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Abstract: High mobility group box B (HMGB) proteins are overexpressed in different types of cancers
such as epithelial ovarian cancers (EOC). We have determined the first interactome of HMGB1 and
HMGB2 in epithelial ovarian cancer (the EOC-HMGB interactome). Libraries from the SKOV-3
cell line and a primary transitional cell carcinoma (TCC) ovarian tumor were tested by the Yeast
Two Hybrid (Y2H) approach. The interactome reveals proteins that are related to cancer hallmarks
and their expression is altered in EOC. Moreover, some of these proteins have been associated to
survival and prognosis of patients. The interaction of MIEN1 and NOP53 with HMGB2 has been
validated by co-immunoprecipitation in SKOV-3 and PEO1 cell lines. SKOV-3 cells were treated
with different anti-tumoral drugs to evaluate changes in HMGB1, HMGB2, MIEN1 and NOP53
gene expression. Results show that combined treatment of paclitaxel and carboplatin induces a
stronger down-regulation of these genes in comparison to individual treatments. Individual treatment
with paclitaxel or olaparib up-regulates NOP53, which is expressed at lower levels in EOC than in
non-cancerous cells. On the other hand, bevacizumab diminishes the expression of HMGB2 and
NOP53. This study also shows that silencing of these genes affects cell-viability after drug exposure.
HMGB1 silencing causes loss of response to paclitaxel, whereas silencing of HMGB2 slightly increases
sensitivity to olaparib. Silencing of either HMGB1 or HMGB2 increases sensitivity to carboplatin.
Lastly, a moderate loss of response to bevacizumab is observed when NOP53 is silenced.

Keywords: ovarian cancer; interactome; chemotherapy

1. Introduction

Ovarian cancer is nowadays the 7th most common cancer in women, with only a 30–40% average
5-year relative survival rate. Early diagnosis, when the tumor is still localized in the ovaries, is a clear
advantage, since this rate then increases up to 92% [1]. More than 90% of malignant ovarian tumors
are epithelial ovarian cancers (EOC) and the rest derive from stromal or germ cells. The histology
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of malignant EOC, or carcinomas, is heterogeneous [1] and they have been classified in five main
histotypes: high-grade serous (HGSOC with an incidence of 70% among total EOC), low-grade serous
(LGSOC; incidence <5%); endometrioid (ENOC; incidence of 10%), clear cell (CCOC; incidence of 10%),
and mucinous (MOC; incidence 3%). This classification takes into account the resemblance to normal
gynecological cell line; serous: resembling epithelium lining the Fallopian tubes; mucinous: resembling
epithelium lining endocervix, and containing intra-cytoplasmic mucin; endometrioid: resembling
epithelium of uterine corpus; clear cell: comprising clear cells and hobnail cells [1]. Each histotype has
been associated to a particular set of somatic mutations. HGSOC type is associated to BRCA1/2 and
TP53 mutations; LGSOC type, to BRAF and, KRAS mutations; MOC type, to KRAS mutation; ENOC
type to PTEN, CTNNB1, ARID1A and PIK3CA mutations; and finally CCOC type, to ARID1A and
PIK3CA mutations [1].

High mobility group box-B proteins (HMGB), non-histone components of chromatin, exert global
regulatory functions on gene expression [2]. Their release from cancerous cells to the extracellular
medium promotes tumor growth and metastasis, and their overexpression is associated to ovarian
cancer, among others [3]. Increased HMGB1 expression has been associated to TLR4 expression
and activated NF-κB signaling pathway [4,5]. This is accompanied by worse clinical outcomes
in EOC patients, which suggests that signaling by endogenous ligands may contribute to an
inflammatory microenvironment, which worsens the disease [4]. In the ovarian cancer cell line
SKOV-3, HMGB1 silencing diminishes the expression of VEGF and CXCL12, revealing its involvement
in angiogenesis [6].

HMGB1 has been repeatedly proposed as a diagnostic and prognostic biomarker for human
ovarian cancer [7–11]. HMGB1 immunostaining in serous, mucinous, endometrioid, and clear-cell
ovarian carcinomas [12] shows that HMGB1 expression is observed in different EOC histotypes.
HMGB1 overexpression in early stages of the disease is also an advantage for its use as diagnostic
biomarker [12]. HMGB1 and HMGB2 proteins have been also related to chemotherapy resistance
in serous EOC [13]. High expression of HMGB1 has been related to cisplatin resistance [14] and
downregulation of HMGB1 re-sensitizes ovarian cancer cells to carboplatin [15]. HMGB2 expression
has been associated to resistance against oxaliplatin and cisplatin [16].

Protein interactomes associated to a particular disease are valuable tools to understand molecular
mechanisms of pathogenesis and to re-define diagnostic panels of specific biomarkers [17]. The low
rates of survival after first diagnosis, clearly show that clinical management of ovarian cancer patients
needs of earlier diagnosis and more specific therapies [18,19]. Considering the relevance of HMGB
proteins in EOC, deciphering the HMGB1/2 interactome in ovarian cancerous cells is an attractive
tool to achieve this goal. We have followed a Yeast-Two-Hybrid (Y2H) approach using libraries
derived from SKOV-3 cells, a widely used ovarian cancer cell line; and also libraries from cancer tissue
from a patient diagnosed of primary transitional cell carcinoma (TCC) of the ovary, a relatively rare
subtype of epithelial ovarian cancer, which represents approximately 2% of all ovarian tumors [20].
Common targets in both libraries could discover important interactions, which are independent of the
histological subtypes and their specific mutations. Functional significance of the discovered targets in
relation to ovarian cancer is discussed, with special focus on MIEN1 and NOP53. Expression changes
of HMGB1, HMGB2, MIEN1 and NOP53 genes have been evaluated in response to drugs usually
employed in ovarian cancer treatments: bevacizumab, olaparib, paclitaxel or carboplatin. The effects
of HMGB1, HMGB2, MIEN1 and NOP53 silencing on cell sensitivity to these drugs are also reported.

2. Results

2.1. HMGB1 and HMGB2 Y2H-Interactomes in Epithelial Ovarian Cancer

Protein interactions were assayed by the yeast two-hybrid (Y2H) approach. The baits (HMGB1 or
HMGB2) were cloned in fusion to the DNA-binding domain of the yeast transcriptional activator GAL4,
while libraries of prey proteins were fused in frame to the GAL4 activation domain. Plasmids expressing
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bait and prey fusion proteins were used to transform two different haploid yeast strains able to form
diploids. After mating, the transcriptional activator GAL4 is reconstructed in the diploids only if
interaction between proteins exists, and therefore reporter genes under GAL4-activated promoters are
expressed. This technique is highly sensitive and, in order to diminish the appearance of false positives,
a screening using independent markers was used as explained in Materials and Methods. Two cDNA
libraries were constructed using total RNA extracted from SKOV-3 cells or from tissue obtained
from a tumor diagnosed as primary transitional cell carcinoma (TCC) of the ovary. TCC is grouped
with high-grade serous carcinoma (HGSC) in the current World Health Organization classification
and it is also associated with BRCA mutations [21]. Y2H assays and screening were carried out as
described in Materials and Methods and clones, identified as positives using at least three different
reporter genes, were sequenced. In the libraries derived from SKOV-3 cells and using the HMGB1 bait
(Table 1), a positive clone showed homology to lncRNA MALAT1 and 5 to coding sequences (AKIP1,
KRT7, ATF71P, UHRF2, WDR60); using the HMGB2 bait, 7 coding sequences were identified (BCCIP,
COMMD1, NOP53, MIEN1, ROCK1, U2AF1, ZNF668).

Table 1. Clones from the SKOV-3 libraries, which interact with HMGB1 or HMGB2 in the Y2H assays.

Interacting
Partner Bait Aminoacids Uniprot

CODE
Brief Functional Description According to Uniprot
(http://www.uniprot.org/uniprot) (accessed on 05-05-2020)

AKIP1 HMGB1 29–210 Q9NQ31
A-kinase-interacting protein 1 that regulates the effect of the
cAMP-dependent protein kinase signaling pathway on the
NF-kappa-B activation cascade.

KRT7 HMGB1 102–289 P08729 Keratin, type II cytoskeletal 7 that blocks interferon-dependent
interphase and stimulates DNA synthesis in cells.

MALAT1 HMGB1 lncRNA

ATF7IP HMGB1 8–250 Q6VMQ6

Recruiter that couples transcriptional factors to general
transcription apparatus and thereby modulates transcription
regulation and chromatin formation. Facilitates telomerase
TERT and TERC gene expression by SP1 in cancer cells

UHRF2 HMGB1 157–277 Q96PU4

E3 ubiquitin-protein ligase UHRF2 that is an intermolecular
hub protein in the cell cycle network. Through cooperative
DNA and histone binding, may contribute to a tighter
epigenetic control of gene expression in differentiated cells.

WDR60 HMGB1 170–336 Q8WVS4 WD repeat-containing protein 60.

BCCIP HMGB2 8–257 Q9P287
BRCA2 and CDKN1A-interacting protein that is required for
microtubule organizing and anchoring activities during
interphase.

COMMD1 HMGB2 2–189 Q8N668

COMM domain-containing protein 1. Proposed scaffold
protein that is implicated in diverse physiological processes
and whose function may be in part linked to its ability to
regulate ubiquitination of specific cellular proteins.

NOP53 (alias
GLTSCR2 or
PICT1)

HMGB2 186–453 Q9NZM5

Ribosome biogenesis protein NOP53. Originally identified as
a tumor suppressor, it may also play a role in cell proliferation
and apoptosis by positively regulating the stability of PTEN,
thereby antagonizing the PI3K-AKT/PKB signaling pathway.

MIEN1
(alias C35) HMGB2 1–116 Q9BRT3

Migration and invasion enhancer 1 that increases cell
migration by inducing filopodia formation at the leading edge
of migrating cells. Plays a role in regulation of apoptosis,
possibly through control of CASP3.

ROCK1 HMGB2 141–197 Q13464 Rho-associated protein kinase 1 that is a key regulator of actin
cytoskeleton and cell polarity.

U2AF1 HMGB2 35–202 Q01081

Splicing factor U2AF 35 kDa subunit, that plays a critical role
in both constitutive and enhancer-dependent splicing by
mediating protein-protein, and protein-RNA interactions
required for accurate 3′-splice site selection.

ZNF668 HMGB2 16–239 Q96K58 Zinc finger protein 668

In the library prepared from ovarian tumor tissue (Table 2), 5 clones with coding sequences were
identified using the HMGB1 bait (C1QA, DAG1, RPL29, RSF1, TGM2), and 6 (COMMD1, MIEN1,
PCBP1, TBC1D25, ZFR, ZNF428) were identified with the HMGB2 bait. Tables 1 and 2 summarize the
details of each detected interaction with HMGB1 or HMGB2, as well as a brief functional description
of the proteins identified in these EOC-HMGB-interactomes.

http://www.uniprot.org/uniprot
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Table 2. Clones from the cancerous ovarian tissue libraries, which interact with HMGB1 or HMGB2 in
the Y2H assays.

Interacting
Partner Bait Aminoacids Uniprot

Code
Brief Functional Description According to Uniprot
(http://www.uniprot.org/uniprot) (accessed on 05-05-2020)

C1QA HMGB1 47–177 P02745 Complement C1q subcomponent subunit A

DAG1 HMGB1 311–516 Q14118

Dystroglycan. The dystroglycan complex is involved in a
number of processes including laminin and basement
membrane assembly, sarcolemmal stability, cell survival,
peripheral nerve myelination, nodal structure, cell
migration, and epithelial polarization

RPL29 HMGB1 36–143 P47914 60S ribosomal protein L29

RSF1 HMGB1 616–799 Q96T23
Remodeling and spacing factor 1 required for assembly of
regular nucleosome arrays by the RSF
chromatin-remodeling complex

TGM2 HMGB1 377–480 P21980 Transmembrane gamma-carboxyglutamic acid protein 2

COMMD1 HMGB2 4–189 Q8N668

COMM domain-containing protein 1. Proposed scaffold
protein that is implicated in diverse physiological processes
and whose function may be in part linked to its ability to
regulate ubiquitination of specific cellular proteins.

MIEN1
(alias C35) HMGB2 1–116 Q9BRT3

Migration and invasion enhancer 1 that increases cell
migration by inducing filopodia formation at the leading
edge of migrating cells. Plays a role in regulation of
apoptosis, possibly through control of CASP3.

PCBP1 HMGB2 26–202 Q15365 Poly (rC)-binding protein 1. Single-stranded nucleic acid
binding protein that binds preferentially to oligo dC.

TBC1D25 HMGB2 309–366 Q3MII6
TBC1 domain family member 25. Acts as a
GTPase-activating protein specific for RAB33B. Involved in
the regulation of autophagosome maturation.

ZFR HMGB2 294–722 Q96KR1
Zinc finger RNA-binding protein. Involved in
postimplantation and gastrulation stages of development.
Involved in the nucleocytoplasmic shuttling of STAU2.

ZNF428 HMGB2 153–188 Q96B54 Zinc finger protein 428.

As above reported, MALAT1, a lncRNA, previously related to ovarian cancer [22–27],
and to epithelial to mesenchymal transition (EMT) [28], was detected in our results of
EOC-HMGB1-interactome (Table 1). We verified by sequencing that the micropeptide derived
from MALAT1 lncRNA, MTEVEMKLLHGVKNVFKRKLRERTTEPRINTNRRAMLLD, is in frame
and fused to GAL4 in the recovered Y2H clone. Therefore, it is possible that the interaction of this
micropeptide with HMGB1 might be responsible of the positive result obtained in the Y2H screening.
In support of this explanation, translation of this micropeptide from lncRNA MALAT1 has been
previously reported in several ribosome-profiling experiments using human colorectal cancer cells
HCT116 [29] and human embryonic kidney HEK293 cells [30].

Two proteins that interact with HMGB2, COMMD1 and MIEN1, are identified in SKOV-3 and
tumor tissue libraries, which cross-validate these results. The interactions of HMGB1 with RLP29
and ZNF428, and the interaction of HMGB2 with ZNF428 were already described in non-cancerous
ovarian HOSEpiC cells from epithelial origin [31]. The interaction between HMGB1 and KRT7 was
also detected in cells from healthy ovarian tissue [31].

Since the Y2H interactome was obtained from SKOV-3 cells, not considered as a cell line
representative of the more frequent HGSOC, although extensively used in EOC studies [32], and from
tissue extracted from primary transitional cell carcinoma (TCC) of the ovary, which is a relatively
unfrequently diagnosed serous EOC, we decided to validate HMGB2 interactions with MIEN1 and
NOP53 by co-immunoprecipitation, an orthogonal method to the Y2H approach, and using two
EOC cell lines, SKOV-3 and PEO1 representatives of ENOC/CCOC and HGSOC respectively [33].
Results (Figure 1 and Figure S1) corroborate the Y2H data. Apparently the co-immunoprecipitation of
NOP53 with HMGB2 is much more efficient in SKOV-3 than in PEO1, perhaps due to the different
characteristics of both cell lines, although we cannot attribute this observation to a specific cause.

http://www.uniprot.org/uniprot
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HMGB proteins until now, which add value to the present work and reveals the importance of the 
HMGB interactome in EOC. We have reviewed in the literature the experimentally confirmed 
functions of the proteins detected in our EOC-HMGB-interactome study (Figure 2). 

 

Figure 1. Co-immunoprecipitation of HMGB2 and MIEN1 or NOP53 (A) in SKOV-3 cells (B) in PEO1
cells. Proteins extracted from cells (Input) were immunoprecipitated with HMGB2 antibodies (IP
anti HMMGB2) or IgG (IP anti IgG) and the Western blot were incubated with HMGB2, MIEN1 and
NOP53 antibodies.

A clear association of these proteins with several current cancer hallmarks such as sustained
proliferation, metastasis, angiogenesis, resisting cell death, altered cellular energetics, and immune
evasion is evidenced (Figure 2). Besides, and remarkably, several among these proteins have been
previously associated to ovarian cancer (COMMD1 [34], NOP53 [35], MIEN1 [36,37], ROCK1 [38–40],
PCBP1 [41], TGM2 [42], U2AF1 [43], C1QA [44], DAG1 [45] and RSF1 [46–49]). Furthermore, several
detected proteins (BCCIP [50], ROCK1 [51], PCBP1 [52], AKIP1 [53], TGM2 [54], and MIEN1 [55]) are
involved in the epithelial to mesenchymal transition (EMT), typical of epithelial cells in malignant
differentiation processes. However, none of them had been cited for their interaction with HMGB
proteins until now, which add value to the present work and reveals the importance of the HMGB
interactome in EOC. We have reviewed in the literature the experimentally confirmed functions of the
proteins detected in our EOC-HMGB-interactome study (Figure 2).
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ovary pictogram; those involved in epithelial to mesenchymal transition under the yellow EMT
box. References supporting the scheme are indicated for each protein as follows. AKIP1 [56–60],
BCCIP [61,62], COMMD1 [63–65], C1QA [66], DAG1 [67], KRT7 [68], MALAT1 [24,69,70], MIEN1 [55,71,
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2.2. Analysis of the EOC-HMGB-Interactome According to Differential Expression and Clinical Outcome

Taking advantage of public available data, accessible though Expression Atlas [99] at European
Bioinformatics Institute (https://www.ebi.ac.uk, accessed on 15-5-2020) we have compared gene
expression levels of HMGB1, HMGB2 and all the genes found in our EOC-HMGB-interactome in
ovary tissue from healthy individuals (39 samples from GTEx Project [100]) and public data extracted
from Pan-Cancer Analysis of Whole Genomes (PCAWG) corresponding to 110 tumors of ovarian
adenocarcinomas (Table 3). Data indicate that HMGB1, HMGB2, as well as most of their targets
identified in our Y2H study are expressed at higher levels in ovarian adenocarcinoma than in normal
ovarian tissue, following a pattern of co-regulation that is frequently found among genes encoding
proteins that interact with each other [101]. The highest ratios of RNA changes in cancerous versus
healthy ovarian samples correspond to KRT7 (ratio >1700), C1QA (ratio 12.5) and MIEN1 (ratio 6.3).
Only two genes, NOP53 and MALAT1 are less expressed in cancerous than in healthy ovarian cells
in this comparison. Selecting a subgroup of genes we have also directly observed in experiments
carried in our laboratory that HMGB1, HMGB2, MIEN1 and KRT7 are expressed at higher levels in
SKOV-3 cancerous cells than in HOSEpiC normal ovary cells (Figure 3); while, also in accordance with
patient data (Table 3), NOP53 is expressed at lower levels in the cancerous cell line than in the healthy
ovary cell line (Figure 3). Although it is generally accepted that the majority of HGSOC arise from an
extra-ovarian site we wanted to discriminate non-cancerous ovarian cells from tumor cells. For this
reason we preferred to use ovarian non-cancerous cells as a pair-matched control.
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Figure 3. Relative expression of HMGB1, HMGB2, KRT7, MIEN1 and NOP53 genes in SKOV-3
cells versus non-cancerous human ovarian HOSEpiC cells. The dotted line indicates no variation,
boxes upper the line show genes over-expressed in SKOV-3 cells, and those under the line are genes
under-expressed in SKOV-3 cells. *** (p < 0.001).

We also analyzed our interactome components (listed in Tables 1 and 2) with the tools available
in cBioportal (http://www.cbioportal.org/ accessed on 03-06-2020) [102,103] looking for correlations
between expression levels and clinical outcome. To carry out this analysis, we selected samples
from the study “Ovarian Serous Cystadenocarcinoma (TCGA)” with information of 606 samples
from 594 patients (https://www.cbioportal.org/study/summary?id=ov_tcga. accessed on 03-06-2020).
We found that patients who have higher expression of some of the genes identified in our study
have lower survival expectation than the rest. Analysis of expression data based on microarray
technology revealed that up-regulation of mRNA levels of MIEN1 (Figure 4A) or TGM2 (Figure 4B),
negatively correlated to survival. Analysis of expression data based on RNAseq technology showed
that up-regulation of ZN428 (Figure 4C) or TGM2 (Figure 4D) worsens survival outcomes. Additionally,
it has also been reported that patients with RSF1 amplification or overexpression had a significantly
shorter overall survival than those without [104], although for RSF1 the p-value obtained in the Logrank
Test analysis did not reveal statistical significance.

https://www.ebi.ac.uk
http://www.cbioportal.org/
https://www.cbioportal.org/study/summary?id=ov_tcga
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Table 3. Differential expression of HMGB1, HMGB2 and their interacting partners in healthy individuals and
ovary cancer patients. mRNA levels obtaining by RNAseq are expressed in TPM (Transcripts per million).

Gene Name Ovarian
Adenocarcinoma

Normal Ovary
Tissue (GTEx)

Ratio
Cancerous/Healthy

AKIP1 45 28 1.6
ATF7IP 46 14 3.3
BCCIP 131 33 4.0
C1QA 613 49 12.5
COMMD1 65 17 3.8
DAG1 264 51 5.2
HMGB1 524 153 3.4
HMGB2 453 100 4.5
KRT7 1258 0,7 1797
MALAT1 244 886 0.3
MIEN1 144 23 6.3
NOP53 427 576 0.7
PCBP1 1554 386 4.0
ROCK1 42 21 2.0
RPL9 2526 1540 1.6
RSF1 37 13 2.8
TBC1D25 40 20 2.0
TGM2 118 50 2.4
U2AF1 81 42 1.9
UHRF2 35 28 1.3
WDR60 34 21 1.6
ZFR 149 57 2.6
ZNF428 197 64 3.1
ZNF668 25 5 5.0

2.3. Effect of HMGB1 and HMGB2 Silencing on the Expression of Genes Encoding Proteins Detected in the
EOC-HMGB-Interactome

HMGB1 and HMGB2 genes were silenced in SKOV-3 and PEO1 EOC cell lines and levels of
mRNA from 4 detected interacting partners of HMGB1 or HMGB2 in ovary cancer, COMMD1, MIEN1,
NOP53 and ZNF428, were analyzed by qRT-PCR as explained in Materials and Methods. Changes in
gene expression (siHMGB/HMGB) are shown in Figure 5. In this analysis we also included RAGE,
one of the membrane receptors in the extracellular signaling function of HMGB1 [97] as a positive
control. HMGB1-induced signaling can activate NFκB, which can subsequently induce the expression
of HMGB1 receptors [105]. Accordingly, silencing of HMGB1 causes a decrease of RAGE expression,
as well as for the other tested genes in SKOV-3 (Figure 5A); in PEO1 cells this decrease was not so
evident, which might be explained by a lesser degree of the silencing achieved in this cell line (Figure 5B
and Figure S2). Oppositely, we observed that expression of three of the tested genes, COMMD1,
MIEN1 and NOP53, was increased after HMGB2 silencing in the two EOC cell lines analyzed, while the
increase in expression of ZNF428 was statistically significant only in PEO1 cells.

2.4. The Involvement of Proteins Detected in the EOC-HMGB-Interactome in the Response to Drugs Used in
Cancer Chemotherapy

Considering that HMGB1 and HMGB2 proteins have been associated to drug resistance during
cancer treatment [13,16] we also reviewed available literature to see whether the proteins detected
in our interactome study could also be related to this unfavorable event in ovary cancer treatment.
We found that at least 13 of these proteins had been previously cited in reference to drug resistance or
sensitivity. MIEN1 has been associated to cisplatin resistance [36]. BCCIP (aliases CDKN1A or p21)
is involved in resistance to carboplatin [106] and paclitaxel [107]. RSF1 is also involved in resistance
to carboplatin and paclitaxel [46,49]. PCBP1 binds and stabilizes p27 mRNA and promotes cell
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apoptosis under paclitaxel treatment [108]. TGM2 modulates chemosensitivity of breast cancer to
docetaxel [109]. DAG1 improves sensitivity to dasatinib, a tyrosine kinase inhibitor of the Src-family
kinases, in EOC [45]. Besides, comparing gene expression in SKOV-3 cells and a paclitaxel resistant
derived cell line (available in the GEO accession GSE54772) [110], six of the genes encoding proteins
detected in our EOC-HMGB-interactomes (ATF7IP, DAG1, PCBP1, TGM2, U2AF1, and ZNF668) are
expressed at higher levels in sensitive than in resistant cells, and one (WDR60) is less expressed in
sensitive than in resistant cells (Figure S2).
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Although the role of HMGB proteins in cisplatin resistance is widely accepted [3], there is scarce
information about the role of HMGB proteins in the resistance towards its derivatives like carboplatin,
or other drugs used in ovarian cancer treatment. Indeed, no data are available about the role of HMGB1
or HMGB2 in the resistance to olaparib or bevacizumab in the treatment of ovarian cancer. About the
involvement of MIEN1 and NOP53 in drug resistance, only MIEN1 has been previously related to
cisplatin resistance [36]. With these precedents we decided to investigate the role of HMGB1, HMGB2,
MIEN1 and NOP53 in cell viability as well as in response and sensitivity to drugs currently used in
ovarian cancer therapy.

We tested the effect of four compounds, used in ovary-cancer therapy in the expression of the genes
HMGB1, HMGB2, MIEN1 and NOP53 in cultured cancerous SKOV-3 cells and in non-cancerous IOSE-80
ovarian cells. Each selected compound has a different mechanism of action. Carboplatin (Paraplatin®),
a derivative of cisplatin, generates lesions in DNA, thereby inhibiting replication and transcription and
leading to cell death [111,112]. Olaparib (AZD-2281, Lynparza®) inhibits poly ADP ribose polymerase
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(PARP), an enzyme necessary in DNA repair, leading to apoptosis of cancer cells [113]. Olaparib is
FDA approved, for women with advanced ovarian cancer and a BRCA1/2 mutation, after they have
completed the first line of platinum-based chemotherapy [114]. Bevacizumab (Avastin®), a humanized
anti-vascular endothelial growth factor (VEGF) monoclonal antibody for cancer therapy is used as
anti-angiogenic [115]; and paclitaxel (Taxol®), a cyclodecane first isolated from Taxus brevifolia, stabilizes
microtubules in their polymerized form, leading to cell death [116]. Cells were exposed to drug
concentrations selected according to previous studies, as explained in Materials and Methods, for 48 h.
A comparative analysis between the effects caused by these drugs on SKOV-3 and non-cancerous
ovarian IOS-80 cells is shown in Table 4.

Relative RNA expression after these treatments was measured by qRT-PCR in reference to cells
cultured in absence of the drugs, but treated with the corresponding buffer used in the preparation
of drug-solutions. In general, significant effects were more frequently observed in cancerous than in
non-cancerous cells. For carboplatin or paclitaxel treatments, which are generally used in first line
therapy of EOC, results indicate that they cause down regulation of the genes that are over-expressed
in EOC cells (HMGB1, HMGB2 and MIEN1). Combined treatment with paclitaxel and carboplatin
potentiates down-regulation of these genes in comparison to individual treatments, as deduced from the
fold-changes observed. NOP53, which is expressed at lower levels in EOC than in non-cancerous cells,
was up-regulated after 48 h treatment with paclitaxel. Among the genes assayed, the treatment with
olaparib in cancerous cells only affected NOP53, increasing its expression (Table 4). Bevacizumab had
also minor effects on HMGB2 and NOP53 expression, in this case diminishing their expression (Table 4).Cancers 2020, 12, x 9 of 22 

 

 
Figure 5. Control of gene expression by HMGB1 and HMGB2 (A) in SKOV-3 cells (B) in PEO1 cells. 
Left panel shows the western blot confirming HMGB1 and HMGB2 silencing; complete blots and 
quantification are provided in figure S3. The right panel shows relative expression of tested genes 
after HMGB1 or HMGB2 silencing. The dotted line indicates no variation of relative expression in the 
silenced line versus the line treated with cRNA, boxes upper the line show genes over-expressed in 
silenced cells, and those under the line are genes under-expressed in silenced cells. *(p < 0.05); ** (p < 
0.01); *** (p < 0.001). 

Although the role of HMGB proteins in cisplatin resistance is widely accepted [3], there is scarce 
information about the role of HMGB proteins in the resistance towards its derivatives like 
carboplatin, or other drugs used in ovarian cancer treatment. Indeed, no data are available about the 
role of HMGB1 or HMGB2 in the resistance to olaparib or bevacizumab in the treatment of ovarian 
cancer. About the involvement of MIEN1 and NOP53 in drug resistance, only MIEN1 has been 
previously related to cisplatin resistance [36]. With these precedents we decided to investigate the 
role of HMGB1, HMGB2, MIEN1 and NOP53 in cell viability as well as in response and sensitivity to 
drugs currently used in ovarian cancer therapy. 

We tested the effect of four compounds, used in ovary-cancer therapy in the expression of the 
genes HMGB1, HMGB2, MIEN1 and NOP53 in cultured cancerous SKOV-3 cells and in 
non-cancerous IOSE-80 ovarian cells. Each selected compound has a different mechanism of action. 
Carboplatin (Paraplatin), a derivative of cisplatin, generates lesions in DNA, thereby inhibiting 
replication and transcription and leading to cell death [111,112]. Olaparib (AZD-2281, Lynparza) 
inhibits poly ADP ribose polymerase (PARP), an enzyme necessary in DNA repair, leading to 
apoptosis of cancer cells [113]. Olaparib is FDA approved, for women with advanced ovarian cancer 
and a BRCA1/2 mutation, after they have completed the first line of platinum-based chemotherapy 
[114]. Bevacizumab (Avastin), a humanized anti-vascular endothelial growth factor (VEGF) 
monoclonal antibody for cancer therapy is used as anti-angiogenic [115]; and paclitaxel (Taxol), a 
cyclodecane first isolated from Taxus brevifolia, stabilizes microtubules in their polymerized form, 
leading to cell death [116]. Cells were exposed to drug concentrations selected according to previous 

Figure 5. Control of gene expression by HMGB1 and HMGB2 (A) in SKOV-3 cells (B) in PEO1 cells.
Left panel shows the western blot confirming HMGB1 and HMGB2 silencing; complete blots and
quantification are provided in Figure S3. The right panel shows relative expression of tested genes
after HMGB1 or HMGB2 silencing. The dotted line indicates no variation of relative expression in
the silenced line versus the line treated with cRNA, boxes upper the line show genes over-expressed
in silenced cells, and those under the line are genes under-expressed in silenced cells. * (p < 0.05);
** (p < 0.01); *** (p < 0.001).
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Table 4. Comparative effect of treatments on gene expression in cancerous (SKOV-3) versus non-cancerous
(IOSE80) ovarian cells.

SKOV-3 IOSE80

Treatment Time GENE 2−∆∆Ct SD Effect CF p Value 2−∆∆Ct SD Effect CF p Value

Taxol 48 h HMGB1 0.23 0.05 Down 4.44 7.50 × 10−08 0.03 0.01 Down 30.76 4.92 × 10−04

Taxol 48 h HMGB2 0.36 0.11 Down 2.80 6.11 × 10−09 0.77 0.10 Ns – 9.47 × 10−02

Taxol 48 h MIEN1 0.23 0.07 Down 4.40 1.14 × 10−10 0.005 0.003 Down 215.5 1.18 × 10−03

Taxol 48 h NOP53 8.29 3.03 Up 8.29 2.62 × 10−09 3.01 0.29 Up 3.01 6.60 × 10−04

Carboplatin 48 h HMGB1 0.17 0.08 Down 5.90 2.31 × 10−03 1.74 0.76 Ns – 3.48 × 10−01

Carboplatin 48 h HMGB2 0.24 0.02 Down 4.12 3.07 × 10−05 1.26 0.22 Ns – 2.31 × 10−01

Carboplatin 48 h MIEN1 0.11 0.03 Down 9.49 6.78 × 10−05 0.74 0.15 Ns – 3.04 × 10−01

Carboplatin 48 h NOP53 0.49 0.08 Down 2.06 4.09 × 10−03 1.11 0.34 Ns – 6.94 × 10−01

Olaparib 48 h HMGB1 0.66 0.16 Ns – 1.24 × 10−02 0.83 0.12 Ns – 1.65 × 10−01

Olaparib 48 h HMGB2 1.12 0.35 Ns – 4.90 × 10−01 0.72 0.09 Ns – 2.82 × 10−02

Olaparib 48 h MIEN1 1.72 0.33 Ns – 9.61 × 10−01 0.66 0.20 Ns – 9.92 × 10−02

Olaparib 48 h NOP53 12.27 2.97 Up 12.27 2.41 × 10−06 0.68 0.08 Ns – 7.38 × 10−02

Bevacizumab 48 h HMGB1 0.68 0.11 Ns – 4.19 × 10−02 0.17 0.11 Ns – 2.72 × 10−02

Bevacizumab 48 h HMGB2 0.56 0.09 Down 1.78 3.15 × 10−04 0.49 0.14 Down 2.05 8.52 × 10−03

Bevacizumab 48 h MIEN1 0.89 0.13 Ns – 2.37 × 10−01 0.06 0.05 Ns – 1.62 × 10−02

Bevacizumab 48 h NOP53 0.31 0.07 Down 3.22 6.75 × 10−08 0.98 0.49 Ns – 7.41 × 10−01

Taxol + Carboplatin 48 h HMGB1 0.05 0.02 Down 19.05 4.55 × 10−04 Nt Nt Nt Nt Nt
Taxol + Carboplatin 48 h HMGB2 0.10 0.05 Down 10.37 1.02 × 10−03 Nt Nt Nt Nt Nt
Taxol + Carboplatin 48 h MIEN1 0.04 0.01 Down 25.66 8.60 × 10−05 Nt Nt Nt Nt Nt
Taxol + Carboplatin 48 h NOP53 1.63 0.50 Ns – 3.76 × 10−01 Nt Nt Nt Nt Nt

Down: the treatment causes diminished mRNA expression, Up: the treatment causes increased mRNA expression. Ns: the
effect is not significant having a p value > 0.01. Nt: not tested. CF: Change fold (treated versus non-treated cells); 2−∆∆Ct

Relative quantification that relates the PCR signal of the target transcript in a treatment group to that of an untreated control.

2.5. Effect HMGB1, HMGB2, MIEN1 and NOP53 Silencing on Drug Sensitivity

The genes HMGB1, HMGB2, MIEN1 and NOP53 were silenced by siRNA as described in Materials
and Methods and the effect on cell viability after treatments with paclitaxel, carboplatin, olaparib and
bevacizumab were compared in cells transfected with the corresponding specific siRNAs and siC
(unrelated Control). Results are shown in Figure 6. Silencing of HMGB1 or HMGB2 diminished SKOV-3
cell viability after treatment with carboplatin. However, silencing of HMGB1 increased cell viability
after treatment with paclitaxel. Cell viability after treatment with olaparib diminished with HMGB2
silencing. Finally, silencing of NOP53 increased cell viability after treatment with bevacizumab.
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3. Discussion

Considering the relevance of HMGB proteins in Epithelial Ovary Cancer (EOC), we have
determined for the first time the interactome of HMGB1 and HMGB2 related to this gynecological
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cancer. To this purpose, we have screened Y2H libraries, prepared from SKOV-3 cells and from
tumor tissue diagnosed as primary transitional cell carcinoma (TCC) of the ovary, with HMGB1 and
HMGB2 baits.

Supporting the functional significance of proteins detected in this EOC-HMGB-interactome study,
we have found in the literature that all of them are experimentally associated to cancer hallmarks
(Figure 2) and, in a high proportion, they had been directly related to ovary cancer (Figure 2).
Furthermore, ROCK1 [51], PCBP1 [52], AKIP1 [53], TGM2 [54], BCCIP [50], and MIEN1 [55] proteins
have been cited in relation to the epithelial to mesenchymal transition (EMT). Since EMT is an
important step in carcinogenesis, which precedes metastasis, the relevance of these proteins for early
EOC diagnosis is open to further analysis. Also reinforcing the significance of the interactions detected
in our study in relation to clinics, data of gene expression according to Pan-Cancer Analysis of
Whole Genomes (PCAWG), and corresponding to 110 tumors of ovarian adenocarcinomas, show that
HMGB1, HMGB2 and >90% of their preys detected in this EOC-HMGB-interactome are up-regulated
in the comparison between tumor tissue and adjacent non-tumor tissue (Table 3). Besides, according
to the “Ovarian Serous Cystadenocarcinoma (TCGA)” study and using the tools from cBioportal,
up-regulation of MIEN1, TGM2 or ZN428 in samples from these patients is correlated to poorer survival
outcomes (Figure 4).

Although the proteins identified in the study, as well as HMGB1 and HMGB2, had been previously
and independently related to EOC, the implication of a direct interaction with HMGB proteins,
as part of their mechanism of action in cancer progression, had not been previously envisaged.
Remarkably, this association is functionally reinforced by their confluence in a common signaling
pathway; the function of HMGB1 in EOC has been previously associated to NF-kB signaling [4,5] and the
functions of several of the EOC-HMGB-interactome components found in our analysis are also related
to this signaling pathway. AKIP1 is a binding partner of NF-kappa B p65 subunit, which enhances
the NF-kappa B-mediated gene expression [117]. MALAT1 and NF-κB signaling crosstalk during
cancer and other diseases [118]. BCCIP binds to the protein LYRIC/AEG-1, which promotes tumor cell
migration and invasion through activation of NF-kappaB [119]. COMMD1 inhibits NF-κB by promoting
the ubiquitination and subsequent proteasomal degradation of RELA, component of NF-κB dimer,
RELA/p50, bound to chromatin [120]. MIEN1 (C35) functionally enhances migration and invasion via
NF-κB/Akt activity [121]. Rho-kinase isoform ROCK1 and its downstream target p38 MAPK regulate
nuclear translocation of NF-κB RelA/p65 and subsequent DNA binding activity [122]. Over expression
of C1qA up-regulates nuclear factor-κB reporters [123]. RSF1-overexpressing paclitaxel-resistant
ovarian cancer cell lines were found to express elevated levels of genes regulated by NF-κB [46].

The interaction of HMGB2 with MIEN1 and NOP53 has been validated by co-immunoprecipitation
in our study. The structure of MIEN1 and their emerging functions in relation to cancer have been
recently reviewed [37], although the role of MIEN1 in pathophysiology of ovarian cancer had not
been previously explored in depth. NOP53 regulates the activation of the tumor suppressor p53
when ribosome biogenesis is perturbed or DNA damage is produced [124–126]. Previous studies
on the role of NOP53 in ovarian cancer were scarce, but down-regulation was observed in invasive
serous ovarian tumors compared with benign and normal tissues [35] a feature also confirmed by our
experiments in SKOV-3 cells versus noncancerous cells (Figure 3). NOP53 had been identified as a
tumor suppressor downregulated in brain tumor cells [127,128]; however, in other cancers (esophagus
or colon), NOP53 behaves as an oncogene that increments its expression in malignant cells [129].
Our data show that MIEN1 and NOP53 genes are regulated by HMGB1 and HMGB2 expression in EOC
cell lines (Figure 5). HMGB2 negatively regulates and HMGB1 mostly positively regulates these genes,
and in general the partners selected, which also correlates with the positive effect caused by HMGB2
silencing on HMGB1 expression. This could indicate that imbalance between HMGB1/HMGB2 is an
important issue to consider in EOC, although further evidences are needed to clarify this mechanism.

Interestingly, we have shown in our study that HMGB1, HMGB2 and their EOC-HMGB-interactome
partners MIEN1 and NOP53 are involved in the response to carboplatin, or drugs nowadays used
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in ovarian cancer treatment, such as bevacizumab, olaparib and paclitaxel. Expression levels of the
pro-oncogenic genes HMGB1, HMGB2, and MIEN1 are down-regulated after treatment with paclitaxel,
carboplatin or a combination of both (Table 4). Accordingly, HMGB1 or HMGB2 silencing decrease
cell-viability of SKOV-3 cells exposed to carboplatin (Figure 6). Our data support the role of HMGB1
in resistance to carboplatin that was previously reported [15]. No data were previously available
about the role of HMGB1 or HMGB2 in the resistance to paclitaxel, olaparib or bevacizumab in EOC
treatment, although HMGB1 had been reported as a possible prognosis biomarker of bevacizumab
treatment in non-small-cell lung cancer [130] and bevacizumab and HMGB1 have been related to
malignant mesothelioma [131]. We have not detected changes in HMGB1 gene expression or effects
of HMGB1 silencing in ovarian cancerous cells viability after bevacizumab treatment in the assayed
conditions. However, we have found that HMGB1 is related to sensitivity to paclitaxel and HMGB2 is
related to sensitivity to olaparib. NOP53, considered a tumor suppressor in brain tumor cells [127,128],
is overexpressed after treatment with paclitaxel and bevacizumab, and NOP53 silencing decrease
sensitivity to bevacizumab in SKOV-3 cells. According to our data, downregulation of HMGB1 causes
loss of response to paclitaxel; down regulation of HMGB1 or HMGB2 increases sensitivity to carboplatin
and, only in the case of HMGB2, slightly increases sensitivity to olaparib; finally, down regulation of
NOP53 causes a moderate loss of response to bevacizumab. Levels of these genes might be analyzed in
the clinical laboratory to guide treatment strategy in order to improve prognosis and avoid resistances.

4. Materials and Methods

4.1. Yeast Two Hybrid Methodology

HMGB1 and HMGB2 interacting partners were identified using Matchmaker Gold Yeast
Two-Hybrid System (Clontech. Fremont, CA, USA). Sacchacomyces cerevisiae strains were
Y187 (MATα, ura3-52, his3-200, ade2-101, trp1-901, leu2-3, 112, gal4∆, gal80∆, met-,
URA3::GALuas-GAL1TATA-LacZ MEL1) and Y2HGold (MATa, trp1-901, leu2-3, 112, ura3-52,
his3-200, gal4∆, gal80∆, LYS2::GAL1UAS-GAl1TATA-HIS3, GAL2UAS-GAL2TATA-ADE2,
URA3::MEL1UAS-MEL1TATA-AUR1-C-MEL1). This is a very reliable Y2H system in which the
three used promoters, controlling the four reporter genes HIS3, ADE2, AUR1-C and MEL1 in Y2HGold,
are unrelated except for the short sequence in the upstream activation site (UAS) that are specifically
bound by the Gal4 DNA binding domain. Thus, library proteins that interact with unrelated sequences,
flanking or within the UAS, (i.e., false positives) are automatically screened out.

RNAs from human samples used to prepare the Y2H libraries were provided by Biobanco de
Andalucía (Granada, Spain). Tumor and paired non-tumor tissue were obtained from a 63-year-old
woman diagnosed with grade III ovarian transitional cell carcinoma without previous chemotherapy
treatment. RNA was extracted from frozen tissue sections in OCT (Optimal Cutting Temperature)
compound, using the Qiacube robot (Qiagen. Hilden, Germany) based on ion exchange columns
with silica membrane. RNA was obtained with the miRNeasy mini kit (Qiagen, Hilden, Germany).
The samples were finally treated with RNase-Free DNAase (Qiagen, Hilden, Germany). The quantity
of RNA obtained was evaluated at 260 nm and 280 nm by spectrophotometry using the Infinite
F200 equipment (Tecan Group Ltd. Männedorf. Switzerland) with a Nanoquant plate; finally,
the integrity of the samples was evaluated by the 2200 Tape Station apparatus (Agilent Technologies, Inc.
Santa Clara, CA, USA), being the RIN (RNA Integrity Number) parameter greater than 8. Total RNA
from the ovarian cell line SKOV-3, was also used to prepare cDNA libraries. Library construction,
bait construction and Yeast Two-Hybrid library screening were done as recommended by the vendor
of the Matchmaker Gold Yeast Two-Hybrid System (Clontech, Mountain View, CA, USA) and
details are already published [132]. After plasmid rescue, inserts were sequenced with primer T7
(5′-TAATACGACTCACTATAGGG-3′). Homology searches were done with BlastN and BlastX at NCBI
(https://blast.ncbi.nlm.nih.gov/ accessed on 02-02-2020).

https://blast.ncbi.nlm.nih.gov/
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4.2. Cell Lines, Treatments and Cell Viability Assays

The SKOV-3 and PEO1 cell lines (originally derived from human EOC) and regularly tested
for mycoplasma by Eurofins Scientific (Luxembourg, Luxembourg), were grown in McCoy’s-5A or
RPMI-1640 medium, respectively, supplemented with 10% heat-inactivated fetal bovine serum and
1% penicillin-streptomycin (Thermo Fisher Scientific Inc. Waltham, MA, USA). The non-cancerous
immortalized human ovarian cell line IOS3-80 (RRID:CVCL_5546) was obtained from Canadian Ovarian
Tissue Bank (University of British Columbia, Vancouver, BC, Canada) and grown in RMPI-1640 medium
supplemented as described above. Cells were cultured in a humidified incubator at 37 ◦C at 5% CO2.

SKOV-3 and IOSE-80 cells at 80% confluence were exposed during 48 h to different treatments,
using drug concentrations and conditions selected according to previous studies. Paclitaxel was used at
25 µM [133]; carboplatin at 25 µg/mL [15]; olaparib to 2 µM [134]; and bevacizumab at 100 µg/mL [135]
Paclitaxel was purchased to Sigma Aldrich Inc. (St. Louis, MO, USA) and olaparib, bevacizumab
and carboplatin were provided by the Pharmacy Service of the Teresa Herrera hospital (INIBIC).
In parallel, cells were grown with the same amount of vehicle-buffer used to prepare drug solutions,
or with an unspecific IgG not directed to vascular endothelial growth factor as control of bevacizumab
treatment. Cell viability-cytotoxicity assays were done using the Cell Counting Kit-8, CCK-8 (Tebu-Bio.
Le-Perray-en-Yvelines, France).

4.3. Cross-Linking and HMGB2 Co-Immunoprecipitation

After reaching 70–80% confluence of SKOV-3 and PEO1 cultures, medium was removed and
substituted by medium without fetal bovine serum and supplemented with 1% formaldehyde used as
cross-linker. The cells were incubated with formaldehyde during 10 min at room temperature. To stop
the cross-linking reaction, the medium with formaldehyde was substituted with a solution containing
0.125 M glycine in PBS (Phosphate Buffered saline) pH 7.4 (NZYTech, Lda. Lisbon, Portugal) and
incubated during 5 min at room temperature. Cells were washed three times with PBS and harvested
by scraping. After subsequent collection by centrifugation at 1200 rpm for 10 min at 4 ◦C, cells were
re-suspended in lysis buffer (50 mM Tris-HCl pH 8, 150 mM NaCl, 0.1% NP-40, 1 mM EDTA, 2 Mm
MgCl2) containing a cocktail of EDTA-free protease inhibitors (Roche Diagnostics, Laval, QC, Canada).
Cell lysates were clarified for 15 min at 14000 rpm to pellet cell debris. Supernatants were collected
and protein quantified using the Bradford reagent. 16 mg of total protein extracts from cells were
immunoprecipitated (IPs) using 10 µg HMGB2 rabbit polyclonal ab67282 (Abcam, Cambridge, UK)
bound to 50 µL dynabeads-protein A (Thermo Fisher Scientific Inc. Waltham, MA, USA) following
manufacturer’s instructions. The presence of MIEN1 and NOP53 in the immunoprecipitations (IPs)
was confirmed by western blot using the antibodies against MIEN1 (PA1-31180 from Thermo-Fisher
Scientific Inc. Waltham, MA, USA) and NOP53, (sc517088 Santa Cruz, Dallas, TX, USA). After second
incubation with 1:5000 G-protein HRP-linked (18-161.Millipore-Merck-KGaA, Darmstadt, Germany),
5% (w/v) non-fat milk diluted in PBST, PSB containing 0.1% Tween 20 (P1379 from Sigma Aldrich Inc.)
was used as blocking solution. Western blots were developed using LuminataTMCrescendo Western
HRP Substrate (Millipore Corporation. Burlington, MA, USA), and visualized in a ChemiDocTM
imager (Bio-Rad Laboratories. Hercules, CA, USA).

4.4. Gene Expression Analysis by Quantitative Retrotranscription and Polymerase Chain Reaction (qRT-PCR)

RNA samples from cell cultures were obtained using GeneJET RNA Purification Kit (Thermo
Fisher Scientific Inc., Waltham, MA, USA). The samples were treated with RNase-Free DNAase
(Thermo Fisher Scientific Inc., Waltham, MA, USA) and purified using GeneJET RNA Cleanup and
Concentration kit (Thermo Fisher Scientific Inc. Waltham, MA, USA). RNA from human ovarian
surface epithelial cells (HOSEpiC) was provided by Innoprot (Derio, Vizcaya, Spain). RNA samples
were retro-transcribed into cDNA and labeled with the KAPA SYBR FAST universal one-step qRT-PCR
kit (Kappa Biosystems Inc., Woburn, MA, USA). The primers for qPCR were designed with the
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characteristics shown in Table S1 (Supplementary Material). Reaction conditions for thermal cycling
were: 42 ◦C for 5 min, 95 ◦C for 5 s, 40 cycles of 95 ◦C for 3 s and finally 60 ◦C for 20 s. The ECO
Real-Time PCR System was used for the experiments (Illumina Inc., San Diego, CA, USA), and relative
expression was calculated by the 2−∆∆Ct method [136]. A t-test was used to check the statistically
significance of differences between samples (p < 0.05 at least). The relative expression of selected genes
were calculated by referring to the mRNA levels of the housekeeping gene, GADPH, which had been
verified as being expressed constitutively under the assay conditions. For valid quantification using
the 2−∆∆Ct method, the target and reference primer pairs were previously tested for PCR efficiencies
and differed by <10%. At least, three independent biological replicas and two technical replicas were
made for each.

4.5. siRNA Silencing

siRNAs directed against each mRNA and unspecific controls were purchased. siRNA-HMGB1
(s20254 Silencer Select) and siRNA-HMGB2 (s6650) from Life technologies (Thermo Fisher Scientific Inc.,
Waltham, MA, USA); siRNA-MIEN1 (S228354), siRNA-NOP53, (S26871) and siRNAControl2 (4390846)
from Ambion Inc. (Thermo Fisher Scientific Inc., Waltham, MA, USA). Transfection of cells with
siRNAs was done using Lipofectamine® 2000 (Life-Technologies-Invitrogen. Thermo Fisher Scientific
Inc., Waltham, MA, USA) and following the protocol recommended by the vendor. Silencing was
verified by qRT-PCR, with the methods described in the previous section, and Western blot using the
antibodies against HMGB1 and HMGB2, NOP53 and MIEN1 already described and anti-GAPDH
(60004-I-Ig from Proteintech. Manchester, UK) used for loading control. After second incubation
with 1:5000 G-protein HRP-linked (18–161, Millipore-Merck-KGaA), western blot was developed as
above described.

4.6. Survival Analysis

The Overall Survival Kaplan-Meier Estimate analysis was performed through cBioPortal
(http://www.cbioportal.org/ accessed on 3-6-2020) using the databases Ovarian Serous
Cystadenocarcinoma (TCGA, Provisional), composed of 606 samples. Results obtained for the
genes giving Logrank Test p < 0.05 were selected for discussion.

5. Conclusions

In conclusion, results from our EOC-HMGB interactome study provides a set of proteins highly
correlated with cancer hallmarks, EMT, ovarian cancer, NF-kB signaling and, the expression of some
of them has been previously associated to patient’s survival. We have experimentally probed that
HMGB1, HMGB2 and two of their partners, MIEN1 and NOP53 are also involved in the response of
ovarian cancer cells to several drugs used in chemotherapy against EOC. Although clinical studies are
needed before translation to early diagnosis and prognosis of patients, these proteins found in our
EOC-HMGB-Interactome study are in the focus for the search of biomarkers and therapeutic targets in
the fight against EOC disease.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/9/2435/s1,
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MIEN1 and NOP53 silencing in SKOV-3 cells.

Author Contributions: All the authors contributed to conceptualization and design of experiments. A.B.-A. and
M.C.-Q. constructed the libraries and run Y2H experiments. M.C.-Q. and M.L.-M. run the treatment of SKOV-3
cells and qPCR experiments. M.C.-Q. and M.L.-M. performed siRNA experiments and co-immunoprecipitations.
M.E.C., Á.V.-V. and E.R.-B. performed data curation and M.Q.-V. provided advice for treatment selection. A.B.-A.,
M.C.-Q., M.L.-M. and M.E.C. wrote the original draft and figures. All authors have read and agreed to the
published version of the manuscript.

http://www.cbioportal.org/
http://www.mdpi.com/2072-6694/12/9/2435/s1


Cancers 2020, 12, 2435 15 of 22

Funding: This work has been funded by the Projects Nº PI14/01031 and PI18/01714, integrated in the National Plan
for Scientific Research, Development and Technological Innovation 2013–2016 of the ISCIII- General Subdirection
of Assesment and Promotion of the Research—European Regional Development Fund (FEDER) “A way of making
Europe”. Funding is also acknowledged from Xunta de Galicia (Consolidación Grupos Referencia Competitiva
Contract no. ED431C 2016–012). Aida Barreiro-Alonso was funded by a predoctoral fellowship from Xunta de
Galicia-2013 (Spain) cofinanced by FEDER.

Acknowledgments: We thank the Biobanco of Andalucía (Spain) for the samples provided to prepare the libraries
from ovarian cancer tissue and to the Biobanco of Complejo Hospitalario de Santiago de Compostela for samples
from ovarian cancer tissue provided and used in preliminary studies to set up Y2H experimental conditions.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Reid, B.M.; Permuth, J.B.; Sellers, T.A. Epidemiology of Ovarian Cancer: A Review. Cancer Biol. Med. 2017,
14, 9–32.

2. Ueda, T.; Yoshida, M. HMGB Proteins and Transcriptional Regulation. Biochim. Biophys. Acta 2010, 1799,
114–118. [CrossRef]

3. Barreiro-Alonso, A.; Lamas-Maceiras, M.; Rodriguez-Belmonte, E.; Vizoso-Vazquez, A.; Quindos, M.;
Cerdan, M.E. High Mobility Group B Proteins, their Partners, and Other Redox Sensors in Ovarian and
Prostate Cancer. Oxidative Med. Cell. Longev. 2016, 2016, 5845061. [CrossRef] [PubMed]

4. Li, Z.; Block, M.S.; Vierkant, R.A.; Fogarty, Z.C.; Winham, S.J.; Visscher, D.W.; Kalli, K.R.; Wang, C.; Goode, E.L.
The Inflammatory Microenvironment in Epithelial Ovarian Cancer: A Role for TLR4 and MyD88 and Related
Proteins. Tumor Biol. 2016, 37, 13279–13286. [CrossRef] [PubMed]

5. Jiang, C.; Qu, X.; Ke, H.; Gong, W.; Chen, R.; Yang, W.; Cheng, Z. Association between the HMGB1/TLR4
Signaling Pathway and the Clinicopathological Features of Ovarian Cancer. Mol. Med. Rep. 2018, 18,
3093–3098. [CrossRef]

6. Zhou, L.Y.; Shi, L.Y.; Xiao, Y. Changes of HMGB1 Expression on Angiogenesis of Ovarian Cancer and its
Mechanism. J. Biol. Regul. Homeost. Agents 2016, 30, 233–238.

7. Chen, J.; Xi, B.; Zhao, Y.; Yu, Y.; Zhang, J.; Wang, C. High-Mobility Group Protein B1 (HMGB1) is a Novel
Biomarker for Human Ovarian Cancer. Gynecol. Oncol. 2012, 126, 109–117. [CrossRef] [PubMed]

8. Li, Y.; Tian, J.; Fu, X.; Chen, Y.; Zhang, W.; Yao, H.; Hao, Q. Serum High Mobility Group Box Protein 1 as
Aclinical Marker for Ovarian Cancer. Neoplasma 2014, 61, 579–584. [CrossRef]

9. Wang, H.; Li, Z.; Sun, Y.; Xu, Z.; Han, J.; Song, B.; Song, W.; Qin, C.; Yin, L. Relationship between High-Mobility
Group Box 1 Overexpression in Ovarian Cancer Tissue and Serum: A Meta-Analysis. Onco Targets Ther. 2015,
8, 3523–3531.

10. Paek, J.; Lee, M.; Nam, E.J.; Kim, S.W.; Kim, Y.T. Clinical Impact of High Mobility Group Box 1 Protein in
Epithelial Ovarian Cancer. Arch. Gynecol. Obstet. 2016, 293, 645–650. [CrossRef]

11. Machado, L.R.; Moseley, P.M.; Moss, R.; Deen, S.; Nolan, C.; Spendlove, I.; Ramage, J.M.; Chan, S.Y.;
Durrant, L.G. High Mobility Group Protein B1 is a Predictor of Poor Survival in Ovarian Cancer. Oncotarget
2017, 8, 101215–101223. [CrossRef] [PubMed]

12. Ju, L.L.; Zhao, C.Y.; Ye, K.F.; Yang, H.; Zhang, J. Expression and Clinical Implication of Beclin1, HMGB1, p62,
Survivin, BRCA1 and ERCC1 in Epithelial Ovarian Tumor Tissues. Eur. Rev. Med. Pharmacol. Sci. 2016, 20,
1993–2003. [PubMed]

13. Bernardini, M.; Lee, C.H.; Beheshti, B.; Prasad, M.; Albert, M.; Marrano, P.; Begley, H.; Shaw, P.; Covens, A.;
Murphy, J.; et al. High-Resolution Mapping of Genomic Imbalance and Identification of Gene Expression
Profiles Associated with Differential Chemotherapy Response in Serous Epithelial Ovarian Cancer. Neoplasia
2005, 7, 603–613. [CrossRef] [PubMed]

14. Li, S.; Wei, Y. Association of HMGB1, BRCA1 and P62 Expression in Ovarian Cancer and Chemotherapy
Sensitivity. Oncol. Lett. 2018, 15, 9572–9576. [CrossRef]

15. Shu, W. Downregulation of High Mobility Group Protein Box-1 Resensitizes Ovarian Cancer Cells to
Carboplatin. Oncol. Lett. 2018, 16, 4586–4592. [CrossRef]

16. Varma, R.R.; Hector, S.M.; Clark, K.; Greco, W.R.; Hawthorn, L.; Pendyala, L. Gene Expression Profiling of
a Clonal Isolate of Oxaliplatin-Resistant Ovarian Carcinoma Cell Line A2780/C10. Oncol. Rep. 2005, 14,
925–932. [CrossRef]

http://dx.doi.org/10.1016/j.bbagrm.2009.11.005
http://dx.doi.org/10.1155/2016/5845061
http://www.ncbi.nlm.nih.gov/pubmed/26682011
http://dx.doi.org/10.1007/s13277-016-5163-2
http://www.ncbi.nlm.nih.gov/pubmed/27460076
http://dx.doi.org/10.3892/mmr.2018.9271
http://dx.doi.org/10.1016/j.ygyno.2012.03.051
http://www.ncbi.nlm.nih.gov/pubmed/22484401
http://dx.doi.org/10.4149/neo_2014_070
http://dx.doi.org/10.1007/s00404-015-3864-1
http://dx.doi.org/10.18632/oncotarget.20538
http://www.ncbi.nlm.nih.gov/pubmed/29254158
http://www.ncbi.nlm.nih.gov/pubmed/27249597
http://dx.doi.org/10.1593/neo.04760
http://www.ncbi.nlm.nih.gov/pubmed/16036111
http://dx.doi.org/10.3892/ol.2018.8482
http://dx.doi.org/10.3892/ol.2018.9232
http://dx.doi.org/10.3892/or.14.4.925


Cancers 2020, 12, 2435 16 of 22

17. Poornima, P.; Kumar, J.D.; Zhao, Q.; Blunder, M.; Efferth, T. Network Pharmacology of Cancer:
From Understanding of Complex Interactomes to the Design of Multi-Target Specific Therapeutics from
Nature. Pharmacol. Res. 2016, 111, 290–302. [CrossRef]

18. Eisenhauer, E.A. Real-World Evidence in the Treatment of Ovarian Cancer. Ann. Oncol. 2017, 28, viii61–viii65.
[CrossRef]

19. Henderson, J.T.; Webber, E.M.; Sawaya, G.F. Screening for Ovarian Cancer: Updated Evidence Report and
Systematic Review for the US Preventive Services Task Force. JAMA 2018, 319, 595–606. [CrossRef]

20. Ichigo, S.; Takagi, H.; Matsunami, K.; Murase, T.; Ikeda, T.; Imai, A. Transitional Cell Carcinoma of the Ovary
(Review). Oncol. Lett. 2012, 3, 3–6. [CrossRef]

21. Ali, R.H.; Seidman, J.D.; Luk, M.; Kalloger, S.; Gilks, C.B. Transitional Cell Carcinoma of the Ovary is Related
to High-Grade Serous Carcinoma and is Distinct from Malignant Brenner Tumor. Int. J. Gynecol. Pathol. 2012,
31, 499–506. [CrossRef] [PubMed]

22. Lin, Q.; Guan, W.; Ren, W.; Zhang, L.; Zhang, J.; Xu, G. MALAT1 Affects Ovarian Cancer Cell Behavior and
Patient Survival. Oncol. Rep. 2018, 39, 2644–2652. [CrossRef] [PubMed]

23. Wu, L.; Wang, X.; Guo, Y. Long Non-Coding RNA MALAT1 is Upregulated and Involved in Cell Proliferation,
Migration and Apoptosis in Ovarian Cancer. Exp. Ther. Med. 2017, 13, 3055–3060. [CrossRef] [PubMed]

24. Jin, Y.; Feng, S.J.; Qiu, S.; Shao, N.; Zheng, J.H. LncRNA MALAT1 Promotes Proliferation and Metastasis in
Epithelial Ovarian Cancer via the PI3K-AKT Pathway. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 3176–3184.

25. Zou, A.; Liu, R.; Wu, X. Long Non-Coding RNA MALAT1 is Up-Regulated in Ovarian Cancer Tissue and
Promotes SK-OV-3 Cell Proliferation and Invasion. Neoplasma 2016, 63, 865–872. [CrossRef]

26. Chen, Q.; Su, Y.; He, X.; Zhao, W.; Wu, C.; Zhang, W.; Si, X.; Dong, B.; Zhao, L.; Gao, Y.; et al. Plasma Long
Non-Coding RNA MALAT1 is Associated with Distant Metastasis in Patients with Epithelial Ovarian Cancer.
Oncol. Lett. 2016, 12, 1361–1366. [CrossRef]

27. Liu, S.; Jiang, X.; Li, W.; Cao, D.; Shen, K.; Yang, J. Inhibition of the Long Non-Coding RNA MALAT1
Suppresses Tumorigenicity and Induces Apoptosis in the Human Ovarian Cancer SKOV3 Cell Line. Oncol.
Lett. 2016, 11, 3686–3692. [CrossRef]

28. Shi, B.; Wang, Y.; Yin, F. MALAT1/miR-124/Capn4 Axis Regulates Proliferation, Invasion and EMT in
Nasopharyngeal Carcinoma Cells. Cancer Biol. Ther. 2017, 18, 792–800. [CrossRef]

29. Crappe, J.; Ndah, E.; Koch, A.; Steyaert, S.; Gawron, D.; De Keulenaer, S.; De Meester, E.; De Meyer, T.;
Van Criekinge, W.; Van Damme, P.; et al. PROTEOFORMER: Deep Proteome Coverage through Ribosome
Profiling and MS Integration. Nucleic Acids Res. 2015, 43, e29. [CrossRef]

30. Lee, S.; Liu, B.; Lee, S.; Huang, S.X.; Shen, B.; Qian, S.B. Global Mapping of Translation Initiation Sites in
Mammalian Cells at Single-Nucleotide Resolution. Proc. Natl. Acad. Sci. USA 2012, 109, E2424–E2432.
[CrossRef]

31. Barreiro-Alonso, A.; Lamas-Maceiras, M.; Garcia-Diaz, R.; Rodriguez-Belmonte, E.; Yu, L.; Pardo, M.;
Choudhary, J.S.; Cerdan, M.E. Delineating the HMGB1 and HMGB2 Interactome in Prostate and Ovary
Epithelial Cells and its Relationship with Cancer. Oncotarget 2018, 9, 19050–19064. [CrossRef] [PubMed]

32. Haley, J.; Tomar, S.; Pulliam, N.; Xiong, S.; Perkins, S.M.; Karpf, A.R.; Mitra, S.; Nephew, K.P.; Mitra, A.K.
Functional Characterization of a Panel of High-Grade Serous Ovarian Cancer Cell Lines as Representative
Experimental Models of the Disease. Oncotarget 2016, 7, 32810–32820. [CrossRef] [PubMed]

33. Beaufort, C.M.; Helmijr, J.C.A.; Piskorz, A.M.; Hoogstraat, M.; Ruigrok-Ritstier, K.; Bessenlink, N.;
Murtaza, M.; van IJcken, W.F.; Heine, A.A.; Smid, M.; et al. Ovarian Cancer Cell Line Panel (OCCP):
Clinical Importance of In Vitro Morphological Subtypes. PLoS ONE 2014, 9, e103988. [CrossRef] [PubMed]

34. Fedoseienko, A.; Wieringa, H.W.; Wisman, G.B.; Duiker, E.; Reyners, A.K.; Hofker, M.H.; van der Zee, A.G.;
van de Sluis, B.; van Vugt, M.A. Nuclear COMMD1 is Associated with Cisplatin Sensitivity in Ovarian
Cancer. PLoS ONE 2016, 11, e0165385. [CrossRef]

35. Merritt, M.A.; Parsons, P.G.; Newton, T.R.; Martyn, A.C.; Webb, P.M.; Green, A.C.; Papadimos, D.J.; Boyle, G.M.
Expression Profiling Identifies Genes Involved in Neoplastic Transformation of Serous Ovarian Cancer. BMC
Cancer 2009, 9, 378. [CrossRef]

36. Leung, T.H.; Wong, S.C.; Chan, K.K.; Chan, D.W.; Cheung, A.N.; Ngan, H.Y. The Interaction between C35 and
DeltaNp73 Promotes Chemo-Resistance in Ovarian Cancer Cells. Br. J. Cancer 2013, 109, 965–975. [CrossRef]

37. Kushwaha, P.P.; Gupta, S.; Singh, A.K.; Kumar, S. Emerging Role of Migration and Invasion Enhancer 1
(MIEN1) in Cancer Progression and Metastasis. Front. Oncol. 2019, 9, 868. [CrossRef]

http://dx.doi.org/10.1016/j.phrs.2016.06.018
http://dx.doi.org/10.1093/annonc/mdx443
http://dx.doi.org/10.1001/jama.2017.21421
http://dx.doi.org/10.3892/ol.2011.453
http://dx.doi.org/10.1097/PGP.0b013e31824d7445
http://www.ncbi.nlm.nih.gov/pubmed/23018212
http://dx.doi.org/10.3892/or.2018.6384
http://www.ncbi.nlm.nih.gov/pubmed/29693187
http://dx.doi.org/10.3892/etm.2017.4304
http://www.ncbi.nlm.nih.gov/pubmed/28587379
http://dx.doi.org/10.4149/neo_2016_605
http://dx.doi.org/10.3892/ol.2016.4800
http://dx.doi.org/10.3892/ol.2016.4435
http://dx.doi.org/10.1080/15384047.2017.1373214
http://dx.doi.org/10.1093/nar/gku1283
http://dx.doi.org/10.1073/pnas.1207846109
http://dx.doi.org/10.18632/oncotarget.24887
http://www.ncbi.nlm.nih.gov/pubmed/29721183
http://dx.doi.org/10.18632/oncotarget.9053
http://www.ncbi.nlm.nih.gov/pubmed/27147568
http://dx.doi.org/10.1371/journal.pone.0103988
http://www.ncbi.nlm.nih.gov/pubmed/25230021
http://dx.doi.org/10.1371/journal.pone.0165385
http://dx.doi.org/10.1186/1471-2407-9-378
http://dx.doi.org/10.1038/bjc.2013.397
http://dx.doi.org/10.3389/fonc.2019.00868


Cancers 2020, 12, 2435 17 of 22

38. Liu, Y.; Wang, Y.; Fu, X.; Lu, Z. Long Non-Coding RNA NEAT1 Promoted Ovarian Cancer Cells’ Metastasis
via Regulating of miR-382-3p/ROCK1 Axial. Cancer Sci. 2018, 109, 2188–2198. [CrossRef]

39. Park, G.B.; Kim, D. PI3K Catalytic Isoform Alteration Promotes the LIMK1-Related Metastasis through the
PAK1 or ROCK1/2 Activation in Cigarette Smoke-Exposed Ovarian Cancer Cells. Anticancer Res. 2017, 37,
1805–1818.

40. Ohta, T.; Takahashi, T.; Shibuya, T.; Amita, M.; Henmi, N.; Takahashi, K.; Kurachi, H. Inhibition of
the Rho/ROCK Pathway Enhances the Efficacy of Cisplatin through the Blockage of Hypoxia-Inducible
Factor-1alpha in Human Ovarian Cancer Cells. Cancer. Biol. Ther. 2012, 13, 25–33. [CrossRef]

41. Wegdam, W.; Argmann, C.A.; Kramer, G.; Vissers, J.P.; Buist, M.R.; Kenter, G.G.; Aerts, J.M.; Meijer, D.;
Moerland, P.D. Label-Free LC-MSe in Tissue and Serum Reveals Protein Networks Underlying Differences
between Benign and Malignant Serous Ovarian Tumors. PLoS ONE 2014, 9, e108046. [CrossRef] [PubMed]

42. Sodek, K.L.; Ringuette, M.J.; Brown, T.J. Compact Spheroid Formation by Ovarian Cancer Cells is Associated
with Contractile Behavior and an Invasive Phenotype. Int. J. Cancer 2009, 124, 2060–2070. [CrossRef]
[PubMed]

43. Je, E.M.; Yoo, N.J.; Kim, Y.J.; Kim, M.S.; Lee, S.H. Mutational Analysis of Splicing Machinery Genes SF3B1,
U2AF1 and SRSF2 in Myelodysplasia and Other Common Tumors. Int. J. Cancer 2013, 133, 260–265.
[CrossRef] [PubMed]

44. Kim, S.; Hagemann, A.; DeMichele, A. Immuno-Modulatory Gene Polymorphisms and Outcome in Breast
and Ovarian Cancer. Immunol. Investig. 2009, 38, 324–340. [CrossRef] [PubMed]

45. Pathak, H.B.; Zhou, Y.; Sethi, G.; Hirst, J.; Schilder, R.J.; Golemis, E.A.; Godwin, A.K. A Synthetic Lethality
Screen using a Focused siRNA Library to Identify Sensitizers to Dasatinib Therapy for the Treatment of
Epithelial Ovarian Cancer. PLoS ONE 2015, 10, e0144126. [CrossRef] [PubMed]

46. Yang, Y.I.; Ahn, J.H.; Lee, K.T.; Shih, I.; Choi, J.H. RSF1 is a Positive Regulator of NF-kappaB-Induced Gene
Expression Required for Ovarian Cancer Chemoresistance. Cancer Res. 2014, 74, 2258–2269. [CrossRef]

47. Sheu, J.J.; Choi, J.H.; Guan, B.; Tsai, F.J.; Hua, C.H.; Lai, M.T.; Wang, T.L.; Shih, I. Rsf-1, a Chromatin
Remodelling Protein, Interacts with Cyclin E1 and Promotes Tumour Development. J. Pathol. 2013, 229,
559–568. [CrossRef]

48. Maeda, D.; Chen, X.; Guan, B.; Nakagawa, S.; Yano, T.; Taketani, Y.; Fukayama, M.; Wang, T.L.; Shih, I. Rsf-1
(HBXAP) Expression is Associated with Advanced Stage and Lymph Node Metastasis in Ovarian Clear Cell
Carcinoma. Int. J. Gynecol. Pathol. 2011, 30, 30–35. [CrossRef]

49. Choi, J.H.; Sheu, J.J.; Guan, B.; Jinawath, N.; Markowski, P.; Wang, T.L.; Shih, I. Functional Analysis of 11q13.5
Amplicon Identifies Rsf-1 (HBXAP) as a Gene Involved in Paclitaxel Resistance in Ovarian Cancer. Cancer
Res. 2009, 69, 1407–1415. [CrossRef]

50. Liu, X.; Cao, L.; Ni, J.; Liu, N.; Zhao, X.; Wang, Y.; Zhu, L.; Wang, L.; Wang, J.; Yue, Y.; et al. Differential
BCCIP Gene Expression in Primary Human Ovarian Cancer, Renal Cell Carcinoma and Colorectal Cancer
Tissues. Int. J. Oncol. 2013, 43, 1925–1934. [CrossRef]

51. Luo, H.; Liang, C. MicroRNA-148b Inhibits Proliferation and the Epithelial-Mesenchymal Transition and
Increases Radiosensitivity in Non-Small Cell Lung Carcinomas by Regulating ROCK1. Exp. Ther. Med. 2018,
15, 3609–3616. [CrossRef] [PubMed]

52. Zhang, H.Y.; Dou, K.F. PCBP1 is an Important Mediator of TGF-Beta-Induced Epithelial to Mesenchymal
Transition in Gall Bladder Cancer Cell Line GBC-SD. Mol. Biol. Rep. 2014, 41, 5519–5524. [CrossRef]
[PubMed]

53. Guo, X.; Zhao, L.; Cheng, D.; Mu, Q.; Kuang, H.; Feng, K. AKIP1 Promoted Epithelial-Mesenchymal
Transition of Non-Small-Cell Lung Cancer via Transactivating ZEB1. Am. J. Cancer. Res. 2017, 7, 2234–2244.
[PubMed]

54. He, W.; Sun, Z.; Liu, Z. Silencing of TGM2 Reverses Epithelial to Mesenchymal Transition and Modulates the
Chemosensitivity of Breast Cancer to Docetaxel. Exp. Ther. Med. 2015, 10, 1413–1418. [CrossRef]

55. Ren, H.; Qi, Y.; Yin, X.; Gao, J. MiR-136 Targets MIEN1 and Involves the Metastasis of Colon Cancer by
Suppressing Epithelial-to-Mesenchymal Transition. Onco Targets Ther. 2017, 11, 67–74. [CrossRef]

56. Mo, D.; Li, X.; Li, C.; Liang, J.; Zeng, T.; Su, N.; Jiang, Q.; Huang, J. Overexpression of AKIP1 Predicts Poor
Prognosis of Patients with Breast Carcinoma and Promotes Cancer Metastasis through Akt/GSK-3beta/Snail
Pathway. Am. J. Transl. Res. 2016, 8, 4951–4959.

http://dx.doi.org/10.1111/cas.13647
http://dx.doi.org/10.4161/cbt.13.1.18440
http://dx.doi.org/10.1371/journal.pone.0108046
http://www.ncbi.nlm.nih.gov/pubmed/25265318
http://dx.doi.org/10.1002/ijc.24188
http://www.ncbi.nlm.nih.gov/pubmed/19132753
http://dx.doi.org/10.1002/ijc.28011
http://www.ncbi.nlm.nih.gov/pubmed/23280334
http://dx.doi.org/10.1080/08820130902910567
http://www.ncbi.nlm.nih.gov/pubmed/19811442
http://dx.doi.org/10.1371/journal.pone.0144126
http://www.ncbi.nlm.nih.gov/pubmed/26637171
http://dx.doi.org/10.1158/0008-5472.CAN-13-2459
http://dx.doi.org/10.1002/path.4147
http://dx.doi.org/10.1097/PGP.0b013e3181e9a319
http://dx.doi.org/10.1158/0008-5472.CAN-08-3602
http://dx.doi.org/10.3892/ijo.2013.2124
http://dx.doi.org/10.3892/etm.2018.5845
http://www.ncbi.nlm.nih.gov/pubmed/29545890
http://dx.doi.org/10.1007/s11033-014-3428-7
http://www.ncbi.nlm.nih.gov/pubmed/24889597
http://www.ncbi.nlm.nih.gov/pubmed/29218247
http://dx.doi.org/10.3892/etm.2015.2679
http://dx.doi.org/10.2147/OTT.S113359


Cancers 2020, 12, 2435 18 of 22

57. Zhang, W.; Wu, Q.; Wang, C.; Yang, L.; Liu, P.; Ma, C. AKIP1 Promotes Angiogenesis and Tumor Growth by
Upregulating CXC-Chemokines in Cervical Cancer Cells. Mol. Cell. Biochem. 2018, 448, 311–320. [CrossRef]

58. Zimmerman, R.; Peng, D.J.; Lanz, H.; Zhang, Y.H.; Danen-Van Oorschot, A.; Qu, S.; Backendorf, C.;
Noteborn, M. PP2A Inactivation is a Crucial Step in Triggering Apoptin-Induced Tumor-Selective Cell Killing.
Cell Death Dis. 2012, 3, e291. [CrossRef]

59. Sastri, M.; Haushalter, K.J.; Panneerselvam, M.; Chang, P.; Fridolfsson, H.; Finley, J.C.; Ng, D.; Schilling, J.M.;
Miyanohara, A.; Day, M.E.; et al. A Kinase Interacting Protein (AKIP1) is a Key Regulator of Cardiac Stress.
Proc. Natl. Acad. Sci. USA 2013, 110, E387–E396. [CrossRef]

60. Yu, H.; Tigchelaar, W.; Koonen, D.P.; Patel, H.H.; de Boer, R.A.; van Gilst, W.H.; Westenbrink, B.D.; Sillje, H.H.
AKIP1 Expression Modulates Mitochondrial Function in Rat Neonatal Cardiomyocytes. PLoS ONE 2013, 8,
e80815. [CrossRef]

61. Huang, Y.Y.; Dai, L.; Gaines, D.; Droz-Rosario, R.; Lu, H.; Liu, J.; Shen, Z. BCCIP Suppresses Tumor Initiation
but is Required for Tumor Progression. Cancer Res. 2013, 73, 7122–7133. [CrossRef] [PubMed]

62. Lin, Z.; Hu, B.; Ni, W.; Mao, X.; Zhou, H.; Lv, J.; Yin, B.; Shen, Z.; Wu, M.; Ding, W.; et al. Expression Pattern
of BCCIP in Hepatocellular Carcinoma is Correlated with Poor Prognosis and Enhanced Cell Proliferation.
Tumour Biol. 2016, 37, 16305–16315. [CrossRef] [PubMed]

63. Van de Sluis, B.; Mao, X.; Zhai, Y.; Groot, A.J.; Vermeulen, J.F.; van der Wall, E.; van Diest, P.J.; Hofker, M.H.;
Wijmenga, C.; Klomp, L.W.; et al. COMMD1 Disrupts HIF-1alpha/beta Dimerization and Inhibits Human
Tumor Cell Invasion. J. Clin. Investig. 2010, 120, 2119–2130. [CrossRef] [PubMed]

64. Mu, P.; Akashi, T.; Lu, F.; Kishida, S.; Kadomatsu, K. A Novel Nuclear Complex of DRR1, F-Actin and
COMMD1 Involved in NF-kappaB Degradation and Cell Growth Suppression in Neuroblastoma. Oncogene
2017, 36, 5745–5756. [CrossRef] [PubMed]

65. Yeh, D.W.; Chen, Y.S.; Lai, C.Y.; Liu, Y.L.; Lu, C.H.; Lo, J.F.; Chen, L.; Hsu, L.C.; Luo, Y.; Xiang, R.; et al.
Downregulation of COMMD1 by miR-205 Promotes a Positive Feedback Loop for Amplifying Inflammatory-
and Stemness-Associated Properties of Cancer Cells. Cell Death Differ. 2016, 23, 841–852. [CrossRef] [PubMed]

66. Bulla, R.; Tripodo, C.; Rami, D.; Ling, G.S.; Agostinis, C.; Guarnotta, C.; Zorzet, S.; Durigutto, P.; Botto, M.;
Tedesco, F. C1q Acts in the Tumour Microenvironment as a Cancer-Promoting Factor Independently of
Complement Activation. Nat. Commun. 2016, 7, 10346. [CrossRef]

67. Brennan, P.A.; Jing, J.; Ethunandan, M.; Gorecki, D. Dystroglycan Complex in Cancer. Eur. J. Surg. Oncol.
2004, 30, 589–592. [CrossRef]

68. Pohl, M.; Olsen, K.E.; Holst, R.; Donnem, T.; Busund, L.T.; Bremnes, R.M.; Al-Saad, S.; Andersen, S.;
Richardsen, E.; Ditzel, H.J.; et al. Keratin 34betaE12/keratin7 Expression is a Prognostic Factor of
Cancer-Specific and overall Survival in Patients with Early Stage Non-Small Cell Lung Cancer. Acta
Oncol. 2016, 55, 167–177. [CrossRef]

69. Tee, A.E.; Liu, B.; Song, R.; Li, J.; Pasquier, E.; Cheung, B.B.; Jiang, C.; Marshall, G.M.; Haber, M.; Norris, M.D.;
et al. The Long Noncoding RNA MALAT1 Promotes Tumor-Driven Angiogenesis by Up-Regulating
Pro-Angiogenic Gene Expression. Oncotarget 2016, 7, 8663–8675. [CrossRef]

70. Ji, D.G.; Guan, L.Y.; Luo, X.; Ma, F.; Yang, B.; Liu, H.Y. Inhibition of MALAT1 Sensitizes Liver Cancer Cells
to 5-Flurouracil by Regulating Apoptosis through IKKalpha/NF-kappaB Pathway. Biochem. Biophys. Res.
Commun. 2018, 501, 33–40. [CrossRef]

71. Kwon, M.J.; Kim, R.N.; Song, K.; Jeon, S.; Jeong, H.M.; Kim, J.S.; Han, J.; Hong, S.; Oh, E.; Choi, J.S.; et al.
Genes Co-Amplified with ERBB2 Or MET as Novel Potential Cancer-Promoting Genes in Gastric Cancer.
Oncotarget 2017, 8, 92209–92226. [CrossRef] [PubMed]

72. Liu, Q.Q.; Yin, K.; Zhu, S.; Zhang, L.; Wen, P.E.; Li, C.L.; Zhang, D.B.; Liu, M.; Yan, G. Inhibition of C35
Gene Expression by Small Interfering RNA Induces Apoptosis of Breast Cancer Cells. Biosci. Trends 2010, 4,
254–259. [PubMed]

73. Chen, H.; Duo, Y.; Hu, B.; Wang, Z.; Zhang, F.; Tsai, H.; Zhang, J.; Zhou, L.; Wang, L.; Wang, X.; et al. PICT-1
Triggers a Pro-Death Autophagy through Inhibiting rRNA Transcription and AKT/mTOR/p70S6K Signaling
Pathway. Oncotarget 2016, 7, 78747–78763. [CrossRef] [PubMed]

74. Kim, J.Y.; Cho, Y.E.; Park, J.H. The Nucleolar Protein GLTSCR2 is an Upstream Negative Regulator of the
Oncogenic Nucleophosmin-MYC Axis. Am. J. Pathol. 2015, 185, 2061–2068. [CrossRef] [PubMed]

75. Kim, J.Y.; Park, J.H.; Lee, S. GLTSCR2 Contributes to the Death Resistance and Invasiveness of
Hypoxia-Selected Cancer Cells. FEBS Lett. 2012, 586, 3435–3440. [CrossRef]

http://dx.doi.org/10.1007/s11010-018-3335-7
http://dx.doi.org/10.1038/cddis.2012.31
http://dx.doi.org/10.1073/pnas.1221670110
http://dx.doi.org/10.1371/journal.pone.0080815
http://dx.doi.org/10.1158/0008-5472.CAN-13-1766
http://www.ncbi.nlm.nih.gov/pubmed/24145349
http://dx.doi.org/10.1007/s13277-016-5424-0
http://www.ncbi.nlm.nih.gov/pubmed/27832471
http://dx.doi.org/10.1172/JCI40583
http://www.ncbi.nlm.nih.gov/pubmed/20458141
http://dx.doi.org/10.1038/onc.2017.181
http://www.ncbi.nlm.nih.gov/pubmed/28604741
http://dx.doi.org/10.1038/cdd.2015.147
http://www.ncbi.nlm.nih.gov/pubmed/26586569
http://dx.doi.org/10.1038/ncomms10346
http://dx.doi.org/10.1016/j.ejso.2004.03.014
http://dx.doi.org/10.3109/0284186X.2015.1049291
http://dx.doi.org/10.18632/oncotarget.6675
http://dx.doi.org/10.1016/j.bbrc.2018.04.116
http://dx.doi.org/10.18632/oncotarget.21150
http://www.ncbi.nlm.nih.gov/pubmed/29190909
http://www.ncbi.nlm.nih.gov/pubmed/21068479
http://dx.doi.org/10.18632/oncotarget.12288
http://www.ncbi.nlm.nih.gov/pubmed/27729611
http://dx.doi.org/10.1016/j.ajpath.2015.03.016
http://www.ncbi.nlm.nih.gov/pubmed/25956029
http://dx.doi.org/10.1016/j.febslet.2012.07.064


Cancers 2020, 12, 2435 19 of 22

76. Li, J.; Feng, Q.; Wei, X.; Yu, Y. MicroRNA-490 Regulates Lung Cancer Metastasis by Targeting Poly r(C)-Binding
Protein 1. Tumour Biol. 2016, 37, 15221–15228. [CrossRef]

77. Schiarea, S.; Solinas, G.; Allavena, P.; Scigliuolo, G.M.; Bagnati, R.; Fanelli, R.; Chiabrando, C. Secretome
Analysis of Multiple Pancreatic Cancer Cell Lines Reveals Perturbations of Key Functional Networks. J.
Proteome Res. 2010, 9, 4376–4392. [CrossRef]

78. Zhang, W.; Shi, H.; Zhang, M.; Liu, B.; Mao, S.; Li, L.; Tong, F.; Liu, G.; Yang, S.; Wang, H. Poly C Binding
Protein 1 Represses Autophagy through Downregulation of LC3B to Promote Tumor Cell Apoptosis in
Starvation. Int. J. Biochem. Cell Biol. 2016, 73, 127–136. [CrossRef]

79. Jones, D.T.; Lechertier, T.; Reynolds, L.E.; Mitter, R.; Robinson, S.D.; Kirn-Safran, C.B.; Hodivala-Dilke, K.M.
Endogenous Ribosomal Protein L29 (RPL29): A Newly Identified Regulator of Angiogenesis in Mice. Dis.
Model. Mech. 2013, 6, 115–124. [CrossRef]

80. Li, C.; Ge, M.; Yin, Y.; Luo, M.; Chen, D. Silencing Expression of Ribosomal Protein L26 and L29 by RNA
Interfering Inhibits Proliferation of Human Pancreatic Cancer PANC-1 Cells. Mol. Cell. Biochem. 2012, 370,
127–139. [CrossRef]

81. Wang, Y.; Wang, Y.; Zhang, Z. Adipokine RBP4 Drives Ovarian Cancer Cell Migration. J. Ovarian Res. 2018,
11, 29. [CrossRef] [PubMed]

82. Montalvo, J.; Spencer, C.; Hackathorn, A.; Masterjohn, K.; Perkins, A.; Doty, C.; Arumugam, A.; Ongusaha, P.P.;
Lakshmanaswamy, R.; Liao, J.K.; et al. ROCK1 & 2 Perform Overlapping and Unique Roles in Angiogenesis
and Angiosarcoma Tumor Progression. Curr. Mol. Med. 2013, 13, 205–219.

83. Bryan, B.A.; Dennstedt, E.; Mitchell, D.C.; Walshe, T.E.; Noma, K.; Loureiro, R.; Saint-Geniez, M.;
Campaigniac, J.P.; Liao, J.K.; D’Amore, P.A. RhoA/ROCK Signaling is Essential for Multiple Aspects
of VEGF-Mediated Angiogenesis. FASEB J. 2010, 24, 3186–3195. [CrossRef] [PubMed]

84. Zhang, R.; Li, G.; Zhang, Q.; Tang, Q.; Huang, J.; Hu, C.; Liu, Y.; Wang, Q.; Liu, W.; Gao, N.; et al. Hirsutine
Induces mPTP-Dependent Apoptosis through ROCK1/PTEN/PI3K/GSK3beta Pathway in Human Lung
Cancer Cells. Cell Death Dis. 2018, 9, 598. [CrossRef] [PubMed]

85. Guerra, B.; Fischer, M.; Schaefer, S.; Issinger, O.G. The Kinase Inhibitor D11 Induces Caspase-Mediated Cell
Death in Cancer Cells Resistant to Chemotherapeutic Treatment. J. Exp. Clin. Cancer Res. 2015, 34, 125.
[CrossRef]

86. Li, G.; Liu, L.; Shan, C.; Cheng, Q.; Budhraja, A.; Zhou, T.; Cui, H.; Gao, N. RhoA/ROCK/PTEN Signaling is
Involved in AT-101-Mediated Apoptosis in Human Leukemia Cells in Vitro and in Vivo. Cell Death Dis. 2014,
5, e998. [CrossRef]

87. Liu, Y.; Li, G.; Liu, C.; Tang, Y.; Zhang, S. RSF1 Regulates the Proliferation and Paclitaxel Resistance via
Modulating NF-kappaB Signaling Pathway in Nasopharyngeal Carcinoma. J. Cancer 2017, 8, 354–362.
[CrossRef]

88. Li, Q.; Dong, Q.; Wang, E. Rsf-1 is Overexpressed in Non-Small Cell Lung Cancers and Regulates cyclinD1
Expression and ERK Activity. Biochem. Biophys. Res. Commun. 2012, 420, 6–10. [CrossRef]

89. Lei, Z.; Chai, N.; Tian, M.; Zhang, Y.; Wang, G.; Liu, J.; Tian, Z.; Yi, X.; Chen, D.; Li, X.; et al. Novel Peptide
GX1 Inhibits Angiogenesis by Specifically Binding to Transglutaminase-2 in the Tumorous Endothelial Cells
of Gastric Cancer. Cell Death Dis. 2018, 9, 579. [CrossRef]

90. Hidaka, H.; Seki, N.; Yoshino, H.; Yamasaki, T.; Yamada, Y.; Nohata, N.; Fuse, M.; Nakagawa, M.; Enokida, H.
Tumor Suppressive microRNA-1285 Regulates Novel Molecular Targets: Aberrant Expression and Functional
Significance in Renal Cell Carcinoma. Oncotarget 2012, 3, 44–57. [CrossRef]

91. Lu, H.; Hallstrom, T.C. The Nuclear Protein UHRF2 is a Direct Target of the Transcription Factor E2F1 in the
Induction of Apoptosis. J. Biol. Chem. 2013, 288, 23833–23843. [CrossRef] [PubMed]

92. Lu, X.; Wang, J.; Shan, X.; Li, Y. Selecting Key Genes Associated with Ovarian Cancer Based on Differential
Expression Network. J. BUON 2017, 22, 48–57. [PubMed]

93. Fei, D.L.; Motowski, H.; Chatrikhi, R.; Prasad, S.; Yu, J.; Gao, S.; Kielkopf, C.L.; Bradley, R.K.; Varmus, H.
Wild-Type U2AF1 Antagonizes the Splicing Program Characteristic of U2AF1-Mutant Tumors and is Required
for Cell Survival. PLoS Genet. 2016, 12, e1006384. [CrossRef] [PubMed]

94. Hu, R.; Peng, G.; Dai, H.; Breuer, E.K.; Stemke-Hale, K.; Li, K.; Gonzalez-Angulo, A.M.; Mills, G.B.; Lin, S.Y.
ZNF668 Functions as a Tumor Suppressor by Regulating p53 Stability and Function in Breast Cancer. Cancer
Res. 2011, 71, 6524–6534. [CrossRef] [PubMed]

http://dx.doi.org/10.1007/s13277-016-5347-9
http://dx.doi.org/10.1021/pr1001109
http://dx.doi.org/10.1016/j.biocel.2016.02.009
http://dx.doi.org/10.1242/dmm.009183
http://dx.doi.org/10.1007/s11010-012-1404-x
http://dx.doi.org/10.1186/s13048-018-0397-9
http://www.ncbi.nlm.nih.gov/pubmed/29642915
http://dx.doi.org/10.1096/fj.09-145102
http://www.ncbi.nlm.nih.gov/pubmed/20400538
http://dx.doi.org/10.1038/s41419-018-0641-7
http://www.ncbi.nlm.nih.gov/pubmed/29789524
http://dx.doi.org/10.1186/s13046-015-0234-6
http://dx.doi.org/10.1038/cddis.2013.519
http://dx.doi.org/10.7150/jca.16720
http://dx.doi.org/10.1016/j.bbrc.2012.02.095
http://dx.doi.org/10.1038/s41419-018-0594-x
http://dx.doi.org/10.18632/oncotarget.417
http://dx.doi.org/10.1074/jbc.M112.447276
http://www.ncbi.nlm.nih.gov/pubmed/23833190
http://www.ncbi.nlm.nih.gov/pubmed/28365935
http://dx.doi.org/10.1371/journal.pgen.1006384
http://www.ncbi.nlm.nih.gov/pubmed/27776121
http://dx.doi.org/10.1158/0008-5472.CAN-11-0853
http://www.ncbi.nlm.nih.gov/pubmed/21852383


Cancers 2020, 12, 2435 20 of 22

95. Zhang, Y.; Cheng, Y.; Ren, X.; Zhang, L.; Yap, K.L.; Wu, H.; Patel, R.; Liu, D.; Qin, Z.H.; Shih, I.M.; et al. NAC1
Modulates Sensitivity of Ovarian Cancer Cells to Cisplatin by Altering the HMGB1-Mediated Autophagic
Response. Oncogene 2012, 31, 1055–1064. [CrossRef]

96. Zhang, H.; Zhang, C.F.; Chen, R. Zinc Finger RNA-Binding Protein Promotes Non-Small-Cell Carcinoma
Growth and Tumor Metastasis by Targeting the Notch Signaling Pathway. Am. J. Cancer Res. 2017, 7,
1804–1819.

97. Zhao, X.; Chen, M.; Tan, J. Knockdown of ZFR Suppresses Cell Proliferation and Invasion of Human
Pancreatic Cancer. Biol. Res. 2016, 49, 26. [CrossRef]

98. Zwang, Y.; Jonas, O.; Chen, C.; Rinne, M.L.; Doench, J.G.; Piccioni, F.; Tan, L.; Huang, H.T.; Wang, J.; Ham, Y.J.;
et al. Synergistic Interactions with PI3K Inhibition that Induce Apoptosis. Elife 2017, 6, e24523. [CrossRef]

99. Papatheodorou, I.; Fonseca, N.A.; Keays, M.; Tang, Y.A.; Barrera, E.; Bazant, W.; Burke, M.; Fullgrabe, A.;
Fuentes, A.M.; George, N.; et al. Expression Atlas: Gene and Protein Expression across Multiple Studies and
Organisms. Nucleic Acids Res. 2018, 46, D246–D251. [CrossRef]

100. GTEx Consortium. The Genotype-Tissue Expression (GTEx) Project. Nat. Genet. 2013, 45, 580–585. [CrossRef]
101. Wang, J.; Peng, X.; Peng, W.; Wu, F.X. Dynamic Protein Interaction Network Construction and Applications.

Proteomics 2014, 14, 338–352. [CrossRef] [PubMed]
102. Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.;

Larsson, E.; et al. The cBio Cancer Genomics Portal: An Open Platform for Exploring Multidimensional
Cancer Genomics Data. Cancer Discov. 2012, 2, 401–404. [CrossRef]

103. Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.;
Larsson, E.; et al. Integrative Analysis of Complex Cancer Genomics and Clinical Profiles using the cBioPortal.
Sci. Signal. 2013, 6, pl1. [CrossRef] [PubMed]

104. Shih, I.; Sheu, J.J.; Santillan, A.; Nakayama, K.; Yen, M.J.; Bristow, R.E.; Vang, R.; Parmigiani, G.; Kurman, R.J.;
Trope, C.G.; et al. Amplification of a Chromatin Remodeling Gene, Rsf-1/HBXAP, in Ovarian Carcinoma.
Proc. Natl. Acad. Sci. USA 2005, 102, 14004–14009. [CrossRef] [PubMed]

105. Van Beijnum, J.R.; Buurman, W.A.; Griffioen, A.W. Convergence and Amplification of Toll-Like Receptor
(TLR) and Receptor for Advanced Glycation End Products (RAGE) Signaling Pathways via High Mobility
Group B1 (HMGB1). Angiogenesis 2008, 11, 91–99. [CrossRef]

106. Rohnalter, V.; Roth, K.; Finkernagel, F.; Adhikary, T.; Obert, J.; Dorzweiler, K.; Bensberg, M.;
Muller-Brusselbach, S.; Muller, R. A Multi-Stage Process Including Transient Polyploidization and
EMT Precedes the Emergence of Chemoresistent Ovarian Carcinoma Cells with a Dedifferentiated and
Pro-Inflammatory Secretory Phenotype. Oncotarget 2015, 6, 40005–40025. [CrossRef]

107. Xia, X.; Ji, T.; Liu, R.; Weng, Y.; Fang, Y.; Wang, Z.; Xu, H. Cytoplasmic p21 is Responsible for Paclitaxel
Resistance in Ovarian Cancer A2780 Cells. Eur. J. Gynaecol. Oncol. 2015, 36, 662–666.

108. Shi, H.; Li, H.; Yuan, R.; Guan, W.; Zhang, X.; Zhang, S.; Zhang, W.; Tong, F.; Li, L.; Song, Z.; et al. PCBP1
Depletion Promotes Tumorigenesis through Attenuation of p27 (Kip1) mRNA Stability and Translation. J.
Exp. Clin. Cancer Res. 2018, 37, 187. [CrossRef]

109. He, Y.; Ding, Y.; Wang, D.; Zhang, W.; Chen, W.; Liu, X.; Qin, W.; Qian, X.; Chen, H.; Guo, Z. HMGB1 Bound
to Cisplatin-DNA Adducts Undergoes Extensive Acetylation and Phosphorylation in Vivo. Chem. Sci. 2015,
6, 2074–2078. [CrossRef]

110. Ingemarsdotter, C.K.; Tookman, L.A.; Browne, A.; Pirlo, K.; Cutts, R.; Chelela, C.; Khurrum, K.F.; Leung, E.Y.;
Dowson, S.; Webber, L.; et al. Paclitaxel Resistance Increases Oncolytic Adenovirus Efficacy via Upregulated
CAR Expression and Dysfunctional Cell Cycle Control. Mol. Oncol. 2015, 9, 791–805. [CrossRef]

111. Knox, R.J.; Friedlos, F.; Lydall, D.A.; Roberts, J.J. Mechanism of Cytotoxicity of Anticancer Platinum Drugs:
Evidence that Cis-Diamminedichloroplatinum (II) and Cis-Diammine-(1, 1-Cyclobutanedicarboxylato)
Platinum (II) Differ Only in the Kinetics of their Interaction with DNA. Cancer Res. 1986, 46, 1972–1979.
[PubMed]

112. Brabec, V.; Kasparkova, J. Modifications of DNA by Platinum Complexes. Relation to Resistance of Tumors
to Platinum Antitumor Drugs. Drug Resist Updat. 2005, 8, 131–146. [CrossRef] [PubMed]

113. Goulooze, S.C.; Cohen, A.F.; Rissmann, R. Olaparib. Br. J. Clin. Pharmacol. 2016, 81, 171–173. [CrossRef]
[PubMed]

114. Monk, B.J.; Randall, L.M.; Grisham, R.N. The Evolving Landscape of Chemotherapy in Newly Diagnosed
Advanced Epithelial Ovarian Cancer. Am. Soc. Clin. Oncol. Educ. Book 2019, 39, e141–e151. [CrossRef]

http://dx.doi.org/10.1038/onc.2011.290
http://dx.doi.org/10.1186/s40659-016-0086-3
http://dx.doi.org/10.7554/eLife.24523
http://dx.doi.org/10.1093/nar/gkx1158
http://dx.doi.org/10.1038/ng.2653
http://dx.doi.org/10.1002/pmic.201300257
http://www.ncbi.nlm.nih.gov/pubmed/24339054
http://dx.doi.org/10.1158/2159-8290.CD-12-0095
http://dx.doi.org/10.1126/scisignal.2004088
http://www.ncbi.nlm.nih.gov/pubmed/23550210
http://dx.doi.org/10.1073/pnas.0504195102
http://www.ncbi.nlm.nih.gov/pubmed/16172393
http://dx.doi.org/10.1007/s10456-008-9093-5
http://dx.doi.org/10.18632/oncotarget.5552
http://dx.doi.org/10.1186/s13046-018-0840-1
http://dx.doi.org/10.1039/C4SC03650F
http://dx.doi.org/10.1016/j.molonc.2014.12.007
http://www.ncbi.nlm.nih.gov/pubmed/3512077
http://dx.doi.org/10.1016/j.drup.2005.04.006
http://www.ncbi.nlm.nih.gov/pubmed/15894512
http://dx.doi.org/10.1111/bcp.12761
http://www.ncbi.nlm.nih.gov/pubmed/26344419
http://dx.doi.org/10.1200/EDBK_239007


Cancers 2020, 12, 2435 21 of 22

115. Ferrara, N.; Hillan, K.J.; Novotny, W. Bevacizumab (Avastin), a Humanized Anti-VEGF Monoclonal Antibody
for Cancer Therapy. Biochem. Biophys. Res. Commun. 2005, 333, 328–335. [CrossRef]

116. Lopes, N.M.; Adams, E.G.; Pitts, T.W.; Bhuyan, B.K. Cell Kill Kinetics and Cell Cycle Effects of Taxol on
Human and Hamster Ovarian Cell Lines. Cancer Chemother. Pharmacol. 1993, 32, 235–242. [CrossRef]

117. Gao, N.; Asamitsu, K.; Hibi, Y.; Ueno, T.; Okamoto, T. AKIP1 Enhances NF-kappaB-Dependent Gene
Expression by Promoting the Nuclear Retention and Phosphorylation of p65. J. Biol. Chem. 2008, 283,
7834–7843. [CrossRef]

118. Gupta, S.C.; Awasthee, N.; Rai, V.; Chava, S.; Gunda, V.; Challagundla, K.B. Long Non-Coding RNAs and
Nuclear Factor-kappaB Crosstalk in Cancer and Other Human Diseases. Biochim. Biophys. Acta Rev. Cancer
2020, 1873, 188316. [CrossRef]

119. Ash, S.C.; Yang, D.Q.; Britt, D.E. LYRIC/AEG-1 Overexpression Modulates BCCIPalpha Protein Levels in
Prostate Tumor Cells. Biochem. Biophys. Res. Commun. 2008, 371, 333–338. [CrossRef]

120. Maine, G.N.; Mao, X.; Komarck, C.M.; Burstein, E. COMMD1 Promotes the Ubiquitination of NF-kappaB
Subunits through a Cullin-Containing Ubiquitin Ligase. EMBO J. 2007, 26, 436–447. [CrossRef]

121. Chang, K.S.; Tsui, K.H.; Lin, Y.H.; Hou, C.P.; Feng, T.H.; Juang, H.H. Migration and Invasion Enhancer 1 is an
NF-kB-Inducing Gene Enhancing the Cell Proliferation and Invasion Ability of Human Prostate Carcinoma
Cells in Vitro and in Vivo. Cancers 2019, 11, 1486. [CrossRef] [PubMed]

122. Matoba, K.; Kawanami, D.; Tsukamoto, M.; Kinoshita, J.; Ito, T.; Ishizawa, S.; Kanazawa, Y.; Yokota, T.;
Murai, N.; Matsufuji, S.; et al. Rho-Kinase Regulation of TNF-Alpha-Induced Nuclear Translocation of
NF-kappaB RelA/p65 and M-CSF Expression via p38 MAPK in Mesangial Cells. Am. J. Physiol. Renal Physiol.
2014, 307, F571–F580. [CrossRef] [PubMed]

123. Wang, Y.; Tong, X.; Zhang, J.; Ye, X. The Complement C1qA Enhances Retinoic Acid-Inducible
Gene-I-Mediated Immune Signalling. Immunology 2012, 136, 78–85. [CrossRef] [PubMed]

124. Kim, J.Y.; Seok, K.O.; Kim, Y.J.; Bae, W.K.; Lee, S.; Park, J.H. Involvement of GLTSCR2 in the DNA Damage
Response. Am. J. Pathol. 2011, 179, 1257–1264. [CrossRef]

125. Sloan, K.E.; Bohnsack, M.T.; Watkins, N.J. The 5S RNP Couples p53 Homeostasis to Ribosome Biogenesis
and Nucleolar Stress. Cell. Rep. 2013, 5, 237–247. [CrossRef]

126. Chen, H.; Han, L.; Tsai, H.; Wang, Z.; Wu, Y.; Duo, Y.; Cao, W.; Chen, L.; Tan, Z.; Xu, N.; et al. PICT-1
is a Key Nucleolar Sensor in DNA Damage Response Signaling that Regulates Apoptosis through the
RPL11-MDM2-p53 Pathway. Oncotarget 2016, 7, 83241–83257. [CrossRef]

127. Kim, Y.J.; Cho, Y.E.; Kim, Y.W.; Kim, J.Y.; Lee, S.; Park, J.H. Suppression of Putative Tumour Suppressor Gene
GLTSCR2 Expression in Human Glioblastomas. J. Pathol. 2008, 216, 218–224. [CrossRef]

128. Okahara, F.; Itoh, K.; Nakagawara, A.; Murakami, M.; Kanaho, Y.; Maehama, T. Critical Role of PICT-1,
a Tumor Suppressor Candidate, in Phosphatidylinositol 3, 4, 5-Trisphosphate Signals and Tumorigenic
Transformation. Mol. Biol. Cell 2006, 17, 4888–4895. [CrossRef]

129. Sasaki, M.; Kawahara, K.; Nishio, M.; Mimori, K.; Kogo, R.; Hamada, K.; Itoh, B.; Wang, J.; Komatsu, Y.;
Yang, Y.R.; et al. Regulation of the MDM2-P53 Pathway and Tumor Growth by PICT1 via Nucleolar RPL11.
Nat. Med. 2011, 17, 944–951. [CrossRef]

130. Niki, M.; Yokoi, T.; Kurata, T.; Nomura, S. New Prognostic Biomarkers and Therapeutic Effect of Bevacizumab
for Patients with Non-Small-Cell Lung Cancer. Lung Cancer 2017, 8, 91–99. [CrossRef] [PubMed]

131. Bononi, A.; Napolitano, A.; Pass, H.I.; Yang, H.; Carbone, M. Latest developments in our understanding
of the pathogenesis of mesothelioma and the design of targeted therapies. Expert Rev Respir Med. 2015, 9,
633–654. [CrossRef] [PubMed]

132. Barreiro-Alonso, A.; Camara-Quilez, M.; Salamini-Montemurri, M.; Lamas-Maceiras, M.; Vizoso-Vazquez, A.;
Rodriguez-Belmonte, E.; Quindos-Varela, M.; Martinez-Iglesias, O.; Figueroa, A.; Cerdan, M.E.
Characterization of HMGB1/2 Interactome in Prostate Cancer by Yeast Two Hybrid Approach: Potential
Pathobiological Implications. Cancers 2019, 11, 1729. [CrossRef] [PubMed]

133. Liu, Q.; Wu, Y.; Yoshizawa, T.; Yan, X.; Morohashi, S.; Seino, H.; Kato, Y.; Kijima, H. Basic Helix-Loop-Helix
Transcription Factor DEC2 Functions as an Anti-Apoptotic Factor during Paclitaxel-Induced Apoptosis in
Human Prostate Cancer Cells. Int. J. Mol. Med. 2016, 38, 1727–1733. [CrossRef] [PubMed]

134. Kukolj, E.; Kaufmann, T.; Dick, A.E.; Zeillinger, R.; Gerlich, D.W.; Slade, D. PARP Inhibition Causes Premature
Loss of Cohesion in Cancer Cells. Oncotarget 2017, 8, 103931–103951. [CrossRef]

http://dx.doi.org/10.1016/j.bbrc.2005.05.132
http://dx.doi.org/10.1007/BF00685842
http://dx.doi.org/10.1074/jbc.M710285200
http://dx.doi.org/10.1016/j.bbcan.2019.188316
http://dx.doi.org/10.1016/j.bbrc.2008.04.084
http://dx.doi.org/10.1038/sj.emboj.7601489
http://dx.doi.org/10.3390/cancers11101486
http://www.ncbi.nlm.nih.gov/pubmed/31581708
http://dx.doi.org/10.1152/ajprenal.00113.2014
http://www.ncbi.nlm.nih.gov/pubmed/25007875
http://dx.doi.org/10.1111/j.1365-2567.2012.03561.x
http://www.ncbi.nlm.nih.gov/pubmed/22260551
http://dx.doi.org/10.1016/j.ajpath.2011.05.041
http://dx.doi.org/10.1016/j.celrep.2013.08.049
http://dx.doi.org/10.18632/oncotarget.13082
http://dx.doi.org/10.1002/path.2401
http://dx.doi.org/10.1091/mbc.e06-04-0301
http://dx.doi.org/10.1038/nm.2392
http://dx.doi.org/10.2147/LCTT.S138887
http://www.ncbi.nlm.nih.gov/pubmed/28814907
http://dx.doi.org/10.1586/17476348.2015.1081066
http://www.ncbi.nlm.nih.gov/pubmed/26308799
http://dx.doi.org/10.3390/cancers11111729
http://www.ncbi.nlm.nih.gov/pubmed/31694235
http://dx.doi.org/10.3892/ijmm.2016.2798
http://www.ncbi.nlm.nih.gov/pubmed/27840924
http://dx.doi.org/10.18632/oncotarget.21879


Cancers 2020, 12, 2435 22 of 22

135. Zhao, Z.; Xia, G.; Li, N.; Su, R.; Chen, X.; Zhong, L. Autophagy Inhibition Promotes Bevacizumab-Induced
Apoptosis and Proliferation Inhibition in Colorectal Cancer Cells. J. Cancer 2018, 9, 3407–3416. [CrossRef]

136. Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data using Real-Time Quantitative PCR
and the 2 (-Delta Delta C (T)) Method. Methods 2001, 25, 402–408. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.7150/jca.24201
http://dx.doi.org/10.1006/meth.2001.1262
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	HMGB1 and HMGB2 Y2H-Interactomes in Epithelial Ovarian Cancer 
	Analysis of the EOC-HMGB-Interactome According to Differential Expression and Clinical Outcome 
	Effect of HMGB1 and HMGB2 Silencing on the Expression of Genes Encoding Proteins Detected in the EOC-HMGB-Interactome 
	The Involvement of Proteins Detected in the EOC-HMGB-Interactome in the Response to Drugs Used in Cancer Chemotherapy 
	Effect HMGB1, HMGB2, MIEN1 and NOP53 Silencing on Drug Sensitivity 

	Discussion 
	Materials and Methods 
	Yeast Two Hybrid Methodology 
	Cell Lines, Treatments and Cell Viability Assays 
	Cross-Linking and HMGB2 Co-Immunoprecipitation 
	Gene Expression Analysis by Quantitative Retrotranscription and Polymerase Chain Reaction (qRT-PCR) 
	siRNA Silencing 
	Survival Analysis 

	Conclusions 
	References

