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Abstract: Phenylketonuria (PKU) is the most common inborn error of amino acid metabolism.
Although dietary and, in some cases, pharmacological treatment has been successful in preventing
intellectual disability in PKU patients who are treated early, suboptimal outcomes have been reported,
including bone mineral disease. In this systematic review, we summarize the available evidence on
bone health in PKU patients, including data on bone mineral density (BMD) and bone turnover marker
data. Data from cohort and cross-sectional studies of children and adults (up to 40 years of age) were
obtained by searching the MEDLINE and SCOPUS databases following Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. For each selected study, quality
assessment was performed applying the Risk Of Bias In Non-randomized Studies of Interventions
(ROBINS I) tool. We found that mean BMD was lower in PKU patients than in reference groups,
but was within the normal range in most patients when expressed as Z-score values. Furthermore,
data revealed a trend towards an imbalance between bone formation and bone resorption, favoring
bone removal. Data on serum levels of minerals and hormones involved in bone metabolism were
very heterogeneous, and the analyses were inconclusive. Clinical trials that include the analysis
of fracture rates, especially in older patients, are needed to gather more evidence on the clinical
implications of lower BMD in PKU patients.

Keywords: bone; bone mineral density; bone turnover markers; fractures; hyperphenylalaninemia;
osteopenia

1. Introduction

Phenylketonuria (PKU, OMIM 261600) is an inborn error of phenylalanine (Phe) metabolism caused
in most cases (98%) by an inherited deficiency in l-phenylalanine-4-hydroxylase (PAH; EC 1.14.16.1)
activity, leading to elevated levels of Phe in body fluids [1]. Since the 1960s, worldwide implementation
of newborn screening to detect PKU has enabled early diagnosis and treatment, preventing the
gravest consequence of PKU: severe mental retardation [2,3]. PKU treatment mainly consists of
lifelong restriction of Phe intake by limiting the amount of natural protein in the diet, combined
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with administration of low Phe amino-acid mixtures and special low protein foods [4,5]. Intake of
glycomacropeptide or large neutral amino acids can also improve the variety and convenience of the
dietary therapy [6]. Since 2007, a synthetic form of tetrahydrobiopterin (6R-BH4) has been used to
treat selected patients who have moderate forms of PKU and respond to the BH4 loading test [7,8].
More recently, enzyme substitution therapy has been approved to treat PKU in patients aged 16
years or older [9]. The success of treatment has, however, led to the discovery of secondary issues
in the life-long outcome of PKU patients, including nutritional deficiencies in minerals, vitamins,
and long chain polyunsaturated fatty acids [10–13], behavioral impairment [13,14], and mineral bone
disease [15,16]. Such micronutrient nutritional deficiencies will be highly dependent on the compliance
to the treatment.

A long standing concern is that bone health in PKU patients is poorer than that of the general
population [17], potentially leading to growth failure and fractures. However, studies conducted to
date have produced conflicting findings in terms of bone mineral density (BMD), possibly due to
differences in the age of the patients studied, the techniques to assess BMD, and the criteria applied [18].
In general, dual energy X-ray absorptiometry (DXA) of the lumbar spine and hip is the preferred
method of evaluating BMD, as it provides the most reliable measurement for predicting fracture
risk and monitoring treatment. DXA returns a T-score, which is the BMD value relative to that of a
healthy 30-year old adult at peak BMD. There is consensus that spine and hip BMD measurements in
postmenopausal women and men aged 50 years or older should be interpreted using the WHO T-score
definitions of osteoporosis and osteopenia [19,20]. DXA also provides a patient Z-score, which reflects a
value normalized to age and sex matched controls and adjusted for ethnicity or race. The International
Society for Clinical Densitometry (ISCD) recommends use of DXA BMD Z-scores rather than T-scores in
younger men, premenopausal women, and children, taking into account that diagnosis of osteoporosis
in these groups should not be based on densitometric criteria alone [21] and should include the presence
of a clinically significant fracture history.

It is increasingly acknowledged that the development of the osteoporotic state involves the
interaction of multiple mechanisms. Understanding the pathogenesis of osteoporosis begins with
understanding how bone formation and remodeling occur. For this reason, non-invasive biochemical
markers have been developed and validated for the assessment of the bone formation (e.g., serum
bone-specific alkaline phosphatase (BALP), osteocalcin (OC), and procollagen type I carboxyterminal
propeptide (PICP)) and bone resorption (calcium:creatinine (Ca:Cr) ratio, collagen type I cross-linked
c-telopeptide (CTX), pyridinoline cross-linked telopeptide domain (ICTP), and urinary n-telopeptide of
type I collagen (NTX), hydroxyproline, and deoxypyridinoline (D-Pyr)) processes. These biomarkers can
aid in risk assessment and serve as additional monitoring tools once treatment has been initiated [22–24].

The incidence, severity, and clinical implications of bone disease associated with PKU, as well as
the underlying mechanisms remain to be fully elucidated. Proposed causes of bone disease in PKU
include dietary deficiencies due to protein restriction, irregular diet compliance causing fluctuating
blood Phe levels, sedentarism, and genetic factors linked to PKU that may impair bone health [25,26].

In this systematic review, we present a comprehensive overview of evidence from cohort and
cross-sectional studies assessing bone status in PKU patients, including BMD, bone turnover markers,
and serum levels of minerals and hormones implicated in bone metabolism.

2. Methods

Our systematic review sought to answer the following review question: “Is bone status impaired in
patients with phenylketonuria?”. The review was carried out following PRISMA (Preferred Reporting
Items for Systematic reviews and Meta-analyses) guidelines [27] and was registered in the International
Prospective Register of Systematic Reviews (PROSPERO).
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2.1. Literature Search

Once the review question was formulated, we proceeded to search PUBMED and SCOPUS
databases using the following search terms: PUBMED, “Phenylketonurias” [Mesh] AND Bone”;
SCOPUS, “Phenylketonurias AND Bone”. The bibliographies of the articles returned by each search
were manually reviewed, as were other previously published reviews on the topic.

2.2. Inclusion and Exclusion Criteria

All observational studies comparing bone health status between PKU patients and healthy
individuals, written in Spanish or English and published between 1 January 1900 and 31 March 2020,
were considered for inclusion in this review. Observational studies that compared a healthy population
with PKU patients whose intake of natural proteins was limited were also considered for inclusion.
Studies excluded from our review were those in which PKU patients received either no treatment or
non-dietary forms of treatment and those in which PKU patients had a concomitant disease that could
interfere with the results.

2.3. Exposure

Dietary treatment, consisting of limiting natural protein intake, was the exposure studied.
The purpose of the study was to assess the influence of such treatment on bone health in PKU patients.
All studies that met the inclusion criteria and had a number of participants > 1 were included in the
review process, regardless of follow-up duration or Phe levels.

2.4. Primary Outcome Measures

Four types of outcome measures were considered useful for the evaluation of bone status:
bone mineral content (BMC) measurements; data on markers on bone formation and on resorption;
and blood levels of minerals, hormones, and vitamins implicated in bone metabolism.

BMC data considered valid were those that included BMC or BMD measurements (absolute values
or Z-scores) acquired by absorptiometry at the level of the whole body, lumbar spine, femoral neck,
or extremities. Non measurable-data, such as radiographic evaluation of deformities, were excluded.

The following were considered valid markers of bone formation: serum alkaline phosphatase
(ALP), BALP, OC, and PICP (expressed as Z-scores or absolute values). The following (expressed as
Z-scores or absolute values) were taken as markers of bone resorption: serum CTX; osteoprotegerin
(OPG); receptor activator of nuclear factor kappa-B ligand (RANKL); tartrate resistant acid phosphatase
(TRAP) and ICTP; osteoclasts from peripheral blood mononuclear cells (PBMC); D-Pyr (in urine);
Ca:Cr ratio; hydroxyproline:creatinine ratio; and pyridinoline:creatinine ratio.

For minerals, vitamins, and hormones associated with bone metabolism, absolute serum values
of the following markers were considered valid: calcium, phosphorus, magnesium, vitamin D,
and parathyroid hormone (PTH).

2.5. Study Selection

The 14 studies [28–41] finally included in our review were independently selected by two authors
from the 299 articles identified during the bibliographic search. In cases where there was a lack of
consensus, the remaining authors acted as arbitrators.

2.6. Data Extraction

Two authors independently (M.J.d.C. and C.d.L.) collected data from the selected articles.
The following data were extracted from each study: number of participants by sex, number of
participants with PKU, age, type of study, Phe levels, outcome measures, results, and conclusions.
The remaining authors acted as arbitrators in cases in which there was a lack of consensus (less than
3% of conflicts observed).
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2.7. Assessment of Risk of Bias

Risk of bias assessment was performed using the ROBINS-I (Risk Of Bias In Non-randomized
Studies of Interventions) tool [42], which assesses the risk of the following types of biases: due to
confounding; bias in the selection of participants for the study; bias in the classification of interventions;
bias due to deviations from intended interventions; bias due to missing data; bias in outcome
measurement; and bias in the selection of the reported results. For each study included in the review,
the risk of each form of bias was classified as 1 of 5 possible levels: low, moderate, serious, critical,
and uncertain (in the case of insufficient information).

3. Results

Figure 1 summarizes the process by which articles were selected for this systematic review.
The SCOPUS search returned 108 articles, while the PUBMED search returned 190. One additional
article, selected after manual review of the bibliography from other sources, was included. Of the 298
articles identified in database searches, ninety-five duplicate articles were excluded, and one-hundred
sixty-seven were excluded due to a lack of relevance of the abstract (45 did not include bone health
data; 40 due to inappropriate study characteristics; 39 were systematic or narrative reviews; 29 did not
include a PKU patient population; 13 were preclinical studies; and 1 was published in a language other
than English or Spanish). Of the 37 full-text articles reviewed, seventeen were excluded due to the lack
of a control group; 4 due to unsuitable study characteristics; 1 due to the absence of bone health data;
and 1 because PKU patients were not receiving any dietary treatment. Ultimately, fourteen [28–41]
articles were selected for inclusion in this systematic review.
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3.1. Study Characteristics

Tables 1–4 summarize the main characteristics of the 14 [26–39] selected cohort and cross-sectional
studies, which are ordered according to the age of the study population. Two cohort studies were
included [32,39]. All studies [28–41] were published after 1992 and four [28,30,33,40] in the last 10
years. It should be highlighted that in the last decade, a significant improvement of the quality
and diversity of protein substitutes together with a more universal recognition of the need to keep
patients under follow-up with better metabolic control were verified. This is important because
more recent studies can be measuring outcomes in patients with improved nutritional and clinical
management practices. In total, the 14 studies included 327 PKU and 10 hyperphenylalaninemia
(HPA) patients, of whom 54 participated in cross-sectional studies. The age of the study populations
ranged from 0–40 years. All studies [28–41] involved a pediatric population, and eight also included
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adults [32–35,38–41]. Of the eight studies that measured bone mineral content [28–35], 6 employed
DXA [28–31,33,34], 1 single photon absorptiometry [32], and 1 quantitative computed tomography [35].
Ten studies evaluated bone formation markers [26,28–30,33–38], all of which were measured in serum
(4 ALP [28,30,32,37], 4 BALP [31,36,38,40], 7 OC [30,31,35,36,38–40], 1 PICP [30], and 1 C-terminal
propeptide [35]). Of the nine studies that evaluated bone resorption markers, five included serum
markers [30,31,36,40,41] (1 measured CTX [36], 2 OPG [30,40], 1 RANKL [30], 1 TRAP [31], 1 osteoclasts
from PBMC cultures [41], and 1 ICTP [40]), and six included urinary markers [30,31,35,37,38] (4 Ca:Cr
ratio [31,37,38,40], 3 D-Pyr [30,38,40], 1 hydroxyproline:creatinine ratio [35], 1 pyridinoline:Cr ratio [35],
and 1 NTx [40]). Six studies measured serum mineral and hormone levels [28,31,32,37,39,40]; 5 measured
Ca [29,31,32,37,39] and P [28,31,32,37,39], 4 Mg [31,32,37,39], 3 PTH and 25-OH vitamin D [31,37,40],
and 4 25-OH vitamin D [31,32,37,40].

3.2. Phenylketonuria and Bone Mineral Content

Eight [28–35] articles included in this systematic review assessed the effects of PKU on bone
mineral content. Seven of the studies were cross-sectional [28–31,33–35], and one [32] was a cohort
study. Six articles [28–31,33,34] found significant differences in BMC (total BMC [34]) or BMC measured
in the lumbar region [28–31,33], femoral neck [30,33], or upper extremity, lower extremity, 1/3 radius
and 1/10 radius [31]. All studies observed significant differences in BMC between PKU patients and
the healthy population, as evidenced by a lower BMC in PKU patients. Five of the studies employed
DXA [28–31,33], and one used quantitative computed densitometry [34]. Three of the studies that
used DXA reported ZZ-scores [30,33,35]: although all reported significantly lower BMC values in PKU
patients versus the healthy population, unexpectedly, PKU patients did not show a higher frequency of
bone mass below the expected range for age (defined as Z-score values of −2.0 SD or lower). The only
study that used DXA, but did not find significant differences in BMC between groups [35] included
seven patients with PKU and 10 with HPA, which is associated with milder alterations in Phe levels
and requires less severe dietary restriction.

3.3. Phenylketonuria and Bone Turnover Markers

Eleven [28,30–32,35–41] studies included in this review evaluated bone turnover markers. Ten measured
bone formation markers [28,30–32,35–40] and eight bone resorption markers [30,31,35–38,40,41]. Two of the 11
studies [32,39] were cohort studies. Of the studies that measured bone formation markers, eight reported
significant differences between PKU patients and healthy controls [28,30–32,36–39]. In seven of the
eight studies, bone formation markers were lower in PKU patients than healthy controls [30–32,36–39],
while the remaining study, which included the youngest patients (3–4 years), reported significantly
higher levels of serum ALP in PKU patients [28]. Of the studies that measured bone resorption
markers, six reported significant differences between groups [30,36–38,40,41]. In five of the six studies,
bone resorption markers were increased in PKU patients versus healthy controls [30,37,38,40,41],
while the remaining study, which included the youngest patients (4.5 years of age), reported significantly
lower levels of serum CTX and OPG in PKU patients [36]. It should be noted that the only study that
included both PKU and HPA patients [35] found no significant difference in either bone formation or
bone resorption markers between PKU patients and healthy controls.
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Table 1. Bone mineral content in patients with phenylketonuria.

Reference Country n Age 1 Trial Type/
Phe Levels 2 Outcome Measure Results 3 Conclusions

Wang et al., China
(2017) [28]

105
41 PKU 3–4 Cross-sectional/

PG: 43–1776 µmol/L
Mean lumbar L1–L4 BMD (DXA)
in g/cm2

L1–L4 BMD: (3 years) PG 0.49 ± 0.06; CG 0.54 ± 0.05
(p = 0.03);
(4 years) PG 0.51 ± 0.09; CG 0.57 ± 0.06 (p = 0.01)

Significantly lower
lumbar BMD

Allen et al.,
Australia
(1994) [29]

127(50 F)
32 PKU

PG 7.7 ± 2.3
CG 8.1 ± 2.1 Cross-sectional Mean total body and lumbar

L2–L4 BMD (DXA) in g/cm2
TBMD: PG 0.77 ± 0.08; CG 0.81 ± 0.07 (p < 0.05)
L2-L4 BMD: PG 0.61 ± 0.10; CG 0.78 ± 0.06 (p < 0.05)

Significantly lower lumbar
and total BMD

Koura et al.,
Egypt

(2014) [30]

77 (34 F)
33 PKU

PG 8.4 ± 4.6
CG 8.5 ± 3.3 Cross-sectional

Mean total body BMC and
Z-score BMC, femoral neck and
lumbar spine BMD, and Z-score
BMD (DXA)
in g and g/m2

TBMC: PG 1072 ± 596; CG 1269 ± 557
Z-TBMC: PG −0.1 ± 1.2; CG 1.1 ± 1 (p < 0.001)
Femoral neck BMD: PG 0.5 ± 0.1; CG 0.7 ± 0.1 (p < 0.001)
Femoral neck Z-BMD: PG −0.6 ± 0.7; CG 0.02 ± 0.4
(p < 0.001)
Lumbar BMD: PG 0.5 ± 0.1; CG 0.5 ± 0.1
Lumbar Z-BMD: PG −0.3 ± 0.6; CG 0.06 ± 0.6 (p = 0.01)

Significantly lower
Z-TBMC, femoral neck
BMD and z-BMD, and
lumbar z-BMD

Hillman et al.,
USA

(1996) [31]

22
11 PKU

PG 10.9 ± 4.2
CG 11.4 ± 4.2

Cross-sectional
PG: 9.9 ± 9.5 mg/dL

Mean total body, lumbar spine,
upper extremity, lower extremity,
1/3 radius and 1/10 radius BMD
(DXA) in g/cm2

TBMD: PG 0.80 ± 0.10; CG 0.88 ± 0.18
Lumbar BMD: PG 0.61 ± 0.15; CG 0.72 ± 0.24 (p = 0.04)
Upper BMD: PG 1.25 ± 0.16; CG 1.37 ± 0.28
Lower BMD: PG 1.56 ± 0.3; CG 1.87 ± 0.56 (p = 0.03)
1/3 radius BMD: PG 0.48 ± 0.08; CG 0.53 ± 0.12
1/10 radius BMD: PG 0.32 ± 0.07; CG 0.36 ± 0.11

Significantly lower lumbar
BMD and lower
extremities BMD.

McMurry et al.,
USA (1992) [32]

190 (91 F)
26 PKU

PG 1.9–25.5
CG 3–16

Cohort study
PG (1–5 years): 581 ± 121
PG (6–11 years): 1041 ± 188
PG (>11 years): 1629 ±
170 µmol/L

Mean total body BMC and BMD
(non-dominant radius single
photon absorptiometry) in g/cm
and g/cm2

BMC: (1–5 years) PG 0.26 ± 0.02; CG 0.26 ± 0.07; (6–11
years) PG 0.42 ± 0.01; CG 0.45 ± 0.1; (>11 years) PG 0.70
± 0.05;
CG 0.72 ± 0.15
BMD: (1–5 years) PG 0.28 ± 0.01; CG 0.29 ± 0.06; (6–11
years)
PG 0.4 ± 0.007; CG 0.41 ± 0.06; (>11 years) PG 0.57 ± 0.03;
CG 0.58 ± 0.008

No significant differences

Koura et al.,
Egypt (2011) [33]

74
32 PKU PG 3–19 Cross-sectional

Mean femoral neck and lumbar
L2–4 BMC, BMD, and Z-score
BMD (DXA) in g and g/cm2

Femoral neck BMC: PG 2.0 ± 0.18; CG 0.7 ± 0.07
Femoral neck BMD: PG 0.6 ± 0.03; CG 0.7 ± 0.02
(p < 0.0001)
Femoral neck Z-BMD: PG −0.7 ± 0.12; CG 0.03 ± 0.08
(p < 0.0001)
Lumbar L2–4 BMC: PG 14.9 ± 1.65; CG 17.4 ± 1.29
Lumbar L2–4 BMD: PG 0.5 ± 0.03; CG 0.6 ± 0.02
Lumbar L2–4 Z-BMD: PG −0.4 ± 0.12; CG 0.1 ± 0.11
(p = 0.01)

Significantly lower femoral
neck BMD, femoral neck
Z-BMD, and lumbar
L2–4 Z-BMD

Schwahn et al., (1998)
[34]

28 (12 F)
14 PKU 5–28 Cross-sectional Mean TBMD and SBMD (pQCT)

in mg/cm3
TBMD: PG 290.9 ± 64.4; CG 305.4 ± 67.6
SBMD: PG 139.7 ± 23.5; CG 169.3 ± 31.5 (p < 0.01)

Significantly
lower SBMD

Fernández et al.,
Germany
(2005) [35]

92
7 PKU

10 HPA

PKU 6–29
HPA 4–16
CG 0.5–14

Cross-sectional Mean Z-score TBMD (DXA) Z-TBMD: PKU −0.45 ± 0.83; HPA 0.45 ± 0.86 No significant differences

BMC, bone mineral content; BMD, bone mineral density; CG, control group; DXA, dual energy X-ray absorptiometry; F, female; HPA, hyperphenylalaninemia; n.s.: not significant, PG,
patient group; Phe, phenylalanine; PKU, phenylketonuria; pQCT, quantitative computed densitometry of non-dominant radius; SBMD, spongy bone mineral density; SPA, single photon
absorptiometry; TBMD, total bone mineral density; y, years. 1 Values represent the range or mean ± SD in years, as reported in the corresponding article. 2 Blood phenylalanine levels
represent range as reported in the corresponding articles. 3 Values represent mean ± SD as reported in the corresponding article.
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Table 2. Bone formation in patients with phenylketonuria.

Reference Country n Age 1 Trial Type
Phe Levels 2 Outcome Measure Results 3 Conclusions

Wang et al.,
China

(2017) [28]

105
41 PKU 3–4 years Cross-sectional

PG: 43-1776 µmol/L
Mean serum ALP (ELISA) in
IU/L

ALP: (3 years) PG 209 ± 54; CG 134 ± 42 (p < 0.01); (4
years) PG 203 ± 51; CG 138 ± 51 (p = 0.01)

Significantly higher
serum ALP

Ambroszkiewicz et al.,
Poland

(2004) [36]

64 (44 F)
37 PKU

PGG 4.5
PGB 6.0
CG 5.9

Cross-sectional PGG: 189 ±
64

PGB: 649 ± 140 µmol/L

Mean serum OC (ELISA) in
µg/L and BALP (RIA) in IU/L

OC: PGG 67.1 (42–140); PGB 80 (43–148); CG 102.8
(79–121) (p < 0.05)
BALP: PGG 93.8 (75–141); PGB 102.5 (74–145); CG 110.2
(89–129)

Significantly lower
serum OC

Koura et al.,
Egypt (2014) [30]

77 (34 F)
33 PKU

PG 8.4 ± 4.6
CG 8.5 ± 3.3 Cross-sectional

Mean serum OC (ELISA) in
mg/dL, ALP in IU/L, and PICP
(ELISA) in ng/mL

OC: PG 13.9 ± 12.9; CG 43.4 ± 34.5 (p < 0.001)
ALP: PG 121.6 ± 46; CG 152 ± 43.1 (p = 0.005)
PICP: PG 283.4 ± 114.7; CG 270.7 ± 89.6

Significantly lower
serum OC
and ALP

Al-Qadreh,
Greece (1998) [37]

98 (56 F)
48 PKU

PG 8.8 ± 3.7
CG 9 ± 3.5

Cross-sectional
PG: 11.1 ± 6.6 mg/dL Mean serum ALP in IU/L ALP: PG 73.3 ± 4.9; CG 89 ± 3.6 (p = 0.01) Significantly lower

serum ALP

Hillman et al.,
USA (1996) [31]

22
11 PKU

PG 10.9 ± 4.2
CG 11.4 ± 4.2

Cross-sectional
PG: 9.9 ± 9.5 mg/dL

Mean serum OC (RIA) in µg/L,
BALP (colorimetry) in IU/L,
and PICP (RIA)

OC: PG 6.1 ± 6.3; CG 13.1 ± 2.0 (p < 0.01)
BALP: PG 72 ± 30; CG 126 ± 43 (p < 0.001)
PICP: PG 290 ± 174; CG 400 ± 159

Significantly lower
serum OC
and BALP

Millet et al.,
Spain

(2005) [38]

226 (120 F)
46 PKU

PG 17.5 (4–38)
CG 8.99 (0–26) Cross-sectional

Mean serum OC
(chemiluminescent assay), and
BALP (IRMA) in µg/L

OC: (6–8 years) PG 27.5 (3.6–50); CG 24.1 (3.4–84);
(9–15 years) PG 29.9 (9–70); CG 42.6 (5.5–77);
(>15 years) PG 7.2 (2.7–35); CG 11.4 (2.7–14)
BALP: (6–8 years) PG 64.3 (31.9–89);
CG 49.9 (21–114);
(9–13 years) PG 69.2 (36–99); CG 51.9 (23–79)
(p = 0.016);
(14–18 years) PG 30.9 (13–48); CG 27.7 (14–51); (>18
years) PG 14.2 (8.8–39); CG 18.8 (9–21) (p = 0.003)

Significantly higher
serum BALP in 9–13
years PKU patients
and significantly
lower serum BALP in
>18 years PKU
patients and OC in
>15 years patients

McMurry et al.,
USA

(1992) [32]

190 (91 F)
26 PKU

PG 1.9–25.5
CG 3–16

Cohort study
PG (1–5 years): 581 ± 121

PG (6–11 years): 1041 ± 188
PG (>11 years): 1629 ± 170

µmol/L

Mean serum ALP in µkat/L

ALP: (1–5 years) PG 1.2 ± 0.1; CG 2.1 ± 0.2
(p < 0.02); (6–11 years) PG 0.9 ± 0.1; CG 1.6 ± 0.1
(p < 0.001); (>11 years) PG 0.6 ± 0.1; CG 1.5 ± 0.1
(p < 0.001)

Significantly lower
serum ALP

Pérez-Dueñas et al.,
Spain (2002) [39]

97
28 PKU

PG 18 (10–33)
CG 10–34 Cohort study

Mean serum OC
(chemiluminescent assay) and
BALP (IRMA) in µg/L

OC: (11–5 years) PG 47.5(19–73); CG 48(15–78); (19–33
years) PG 12.9 (9.5–18.9); CG 9.9 (4.4–26)
BALP: (11–15 years) PG 50.8 (22.6–76);
CG 42 (15–84); (19–33 years) PG 11.4 (8.8–13);
CG 18.9 (16–22) (p < 0.0001)

Significantly lower
serum BALP in 19–33
years patient group

Fernández et al.,
Spain (2005) [35]

92
7 PKU

10 HPA

PKU 6–29
HPA 4–16
CG 0.5–14

Cross-sectional
Mean Z-score serum OC and
C-terminal propeptide
(enzyme immunoassay)

Z-OC: PKU 0.75 ± 1.26; HPA 0.67 ± 0.92
Z-C-term: PKU −0.23 ± 0.49; HPA 0.91 ± 1.16

No significant
differences

Nagasaka et al.,
Japan

(2011) [40]

70 (43 F)
34 PKU

PG 20–35
CG 19–40 Cross-sectional

Mean serum OC (RIA) in
ng/mL and BALP (ELISA) in
IU/L

OC: FPG 5.6 ± 0.7; FCG 5.9 ± 0.5; MPG 5.4 ± 1.0; MCG
5.5 ± 0.6
BALP: FPG 22.7 ± 2.2; FCG 21.7 ± 2.5; MPG 28.5 ± 2.7;
MCG 25.4 ± 2.7

No significant
differences

ALP, alkaline phosphatase; BALP, bone alkaline phosphatase; CG, control group; ELISA, enzyme-linked immunosorbent assay; F, female; FCG, female control group; FPG, female patient
group; HPA, hyperphenylalaninemia; IRMA, immunoradiometric assay; MPG, male patient group; OC, osteocalcin; PG, patient group; PGB, bad control patient group (increased serum
phenylalanine); PGG, good control patient group (normal serum phenylalanine); PICP, procollagen type I carboxyterminal propeptide; PKU, phenylketonuria; RIA, radioimmunoassay;
y, years. 1 Values represent the range, mean (range), or the mean ± SD in years, as reported in the corresponding article. 2 Blood phenylalanine levels represent range as reported in the
corresponding articles. 3 Values represent the mean ± SD or mean (range) as reported in the corresponding article.
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Table 3. Bone resorption in patients with phenylketonuria.

Reference Country n Age 1 Trial Type
Phe Levels 2 Outcome Measure Results 3 Conclusions

Ambroszkiewicz et al.,
Poland

(2004) [36]

64 (44 F)
37 PKU

PGG 4.5
PGB 6.0
CG 5.9

Cross-sectional
PGG: 189 ± 64

PGB: 649 ± 140 µmol/L

Mean serum CTX (ELISA) in
mg/L and OPG (RIA) in pmol/L

CTX: PGG 1322 (1017–2871); PGB 1685 (1096–2762); CG 2030
(1363–2815) (p < 0.01)
OPG: PGG 3.58 (2.32–4.59); PGB 3.33 (2.37–5.01); CG: 4.46 (2.34–5.64)
(p < 0.01)

Significantly lower serum
CTX
and OPG

Koura et al.,
Egypt

(2014) [30]

77 (34 F)
33 PKU

PG 8.4 ± 4.6
CG 8.5 ± 3.3 Cross-sectional

Mean serum OPG and RANKL
(ELISA) in ng/mL and urinary
D-Pyr (ELISA) in
mmol/creatinine mmol

OPG: PG 4 ± 0.8; CG 3.3 ± 2.3
RANKL: PG 1.0 ± 0.2; CG 0.1 ± 0.07 (<0.001)
D-Pyr: PG 32.3 ± 15; CG 68.1 ± 30.7 (<0.001)

Significantly higher
serum RANKL and
significantly lower
urinary D-Pyr

Al-Qadreh
Greece

(1998) [37]

98 (56 F)
48 PKU

PG 8.8 ± 3.7
CG 9 ± 3.5

Cross-
sectional

PG: 11.1 ± 6.6 mg/dL
Mean urinary Ca:Cr ratio UCa:Cr: PG 0.46 ± 0.05; CG 0.22 ± 0.01 (<0.001) Significantly higher

urinary Ca:Cr ratio

Hillman et al.,
USA

(1996) [31]

22
11 PKU

PG 10.9 ± 4.2
CG 11.4 ± 4.2

Cross-sectional
PG: 9.9 ± 9.5 mg/dL

Mean serum TRAP
(enzymatically) in IU/L and
urinary Ca:Cr ratio

TRAP: PG 11.4 ± 3.3; CG 12.0 ± 5.0
UCa:Cr: PG 0.17 ± 0.22; CG 0.12 ± 0.09 No significant differences

Porta et al.,
Italy

(2008) [41]

40
20 PKU 14 ± 7.1 Cross-sectional Mean number of osteoclasts

from PBMC cultures
Osteoclasts: PG 159.9 ± 79.5; CG 87.8 ± 44.7
(p = 0.001)

Significantly higher
spontaneous
osteoclastogenesis from
PBMCs

Millet et al.,
Spain

(2005) [38]

226 (120 F)
46 PKU

PG 17.5 (4–38)
CG 8.99 (0–26) Cross-sectional

Mean urinary D-Pyr
(chemiluminescent assay) in
µmol/mol creatinine and
Ca:Cr ratio

D-Pyr: (4–6 years) PG 33.6 (29.1–55.0);
CG 27.6 (12.4–45.1); (7–11 years) PG 29.6 (18–40);
CG 22 (10.9–36.7) (p = 0.005); (12–14 years) PG 30.7 (17.3–34.4); CG
14.3 (6.9–30) (p = 0.004); (15–17 years) PG 11.4 (6.5–7.2); CG 8.1
(3.6–20.5); (>18 years) PG 6.7 (3.6–13.4); CG 5.4 (3.6–10.9) (p = 0.031)
UCa:Cr: (4–6 years) PG 0.38 (0.36–1.8);
CG 0.29 (0.01–0.94); (7–11 years) PG 0.43 (0.03–1.03); CG 0.31
(0.03–0.75); (12–14 years) PG 0.17 (0.03–0.56); CG 0.24 (0.02–0.84);
(15–17 years) PG 0.33 (0.05–0.57); CG 0.24 (0.06–0.84); (>18 years) PG
0.49 (0.25–0.81); CG 0.33 (0.05–0.56) (p < 0.001).

Significantly higher
D-Pyr in 7–14 years and
>18 years PKU patients
and significantly higher
urinary Ca:Cr ratio in >18
years PKU patients

Fernández et al.,
Spain

(2005) [35]

92
7 PKU

10 HPA

PKU 6–29
HPA 4–16
CG 0.5–14

Cross-sectional

Mean Z-score urinary
hydroxyproline:creatinine ratio
(HPLC) and
pyridinoline:creatinine ratio
(enzyme immunoassay)

z-H/Cr: PKU −1.07 ± 0.98; HPA −0.43 ± 1.18
z-P/Cr: PKU −0.21 ± 1.26; HPA 1.07 ± 1.25 No significant differences

Nagasaka et al.,
Japan

(2011) [40]

70 (43 F)
34 PKU

PG 20–35
CG 19–40 Cross-sectional

Mean serum ICTP (RIA) in
ng/mL, OPG (ELISA) in
pmol/L, urinary D-Pyr (ELISA)
and NTx (ELISA) in
nmol/mmol, and urinary
Ca:Cr ratio

ICTP: FPG 4.6 ± 0.2; FCG 3.0 ± 0.2 (p <0.001); MPG 4.3 ± 0.3; MCG
3.0 ± 0.2 (p <0.01)
OPG: FPG 3.3 ± 0.3; FCG 4.7 ± 0.4 (p <0.001); MPG 3.1 ± 0.2; MCG
4.3 ± 0.2 (p <0.01)
D-Pyr: FPG 7.3 ± 0.5; FCG 4.9 ± 0.4 (p <0.001); MPG 5.2 ± 0.5; MCG
3.8 ± 0.6 (p <0.01)
NTx: FPG 47.8 ± 6.1; FCG 31.7 ± 5.1 (p <0.001); MPG 54.7 ± 12.1;
MCG 38.3 ± 10.5 (p <0.01)
UCa:Cr: FPG 0.4 6 ± 0.08; FCG 0.33 ± 0.88 (p <0.001);
MPG 0.42 ± 0.1; MCG 0.3 ± 0.07 (p <0.05)

Significantly higher ICTP,
D-Pyr, NTx, and urinary
Ca:Cr ratio; significantly
lower serum OPG

Ca, calcium; CG, control group; Cr, creatinine; CTX, collagen type I cross-linked c-telopeptide; D-Pyr, urinary deoxypyridinoline; ELISA, enzyme-linked immunosorbent assay; F, female;
FPG, female patient group; HPA, hyperphenylalaninemia; HPLC, high performance liquid chromatography; ICTP, pyridinoline cross-linked telopeptide domain; MPG, male patient group;
NTx, urinary n-telopeptide of type I collagen; OPG, osteoprotegerin; PBMC, peripheral blood mononuclear cells; PG, patient group; PGB, bad control patient group (increased serum
phenylalanine); PGG, good control patient group (normal serum phenylalanine); PKU, phenylketonuria; RANKL, receptor activator of nuclear factor kappa-B ligand; TRAP, tartrate
resistant acid phosphatase; UCa:Cr, urinary Ca:Cr ratio; y, years. 1 Values represent the range, the mean (range), or the mean ± SD in years, as reported in the corresponding article. 2 Blood
phenylalanine levels represent range as reported in the corresponding articles. 3 Values represent the mean ± SD or mean (range) as reported in the corresponding article.
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Table 4. Serum minerals and hormones in patients with phenylketonuria.

Reference Country n Age 1 Trial Type
Phe Levels 2 Outcome Measure Results 3 Conclusions

Wang et al.,
China

(2017) [28]

105
41 PKU 3–4

Cross-sectional
PG:

43-1776 µmol/L

Mean serum Ca and P
(colorimetry) in mmol/L

Ca: (3 years) PG 2.42 ± 0.09; CG 2.37 ± 0.12; (4 years)
PG 2.41 ± 0.13; CG 2.32 ± 0.12 (p = 0.029)
P: (3 years) PG 1.65 ± 0.31; CG 1.53 ± 0.22; (4 years)
PG 1.49 ± 0.21; CG 1.57 ± 0.22

Significantly higher
serum Ca in PKU
patients

Al-Qadreh
Greece (1998) [37]

98 (56 F)
48 PKU

PG 8.8 ± 3.7
CG 9 ± 3.5

Cross
sectional

PG: 11.1 ± 6.6 mg/dL

Mean serum Ca, Mg, and P in
mmol/L, PTH in pmol/L, and
25-OHD in nmol/L

Ca: PG 2.51 ± 0.02; CG 2.47 ± 0.02 (p = 0.04)
Mg: PG 0.94 ± 0.01; CG 0.86 ± 0.01 (p < 0.001)
P: PG 1.63 ± 0.03; CG 1.65 ± 0.04
PTH: PG 16.6 ± 2.6; CG 23.0 ± 2.4
25-OHD: PG 45.3 ± 3.8; CG 49.16 ± 2.54

Significantly higher
serum Ca and Mg

Hillman et al.,
USA (1996) [31]

22
11 PKU

PG 10.9 ± 4.2
CG 11.4 ± 4.2

Cross-sectional
PG: 9.9 ± 9.5 mg/dL

Mean serum Ca, Mg (flame
atomic absorption) and P
(calorimetry) in mg/dL, PTH
(RIA), and
25-OHD (immunoassay)

Ca: PG 9.1 ± 0.9; CG 10.4 ± 1.9 (p < 0.01)
Mg: PG 1.67 ± 0.14; CG 2.07 ± 0.16 (p < 0.001)
P: PG 5.6 ± 7.1; CG 5.5 ± 0.9
PTH: PG 24.1 ± 9.1; CG 25.0 ± 9.3
25-OHD: PG 28.3 ± 9.8; CG 22.3 ± 8.5

Significantly lower
serum Ca and Mg

McMurry et al., USA (1992)
[32]

190 (91 F)
26 PKU

PG 1.9–25.5
CG 3–16

Cohort study
PG (1–5 years): 581 ± 121

PG (6–11 years) 1041 ± 188
PG (>11 years): 1629 ± 170

µmol/L

Mean serum Ca, Mg (atomic
absorption spectrophotometry),
and P (calorimetry) in mmol/L
and 25-OHD (protein binding
radio assay) in nmol/L

Ca: (1–5 years) PG 2.35 ± 0.04; CG 2.40 ± 0.02; (6–11
years) PG 2.32 ± 0.02; CG 2.30 ± 0.02; (>11 years) PG
2.35 ± 0.1; CG 2.32 ± 0.05
Mg: (1–5 years) PG 0.74 ± 0.04; CG 0.86 ± 0.04
(p < 0.001); (6–11 years) PG 0.74 ± 0.04; CG 0.91 ± 0.04
(p < 0.001); (>11 years) PG 0.66 ± 0.04; CG 0.82 ± 0.04
(p <0.001)
P: (1–5 years) PG 1.68 ± 0.13; CG 1.65 ± 0.06; (6–11
years)
PG 1.45 ± 0.06; CG 1.13 ± 0.06(p < 0.02); (>11 years)
PG 1.13 ± 0.06; CG 1.65 ± 0.06
25-OHD: (1–5 years) PG 49 ± 8; CG 83 ± 4 (p <0.01);
(6–11 years) PG 81 ± 17; CG 66 ± 2; (>11 years) PG 63 ±
10;
CG 67 ± 4

Significantly lower
serum Mg and
25-OHD in 1–5 y
patient group;
significantly higher P
in 6–11 y

Pérez-Dueñas et al., Spain
(2002) [39]

97
28 PKU

PG 18 (10–33)
CG 10–34 Cohort study Mean serum Ca, Mg, and P

(standard procedure) in mg/dL

Ca: PG 2.42 (2.22–2.69); CG 2.41 (2.22–2.65)
Mg: PG 0.82 (0.69–0.97); CG 0.83 (0.64–0.98)
P: PG 1.22(0.77–1.66); CG 1.29(0.82–1.95) (p = 0.006)

Significantly lower P

Nagasaka et al.,
Japan (2011) [40]

70 (43 F)
34 PKU

PG 20–35
CG 19–40 Cross-sectional Mean serum PTH and 25-OHD

(RIA) in pg/mL

PTH: FPG 37.5 ± 2.4; FCG 32.3 ± 3.5 (p < 0.05);
MPG 36.5 ± 3.8; MCG 32.7 ± 3.7
25-OHD: FPG 18.7 ± 1.3; FCG 27.6 ± 2.1 (p < 0.001);
MPG 22.2 ± 1.7; MCG 30.0 ± 2.6 (p < 0.01)

Significantly higher
PTH and 25-OHD in
FPG; significantly
lower 25-OHD in
MPG

Ca, calcium; CG, control group; CTX, F, female; FPG, female patient group; Mg, magnesium; MPG, male patient group; P, phosphorus; PG, patient group; PKU, phenylketonuria; PTH,
parathyroid hormone; RIA, radioimmunoassay; y, years; 25-OHD: 25 hydroxyvitamin D. 1 Values represent the range, the mean (range) or the mean ± SD in years, as reported in the
corresponding article. 2 Blood phenylalanine levels represent range as reported in the corresponding articles. 3 Values represent the mean ± SD or mean (range) as reported in the
corresponding article.



Nutrients 2020, 12, 2154 10 of 15

3.4. Phenylketonuria and Serum Minerals and Hormones

Six [28,31,32,37,39,40] studies included in this review measured serum levels of minerals and
hormones involved in bone metabolism. All studies included PKU patients, and none included HPA
patients. Two [32,39] were cohort studies. While all found significant differences between PKU patients
and healthy controls, the results were very heterogeneous. In PKU patients, two studies reported
higher Ca levels [28,37] and one higher Mg levels [37]. One study reported lower Ca levels [31], 2 lower
Mg levels [31,32], 1 lower P levels [39], and 1 lower vitamin D levels [32] in PKU patients versus
healthy controls. One study [40] observed sex-related differences in PTH and 25-OH vitamin D levels,
with higher levels in females and lower levels in males.

3.5. Risk of Bias Assessment

For all articles included in the review, the risk of bias due to deviations from intended interventions
and due to measurement of outcomes was considered low (Figures S1 and S2). The risk of bias due to
missing data was low for 50% of the studies and uncertain for the remaining 50%. The risk of bias in
the selection of participants and of bias in classification of the intervention was low in 43% of studies
and moderate in the remaining 57% owing to the joint analysis of cases with a large difference in
evolution time and exposure to a low protein diet. The risk of bias due to confounding was moderate
for all studies included in the review, due to the presence of different confounding factors such as the
possible impact of the disease itself and of its treatment on bone health status. The risk of bias in the
selection of the reported results was deemed uncertain for all studies included in this systematic review.
The studies by Wang [28], Ambroszkiewicz [36], and Pérez-Dueñas [39] were those for which the risk
of biased results was lowest. In these studies, the risk of all types of bias studied was low, except for
the risk of bias due to confounding (which was moderate) and the risk of bias in the selection of the
reported results (which was uncertain). Four of the studies [29–31,40] that were ultimately included in
the systematic review had a greater risk of bias than the others. The analysis of these articles revealed
that, of the seven types of bias studied, there was a low risk for only two types of bias (bias due to
deviations from intended interventions and bias in measurement of outcomes); an uncertain risk of
two forms (bias due to missing data and bias in the selection of the reported results); and a moderate
risk of three remaining forms of bias analyzed. Further information on the risk-of-bias assessment can
be found in the Supplementary Materials.

4. Discussion

This systematic review of cross-sectional and cohort studies assesses bone mineral status, levels of
bone turnover markers, and levels of minerals and elements related to bone health in PKU patients.
The results suggest that mean BMD is lower in PKU patients compared with reference groups, despite
being within the normal range in most patients. Moreover, we observed a trend towards an imbalance
between bone formation and bone resorption, suggesting that bone turnover may be skewed in favor
of bone removal. Analyses of data on serum levels of minerals and hormones involved in bone
metabolism were inconclusive.

PKU patients are detected early by newborn screening, put in place in the 1960s, and are treated
predominantly using a Phe-restricted diet, which limits the intake of natural protein. As the first
early treated PKU patients age, concerns have arisen about the long-term consequences of PKU and
its treatment [10–14], including deleterious effects on bone health [15,16]. Osteoporosis is a silent
disease until it is complicated by fractures that can occur due to minimal or no trauma. It can
be prevented, diagnosed, and treated before complications occur, and therefore, early detection in
vulnerable populations should be mandatory [43,44]. In this review, six of the eight studies that
evaluated BMD used DXA technology to analyze the lumbar spine and neck of the femur, and none
included menopausal women or adult men aged over 50 years. Those studies reported reduced
bone mineralization in PKU patients versus the general population. However, only three of the six
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studies [30,33,35] reported BMD Z-scores, which were within the normal range. This observation casts
some doubt on the clinical relevance of these findings, particularly given that none of the selected
studies compared fracture history, which is essential to qualify for the diagnosis of osteopenia and
osteoporosis together with Z-scores. McMurry et al., Schwan et al., and Fernandez et al. [32,34,35]
compared BMD in PKU patients from infancy through adolescence to early adulthood, and all reported
that mineralization defects began in childhood and became more pronounced in adolescents and older
subjects, suggesting either a cumulative disease- or diet-related effect over time or deterioration of
dietary control in this age group. In line with this hypothesis, a study by Greeve et al. [45] comparing
the history of fractures in a group of PKU patients aged 0.3–33.6 years and their healthy siblings
reported a significantly higher risk of fracture in PKU patients over eight years of age.

The process of bone remodeling continually removes older bone and replaces it with new bone,
thereby maintaining a healthy skeleton. Bone loss occurs when this balance becomes skewed, resulting
in greater bone resorption than formation. Currently available biochemical markers for the assessment
of bone turnover include enzymes and nonenzymatic peptides derived from the cellular and noncellular
compartments of bone and are used to assess fracture risk and monitor treatment response in clinical
settings. The studies included in this review revealed a trend towards increased levels of bone
resorption markers and decreased levels of bone formation markers in patients with PKU [30–32,36–41].
Interestingly, only two studies compared both types of bone turnaround markers from pediatric age to
early adulthood, including adolescence [35,38]. Millet et al. [38] reported significantly higher levels of
bone resorption markers in PKU patients, independent of age, and lower levels of bone formation
markers only in the oldest group. These results suggest that bone formation is active in childhood,
but deteriorates in adult PKU patients, while resorption appears to remain a constant process throughout
the disease course. Fernandez et al. [35] also reported similar findings throughout the life of patients
with disorders of phenylalanine metabolism and found that compared with patients with benign
hyperphenylalaninemia, PKU patients had the highest risk of developing osteoporosis/osteopenia
due to a decrease in overall bone turnover. Success of current efforts to harmonize markers of bone
turnover could lead to the use of markers to predict fracture risk independently of BMD based on
micro-architectural alterations affecting bone quality [19].

Data from the studies included in this review on serum levels of minerals and hormones such
as calcium, magnesium, phosphorus, vitamin D, and PTH were not conclusive, owing to the high
variability between studies. It should be noted that low Phe formulas are fortified with minerals
and vitamins including calcium and vitamin D, and PKU patients who are more compliant with
Phe-restricted diets may have normal levels of calcium and vitamin D, despite a low BMD. Several
studies have shown that adequate intake of Ca, P, and vitamin D is not sufficient for normal bone
development in individuals with a decreased intake of natural protein [44,46], which plays a more
important role in BMD development in PKU patients [13].

Whether these observations are caused by a Phe-restricted diet or reflect a toxic effect of the
disease itself remains unclear; in this review, it was not possible to determine the precise intake of either
natural protein or medical food or Phe levels in PKU patients. However, both PKU and a Phe-restricted
diet may lead to a more pronounced decrease in BMD in older patients and, therefore, to increased
incidence of osteoporosis in adult PKU patients. It should be underlined that the availability of protein
substitutes and special low protein foods in different countries will determine different levels of diet
compliance and adherence, which will influence micronutrient status and bone status.

Our findings underscore the need for future studies to homogeneously report the number of PKU
subjects with spine, femoral neck, and total hip Z-scores < −2.0 SD or T-scores below −1.0 SD, in order
to define more precisely the presence of osteopenia and osteoporosis. Moreover, the interaction of
amino acids with hydroxyapatites of different calcium content could be of some clinical relevance.
Thus, to clarify the clinical implications of the observed mineralization defects in PKU patients, the rate
of fractures should be analyzed and matched with healthy controls, especially in older patients given
the apparent age-associated increase in mineralization defects.
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5. Conclusions

The findings of this systematic review support the view that BMD is reduced in PKU patients
compared with the healthy population, although this does not translate to an increased prevalence of
bone mass below the expected range for age as defined by Z-scores of −2.0 SD or lower. Furthermore,
we observed a trend towards an imbalance between bone formation and bone resorption, favoring bone
removal. Analysis of data on serum levels of minerals and hormones involved in bone metabolism
was inconclusive.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6643/12/7/2154/s1.
Figure S1: Risk of bias summary: summary of the authors’ rating of each risk of bias item for each study. Figure S2:
Risk of bias graph: review of the authors’ judgments on each risk of bias item, expressed as percentages across
the studies.
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