site, echographic
features, size, and PET avidity), the procedure (number of passes, number and location of the stations
sampled, and type of sedation), the experience of the endoscopist and pathologist, and the quality of
the sample obtained [32,33]. Thus, the main problem is making the convenient decision of confirming
negative results by surgery [5]. Consequently, micrometastasis may not be diagnosed because a
complete analysis of the adenopathy is not performed.

In this study, the prevalence of malignant lymph nodes was 49.5% and the sensitivity of
EBUS-TBNA was 83.3%, with a negative predictive value of 86%, which is similar to the ASTER
randomized controlled trial [5]. Since molecular testing has the potential of detecting a very small
number of cancer cells (micrometastasis), we hypothesized that the use of methylation biomarkers
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combined with other factors could improve the sensitivity of EBUS-TBNA, which supports the
likelihood of benign results. The six genes analyzed in our study are involved in important cellular
functions, and aberrant methylation has been reported in LC patients [20–29]. The viability of
quantifying methylation in EBUS-TBNA samples was confirmed in previous studies [9,10].

In terms of median methylation, p16/INK4a, MGMT, SHOX2, DLEC1, and RASSF1A were found
hypermethylated in TP malignant lymph nodes compared to TN non-malignant lymph nodes, while
E-cadherin was the only gene found hypomethylated. However, when the analysis was restricted to
the negative samples (TN and FN), the latter group showed hypermethylation in p16/INK4a, MGMT,
and SHOX2, whereas E-cadherin, DLEC1 and RASSF1A were hypomethylated. Among the six genes
analyzed, SHOX2 exhibited the highest AUC and was the gene that better predicted malignancy among
negative EBUS-TBNA samples. Methylated SHOX2 has been studied previously for detecting LC in
lymph node samples obtained by EBUS-TBNA [24], in bronchial aspirates, pleural effusion, plasma,
and tumor tissue [34]. A meta-analysis exploring SHOX2 methylation for LC diagnosis in different
samples estimated a pooled sensitivity of 70% with 96% specificity (AUC = 0.96), supporting its value
for confirming benignity for negative results [34].

In relation to the other candidate genes, though E-cadherin and MGMT apparently did not show
an optimal performance for the detection of malignancy in terms of AUC, the univariate analysis
revealed their capacity for predicting malignancy in negative lymph nodes. E-cadherin protein is
an epithelial marker of the epithelial-mesenchymal transition (EMT) process and acts as a tumor
suppressor in tumor metastasis, epigenetically regulated [35]. Recently, it was demonstrated that
the reduced expression of E-cadherin is related to SIX2 overexpression, which promotes NSCLC cell
stemness, resulting in metastasis [36]. On the other hand, MGMT hypermethylation has been largely
reported in tissue and other samples from NSCLC patients and is found more frequently methylated
in Stage III and IV tumors, which suggests an increased ability of proliferation and invasion of tumor
cells [22].

As reported in other studies [32,33,37] and confirmed in our work, patient’s age, lymph node size,
and SUV uptake are factors associated with increased likelihood of malignancy of lymphadenopathies.
The combination of these variables and sex, together with the methylation biomarkers MGMT,
E-cadherin, and SHOX2, improved the detection of lymphatic micrometastases in negative conventional
evaluation. The decision rule that showed the largest accuracy was Model 3 and included SHOX2,
patient’s sex and age, lymph node size, and SUV (cross-validated AUC = 0.827). This prediction model
seems to outperform the other two models in terms of both sensitivity and specificity. The optimal
cut-off point for Model 3 (p score > 0.076; based on the Youden index) correctly classified 82.4% of
the malignant lymphadenopathies that were missed by EBUS-TBNA (FN). On the other hand, the
model correctly ruled out malignancy in 82.7% of the cytological negative samples, misclassifying as
malignant 17.3% of the non-metastatic samples.

According to the cross-validated decision rule and based on our subcohort, 15 of the 18 FN have a
positive result (TP for the model), while 19 of the 110 TN showed a positive result (FP for the model).
A diagnostic confirmation should be completed in all these cases that score above the established
cut-off. In terms of the NPV, the probability that a patient with a negative result (p score below the
cut-off) truly has no metastasis on lymph node corresponds to 96.8%. In our opinion, when wanting to
rule out malignancy in the diagnosis and/or non-invasive mediastinal staging of LC, a highly NPV is
desirable among EBUS-TBNA negatives. The classification rule proposed in our study seems useful
for clinical decision-making in the management of patients with a negative EBUS-TBNA.

With the intention of facilitating the understanding and interpretation of the predictive algorithm
proposed, Table S3 shows the values of the five variables that make up the predictive model for six
patients. The diagnosis according to Model 3 and the final clinical diagnosis of the six cases are
provided in the table. Among these cases, malignancy would not be detected in Patient 3, while Patient
5 would be subjected to unnecessary invasive procedures.
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Other molecular biomarkers have been proposed for EBUS-TBNA-based mediastinal staging [38].
Expression of p53, K-ras [39], and lunx [40] has shown to improve the detection of occult lymph node
metastasis. Human telomerase catalytic subunit gene (hTERT) was also suggested as a biomarker
for detecting micrometastasis [38]. More recently, expression of miRNAs was also assessed for
molecular staging of nodes using EBUS-TBNA samples [41]. Among the five candidates evaluated in
39 malignant and 11 benign lymph nodes, miR-200c showed the highest diagnostic yield, resulting in
a 97.4% sensitivity, an 81.8% specificity, and a 90.0% NPV. Restaging of FFPE EBUS-TBNA samples
from 10 patients (4 EBUS-TBNA FN included) rendered a 100% sensitivity, a 60% specificity, and a
100% NPV.

This study has some limitations. First, 9 of the 18 patients in the EBUS-TBNA false negative
group showed progression on image techniques, but 6 of them had no histological confirmation of
malignancy. Tissue confirmation is the reference standard recommended by the European Society of
Thoracic Surgeons [31], though in clinical practice, not all patients can undergo surgery for malignancy
confirmation. Second, the small sample size, especially in the false negative group, leads to high
uncertainty in the model development, which limits its predictive performance. Third, this study was
conducted in a single center with a small sample size, so the results must be confirmed in a multicenter
study including a larger number of EBUS-TBNA samples.

4. Materials and Methods

4.1. Patients and Study Design

The study included 112 patients with a new or suspected diagnosis of LC that met the criteria
for mediastinal study for diagnosis or staging proposes and that were referred to EBUS-TBNA. CT
scanning and PET-CT scanning were used to reach a presumptive TNM stage. All results were
reviewed at multidisciplinary LC team meetings with week periodicity. All patients’ medical records
are included in an electronic clinical history that belongs to the National Care Service. Patients without
an evaluable sample according to the cytologist, or an insufficient sample for further methylation studies
were excluded. All patients were recruited at Pulmonary Department from Complexo Hospitalario
Universitario de Vigo. The study was conducted according to the clinical and ethical principles of the
Spanish Government and the Declaration of Helsinki and was approved by the Ethics Committee for
Clinical Research of Galicia (2009/133). Informed consent was obtained from all patients.

4.2. Study Interventions

Most of the procedures were ambulatory and took place in a conventional bronchoscopy room.
A bronchoscope model BF-UC180F-OL8 (Olympus, Tokyo, Japan) and ultrasound equipment Aloka
ProSound Alpha 5 (Hitachi-Aloka, Tokyo, Japan) were used. Lymph nodes were classified according
to the International Association for the Study of Lung Cancer lymph node map [42]. Lymph nodes
were considered positive if they were >1 cm in short axis on the CT scan or had an SUV (standard
uptake value) >2.5 on PET-TC; lymph nodes measuring >5 mm by EBUS were sampled, even if they
were normal on CT and/or PET-CT. After endoscopic examination, each node was measured and
sampled using a NA2015X-4022 needle (Olympus, Tokyo, Japan). Depending on the immediate results
obtained, more than one pass was made. Rapid on-site evaluation (ROSE) was performed by an expert
cytologist during the procedure. The material was recovered, and the sample was fixed in alcohol and
immediately examined by a cytologist. Diff–Quick staining of the cytological sample was performed in
situ, and Papanicolaou staining was performed later. Cytology obtained during EBUS-TBNA consists
mainly of “loose” cells or small groups of cells. While in the majority of cases the final diagnosis of
malignancy is based on the Diff–Quick slides, nuclear details are clear in the Papanicolaou smears and
allow a better identification of malignant cells when the quality of the Diff–Quick slides is not optimal.
These two methods complement each other and were used.
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The cytologist confirmed the adequacy of the sample and classified the material as follows: a normal
node (predominantly lymphoid cells without atypia and/or anthracotic material—negative cytology);
a node with neoplastic infiltration (a presence of neoplastic lymph node cells and cellularity—positive
cytology); or a non-evaluable sample (a presence of only blood or bronchial cells). A representative
portion of the sample was resuspended in sterile saline solution and immediately frozen at −20 ◦C for
subsequent methylation analyses.

In the case of negative mediastinal staging results following EBUS and high clinical suspicion, all
medically acceptable patients were referred to a confirmatory surgical biopsy (cervical mediastinoscopy
or video-assisted thoracoscopic surgery). Patients who did not undergo confirmation by surgery were
followed up for at least one year. If the lymph node did not grow during surveillance, the results
were considered negative. However, if the lymph node grew during surveillance, the patient was
evaluated by the LC Multidisciplinary Committee to make a decision about considering re-biopsy by
non-surgical pathological staging, or to assume the diagnosis of malignancy when adequate clinical
context was present according to the high risk of regional extension. All doubtful cases were excluded.

According to cytological analysis and clinical evaluation, each sample was classified as true-positive
(TP, when cytology was positive and metastasis was clinically confirmed), true-negative (TN, when
cytology was negative and metastasis was not evidenced after surgery or no modification in lymph
node size was observed during 1 year surveillance), and false-negative (FN, when cytology was
negative but metastatic lymph node infiltration was evidenced after surgery or significant growth of
lymph node was detected during follow-up).

4.3. DNA Extraction and Sodium Bisulfite Modification

DNA was extracted from cytological lymph node samples and eluted with 50 µL of warmed-water
(QIAamp DNA Blood Mini Kit, Qiagen, Hilden, Germany). DNA was quantified using a NanoDrop
2000 c (Thermo Scientific, Waltham, MA, USA). Mean DNA concentration resulted in 103.1 ng/mL,
and 81.5% of the samples showed a 260/280 ratio of ~1.8. DNA was aliquoted and stored at −20 ◦C
until used.

Sodium bisulfite modification was performed using EZ DNA Methylation-Direct kit (Zymo
Research, Irvin, CA, USA). Briefly, 20 µL of DNA were bisulfite-modified according to the
manufacturer´s instructions, and finally eluted in 20 µL. Modified DNA was stored at −80 ◦C
until used.

A fully methylated control was prepared from DNA extracted from peripheral blood mononuclear
cells and treated with CpG methyltransferase (M.SssI; New England Biolabs, Ipswich, MA, USA).
This fully methylated control was prepared in large amounts and was used in all the methylation
analyses. An unmethylated control, not treated with M.SssI, was included in each bisulfite treatment
and was also included in all the analyses. DNA extraction and methylation analyses were performed
blinded to the cytology result.

4.4. Methylation Analysis of the Candidate Genes

Methylation of p16/INK4a, MGMT, SHOX2, E-cadherin, DLEC1, and RASSF1A was assessed
using a nested methylation-specific qPCR approach. In the first-step PCR (pre-amplification), a
methylation-independent product was amplified for each gene using outer primers (Table S4). PCR
was performed in a 25 µL reaction mix containing 2 µL of bisulfite-modified DNA, 0.72 µM forward
and reverse outer primers, a 75 µM dNTPs mixture, a 1× Ex Taq Buffer, and 1 unit of Takara Ex Taq
HotStart, with the following cycling conditions: 95 ◦C for 5 min, 32 cycles of 95 ◦C for 30 s, 30 s at
the appropriate temperature for each amplicon, 72 ◦C for 30 s, and finally 72 ◦C for 7 min. A fully
methylated control, an unmethylated control, a 1/10 dilution of the fully methylated control, and a
no-template control were always included in each PCR.

In the second-step, an MS-qPCR was performed using a 1/300–1/500 dilution of the previous
PCR product. Real-time PCR was carried out in triplicate in a 20 µL volume containing 2 µL of the



Cancers 2019, 11, 1408 10 of 13

diluted PCR, 600–1.000 nM of each primer, 200 nM of probe, and 1× TaqMan Universal PCR Master
Mix No AmpErase UNG (Applied Biosystems, Waltham, MA, USA), with an annealing temperature of
60–62 ◦C during 40 cycles. Primers, probes, and MS-qPCR amplification efficiencies are shown in Table
S3 for each gene. Amplifications were carried out in 48-well plates and run on a StepOne instrument
(Applied Biosystems). In each plate, dilutions of the previously amplified fully methylated control
(100%, 10% and 1%), unmethylated control, 1/10 diluted fully methylated control, and no-template
control were always included, besides samples and qPCR no-template control.

The methylation-independent amplification of the MYOD1 gene was used to normalize for DNA
input, using the same two-step nested PCR approach.

4.5. Analysis of the MS-qPCR Data

MS-qPCR data for each of the studied genes was derived from 5 independent assays (standard
curve) consisting of 10-steps dilutions (100%, 75%, 50%, 25%, 10%, 5%, 1%, 0.5%, 0.25%, and 0.1%
methylation) of the fully methylated control. The non-normalized methylation percentage (NNMP) of
each sample and gene was estimated from a linear fit of the mean Cq (quantification cycle) as a function
of the log10 methylation percentage. Since DNA concentration varied among samples, MYOD1 was
used to normalize. To estimate DNA quantity (DNAQ) of each sample, we applied the same dilution
procedure over MYOD1, given that the region analyzed does not contain CpG dinucleotides, and
amplification is therefore methylation-independent. Finally, the normalized methylation percentage
(NMP) was calculated as follows:

NMPsample (gene) =
NNMPsample (gene)

DNAQsample (MYOD1)
× 100 (1)

4.6. Statistical Analysis

Categorical variables were expressed as frequencies, while continuous variables were expressed
as mean and standard deviation (SD) or median and IQ range. The chi-square test and Fisher’s
exact test were used to compare frequencies between metastatic and non-metastatic lymph nodes.
Kruskal–Wallis and Mann–Whitney U tests were used to compare methylation according to cytology
result and final diagnosis. Univariate analysis was performed to determine if variables were predictive
for malignancy. Multivariate logistic regression models were used to find a predictive model for the
dependent variable final diagnosis of malignancy, including epidemiological, clinical, and methylation
variables with a univariate p-value inferior to 0.15. Multivariate logistic regression models were 10-fold
cross-validated to internally validate their performance and help to protect from overfitting.

Diagnostic performance was analyzed using ROC curves and the AUC (area under the curve)
was reported. Sensitivity and specificity were calculated based on the Youden index, in addition to
the predictive values, which were based on the prevalence of malignancy among negative cytological
samples in our cohort. For the multivariate logistic regression models, AUC and the diagnostic
parameters were based on the event predicted probabilities of each model obtained with 10-fold
cross-validation. The analyses were performed with SPSS 21.0 (IBM Corporation, Armonk, NY, USA),
MedCalc statistical software v19.0.6 (Ostend, Belgium) and R program package (R Foundation for
Statistical Computing, Wirtschafts Universität, Wien, Austria). Data were analyzed using two-sided
tests; p values < 0.05 were considered significant.

5. Conclusions

The evaluation of SHOX2 methylation in EBUS-TBNA samples combined with the sex and age
from the patient, and the diameter and SUV of the lymphadenopathy, increases the accuracy of
EBUS-TBNA for the diagnosis of metastatic node involvement in NSCLC. The use of this predictive
model tool can allow a more adequate selection of patients requiring surgical confirmation in the
presence of a negative cytological result.
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