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Abstract: Polygenetic risk scores (pGRSs) consisting of adult body mass index (BMI) genetic
variants have been widely associated with obesity in children populations. The implication of
such obesity pGRSs in the development of cardio-metabolic alterations during childhood as well
as their utility for the clinical prediction of pubertal obesity outcomes has been barely investigated
otherwise. In the present study, we evaluated the utility of an adult BMI predisposing pGRS for the
prediction and pharmacological management of obesity in Spanish children, further investigating
its implication in the appearance of cardio-metabolic alterations. For that purpose, we counted
on genetics data from three well-characterized children populations (composed of 574, 96 and 124
individuals), following both cross-sectional and longitudinal designs, expanding childhood and
puberty. As a result, we demonstrated that the pGRS is strongly associated with childhood BMI
Z-Score (B = 1.56, SE = 0.27 and p-value = 1.90 × 10−8), and that could be used as a good predictor of
obesity longitudinal trajectories during puberty. On the other hand, we showed that the pGRS is not
associated with cardio-metabolic comorbidities in children and that certain environmental factors
interact with the genetic predisposition to the disease. Finally, according to the results derived from a
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weight-reduction metformin intervention in children with obesity, we discarded the utility of the
pGRS as a pharmacogenetics marker of metformin response.

Keywords: obesity; childhood obesity; metabolic syndrome; genetics; genetic risk score;
pharmacogenetics; predictive ability; gene-environment interactions; puberty; childhood;
Spanish children

1. Introduction

Among noncommunicable common diseases, overweight and obesity in children are a public
health problem that has raised concern worldwide [1]. Characterized by an expansion of the adipose
tissue, childhood obesity plays an important role in the development of cardio-metabolic alterations
during adulthood, further increasing morbidity and mortality [2]. The early-life identification of
high-risk individuals for severe obesity or cardio-metabolic alterations during adulthood is therefore
indispensable to tackle down the obesity-associated mortality. A wide range of clinical and molecular
factors have proven useful for obesity prediction. Among them, genetic markers are of special
importance, since they allow a risk assessment from the moment of childbirth. This, combined with
the strong modulatory effects of some environmental exposures, such as diet or physical activity (PA),
would allow the design of personalized lifestyle plans that effectively prevent the appearance of severe
obesity and cardio-metabolic alterations later in life.

Twin studies have proven a strong heritable component of body mass index (BMI),
and genome-wide association studies (GWAS) have shown that adult BMI is influenced by hundreds
of common genetic variants [3]. Evidence from cross-sectional and longitudinal studies has further
indicated that some of these adult loci also affect BMI in childhood and puberty [4–8]. For many of these
BMI-associated single-nucleotide polymorphisms (SNPs), significant pleiotropic genetic effects for
adult cardio-metabolic traits have also been reported [9], and there is a strong evidence of a regulatory
impact of environmental factors [10–12].

Although initial expectations for obesity GWASs were high, the results derived after two decades
of research have not met the previsions (e.g., mentioned SNPs individually account for only small
proportions (1–2%) of the BMI heritability [3]). Consequently, the practice of utilizing individual SNPs
to predict disease is now considered a limited approach [13] and other innovative perspectives have
emerged to take advantage of available GWAS insight [14]. For example, several genomic studies
have proposed to study multiple common SNPs collectively to improve the estimation of disease
predisposition [15]. Based on the construction of polygenic risk scores (pGRSs), that include multiple
genetic variants at the same time, these approaches have recently gathered considerable interest [16]
and have proven utility to identify groups of individuals who could benefit from the knowledge of
their probabilistic susceptibility to disease. In brief, a pGRS is usually calculated as a weighted sum of
the number of risk alleles carried by an individual, where the risk alleles and their weights are defined
by the loci and their measured effects as detected by GWAS in a particular trait [17].

The inclusion of adult-BMI SNPs under a pGRS could serve therefore as an excellent predictive,
and preventive, tool for facing the obesity-associated morbidity and mortality from the early periods
of life. Although some previous studies have already investigated the utility of adult-BMI pGRSs
for the management of obesity in children [18–22], no study to date has addressed the question
focusing in cardio-metabolic alterations, and never under a longitudinal design comprising the
metabolically risky period of puberty. In fact, puberty has been designated as the life stage where
the majority of obesity-associated cardio-metabolic derangements arise [23]. The exact mechanisms
connecting puberty and metabolic alterations in obesity remain unknown otherwise [24]. Furthermore,
it would be interesting to elucidate to which extent BMI is due to heritable genetic factors and lifestyle
behaviors; studying how the environment modulates the genetic susceptibility to disease during
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childhood. Beyond prognostic utility, some pGRSs have also proven to have pharmacological utility.
For example, a coronary artery disease pGRS is not only able to stratify individuals by risk for disease
but also by the potential clinical benefit of statin therapy [25]. However, unlike heart disease, pGRS
pharmacogenetics evidences for obesity have not yet been investigated in neither children nor adults.
Considering all this, we decided to evaluate the utility of an adult BMI pGRS for the prediction
and pharmacological management of obesity in children, further investigating its implication in the
appearance of cardio-metabolic alterations. The study design consisted of three well-characterized
children populations following both cross-sectional and longitudinal approaches. For all these analyses,
we employed a pGRS based on the top 44 SNPs that have previously been associated with adult BMI
in the most comprehensible GWAS performed to date [3].

2. Objectives

(1) To demonstrate how a pGRS can quantify inherited susceptibility to obesity and its
cardio-metabolic comorbidities in children.

(2) To evaluate the effects of genetic predisposition for obesity during childhood and how they evolve
when entering puberty.

(3) To describe the plausible modulatory role of environmental factors over inherited genetic
susceptibility in children.

(4) To investigate the utility of the pGRS for the pharmacological management of obesity in children.

3. Materials and Methods

3.1. Study Design

The present study design consisted of three independent children populations following
cross-sectional and longitudinal approaches. A general description for each study population as well
as each study design are presented in Figure 1.J. Clin. Med. 2020, 9, x FOR PEER REVIEW 4 of 22 
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Figure 1. General description of study populations and design. (A) General characteristics of study
population 1, which is based on a previously conducted case-control multicentre cross-sectional
design. (B) General characteristics of study population 2, which is based on a previously conducted
longitudinal design on 96 children undergoing puberty. (C) General characteristics of study population
3, which corresponds to a previous multicentre and double blind randomized controlled trial (RCT)
conducted in 124 children with obesity.
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3.1.1. Study Population 1: Cross-Sectional Approach

In order to demonstrate how the pGRS can quantify inherited susceptibility to obesity, and its
cardio-metabolic comorbidities, we counted on a cross-sectional cohort of Spanish children. This cohort
was referred to as study population 1 and is based on a previously conducted case-control multicentre
cross-sectional design (Figure 1A) [26,27]. Among all available participants from the previous work
(N = 1699), current genetic analyses were performed in a subset population of 574 children (293 girls)
who had good quality DNA samples. Children were recruited at three Spanish health institutions:
Lozano Blesa University Clinical Hospital in Zaragoza, Santiago de Compostela University Clinical
Hospital in Santiago de Compostela and Reina Sofia University Clinical Hospital in Córdoba. Obesity
status was defined according to BMI by using the age- and sex-specific cut-off points proposed by
Cole et al. (2000) [28]. For the present analysis, there were 256 children in the obesity group, 131 in the
overweight group and 187 in the normal weight group. Inclusion criteria were European-Caucasian
heritage and the absence of congenital metabolic diseases. The exclusion criteria were non-European
Caucasian heritage; the presence of congenital metabolic diseases (e.g., diabetes or hyperlipidaemia);
undernutrition; and the use of medication that alters blood pressure, glucose or lipid metabolism.
General characteristics of the 574 participants with genetics data are presented in the Supplementary
Table S1.

3.1.2. Study Population 2: Longitudinal Approach

With the aim of studying the effects of the pGRS on BMI changes during the course of childhood
and puberty, we also performed a longitudinal analysis using data from 96 boys and girls undergoing
sexual maturation (Figure 1B) recruited in the PUBMEP project (“Puberty and metabolic risk in obese
children. Epigenetic alterations and pathophysiological and diagnostic implications”) [29]. Children
were allocated into five experimental groups according to their obesity and insulin resistance (IR) status
before and after the onset of puberty. Pubertal stage was evaluated by clinicians in all participants
according to the Tanner scale (I for prepubertal and II-V for pubertal children) [30]. All details regarding
the adopted longitudinal design are illustrated in Figure 1B. Obesity status was defined according to
BMI by using the age- and sex-specific cut-off points proposed by Cole et al. (2000) [28]. On the other
hand, the IR status was defined by means of the homeostatic model assessment for insulin resistance
(HOMA-IR) index. Since HOMA-IR strongly varies with age, sex and diseases [31], and since no
reference values have been yet established in neither children nor adult populations [31,32], cut-off

points were extracted from a previous well-described Spanish cohort composed of 1669 children
and adolescents [27,33]. For the prepubertal stage, a single cut-off value of HOMA-IR ≥ 2.5 was
considered for IR [26,33]. For the pubertal stage instead, sex information was taken into consideration
and different cut-off points were adopted for IR according to the 95th HOMA-IR percentile. Extracted
from 778 pubertal Spanish children, pubertal IR cut-off values were HOMA-IR ≥ 3.38 in boys and
HOMA-IR ≥ 3.90 in girls. Descriptive statistics for baseline data as well as longitudinal within-group
and between-group changes in analyzed variables for the 96 participating children are presented in
Supplementary Table S2.

3.1.3. Study Population 3: RCT Metformin Clinical Intervention

In order to test whether the constructed pGRS presents utility for the pharmacological management
of obesity in children, a third obesity cohort was submitted to genetic analyses in the present work.
This cohort corresponded to a previous multicentre and double blind randomized controlled trial
(RCT) conducted in 124 children with obesity (Figure 1C). A complete workflow detailing the study
design can be found elsewhere [34–36]. Briefly, 160 children with obesity were stratified according
to sex and pubertal status and randomly assigned to receive either (1 g/d) metformin or placebo
for 6 months after meeting the defined inclusion criteria [34,35]. All the details regarding informed
consent, ethics, study protocol, sample size, intervention and participants (participant’s data collection
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and processing, samples codification, randomization method, double-blind condition and adverse
effects assessment) were previously described [34,35]. The original study was registered by European
Clinical Trials Database (EudraCT, ID: 2010-023061-21) on 14 November 2011 (URL: https://www.
clinicaltrialsregister.eu/ctr-search/trial/2010-023061-21/ES). Among the 160 subjects participating in the
original RCT, 124 (59 placebo (29 boys) and 65 treated children (32 boys)) had an appropriate DNA
sample quality for the present genetic analyses. General characteristics of the selected study population
at baseline and post-treatment stages are summarized in the Supplementary Table S3. For the present
pharmacogenetics analysis, differential drug response was assessed via BMI Z-score reduction after
the intervention.

3.2. Ethics Statement

All described projects were conducted in accordance with the Declaration of Helsinki (Edinburgh
2000 revised) and followed the recommendations of the Good Clinical Practice of the CEE (Document
111/3976/88 July 1990) and the legally enforced Spanish regulation, which regulates the clinical
investigation of human beings (RD 223/04 about clinical trials). The Ethics Committee on Human
Research of the University of Granada (ID code: 01/2017), the Ethics Committee of the Reina Sofía
University Clinical Hospital of Cordoba (ID code: 260/3408), the Bioethics Committee of the University
of Santiago de Compostela (ID codes: 2011/198 and 2016/522), the Ethics Committee in Clinical Research
of Aragon (ID codes: 12/2010 and 22/2016) and the Ethics Committee for Biomedical Research of
Andalusia on 15 January 2012 (acta 1/12) (ID code: 2010-2739) have approved all experiments and
procedures. All parents or guardians provided written informed consent, and the children gave
their assent.

3.3. DNA Extraction, Genotyping and pGRS Construction

In all participants of the present study genomic DNA was extracted from peripheral white blood
cells using two kits, the Qiamp® DNA Investigator Kit for coagulated samples and the Qiamp®

DNA Mini & Blood Mini Kit for noncoagulated samples (QIAgen Systems, Inc., Valencia, CA, USA).
All extractions were purified using a DNA Clean and Concentrator kit from Zymo Research (Zymo
Research, Irvine, CA, USA). Genotyping was performed by TaqMan allelic discrimination assay using
the QuantStudio 12K Flex Real-Time PCR System (Thermo Fisher Scientific, Waltham, MA, USA).

A total of 56 previously BMI-associated SNPs from the largest and most comprehensive GWAS
performed to date in obesity research [3] were considered for genotyping analyses. Among them,
twelve SNPs were removed in our population either due to a call rate under 95% or to a deviation
from Hardy Weinberg equilibrium (Supplementary Table S4). The remaining 44 SNPs were annotated
and are listed in Supplementary Table S5. Raw fluorescence measures for these genetic variants were
transformed into a dosage format, where each individual genotype was represented by the number of
risk alleles. Next, regression coefficients (beta-estimates) of each SNP were obtained from the GIANT
consortium meta-analysis for BMI (particularly from the European population with males and females
combined) [3]. The weighted pGRS was finally calculated for each individual by multiplying the
number of risk alleles carried for each SNP and the corresponding extracted beta-estimate (further
calculating the sum over all SNPs) (1):

pGRSBMI =
44∑

i=1

βSNPi × SNPi (1)

3.4. Phenotypic Measurements and Lifestyle Factors

In all described cohorts, body weight (kg), height (cm) and waist circumference (cm) were
measured using standardized procedures, and the BMI Z-score was calculated based on the Spanish
standards reference [37]. Blood pressure was measured three times by the same examiner. Biochemical

https://www.clinicaltrialsregister.eu/ctr-search/trial/2010-023061-21/ES
https://www.clinicaltrialsregister.eu/ctr-search/trial/2010-023061-21/ES


J. Clin. Med. 2020, 9, 1705 6 of 23

marker analyses were performed for all study populations at participating hospital laboratories
following internationally accepted quality control protocols, including routine measures for lipid and
glucose metabolism. Quantitative insulin sensitivity check index (QUICKI) and HOMA-IR index were
calculated using fasting plasma glucose and insulin values. High-sensitivity C-reactive protein (hsCRP)
was determined using a particle-enhanced turbidimetric immunoassay (Dade Behring Inc., Deerfield, IL,
USA). In study populations 1 and 3, adipokines, cardiovascular risk and proinflammatory biomarkers
(i.e., adiponectin, leptin, resistin, tumour necrosis factor alpha (TNF-α), interleukin (IL)-6, IL-8,
total plasminogen activator inhibitor-1 (PAI-1), myeloperoxidase (MPO), matrix metalloproteinase-9
(MMP-9), soluble intercellular cell adhesion molecule-1 sICAM-1 and soluble vascular cell adhesion
molecule-1 (sVCAM)) were analyzed using a Luminex 200 system (Luminex Corporation, Austin, TX,
USA) with human monoclonal antibodies from Millipore (EMD Millipore Corp, Billerica, MA, USA).
Descriptive statistics for all measurements were conducted in each cohort separately and can be found
in Supplementary Tables S1–S3.

For study population 1, environmental exposures were further assessed through an interview that
focused on PA, sedentary behaviors, disease family history and familial educational level (at mother’s
and father’s levels separately). Among all available environmental data, only quantitative or ordinal
variables were selected for interaction analyses.

This resulted in 47 lifestyle questions described in the Supplementary Table S6. The interviews
were carried out during the school time or when children attended the consulting room at the hospital,
taking approximately 30 min. In the case of PA performance and sedentary habits, they were evaluated
by means of a short test based on the Physical Activity Questionnaire for Older Children (PAQ-C) and
HELENA questionnaire, respectively, as well as an individual interview.

3.5. Statistical Analysis

3.5.1. General Descriptive Analysis

All continuous variables were tested for normality using the Shapiro–Wilk test and transformed
when necessary by means of the natural log or the rank-based inverse normal transformation.
Heteroscedasticity between experimental groups was explored by means of the Levene test. One-way
Anova, Kruskal-Wallis and the Welch test were employed to assess group differences in measurements
according to standard statistical assumptions. Pairwise-t-tests, pairwise Mann–Whitney U-tests and
Dunn tests were applied conveniently as post-hoc analyses to determine which experimental groups
differ from each other. Values in descriptive tables are expressed as mean and standard deviation,
or median and range if not normally distributed. In the descriptive statistics of the longitudinal cohort,
within-group changes from baseline to puberty in all continuous measurements were assessed by means
of a paired design; employing either a paired t-test or a Wilcoxon signed-rank test. Between-group
differences were instead assessed by conveniently applying One-way Anova, Kruskal–Wallis or Welch
tests to the computed delta values (T1–T0) for each continuous measurement.

3.5.2. Association between the pGRS and Obesity Outcomes and Evaluation of the pGRS Predictive
Ability

In the study population 1, logistic regression models were applied in order to test whether
higher genetic risk scores were observed for subjects with obesity than for normal weight controls.
A logistic regression model was further applied for comparing obesity prevalence among participants
presenting a high-risk genetic profile (Q2, Q3 or Q4) versus those belonging to the reference quartile
(Q1). Multiple linear regressions were employed instead to investigate the relationship between
continuous measurements (including BMI Z-score) and the pGRS. For these analyses, the pGRS was
treated both as a continuous and discrete variable (quartiles). To determine which SNPs within the
pGRS had an independent contribution in the association with BMI Z-Score, we further performed
stepwise linear regression using the “step” function included in the stats R package. This function uses
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the Akaike information criterion (AIC) to select variables for a linear model. Adjusted R2 and model
deviance (D2) were calculated to assess the amount of outcome variability explained by each model.
In all analyses, age, gender, pubertal stage, origin, height and BMI Z-score where adjusted for as
confounders when necessary. Linear regression models were evaluated by model control (investigating
linearity of effects on outcome(s), consistency with a normal distribution and variance homogeneity).
All residuals- vs.-fitted, normal Q-Q, scale-location and residuals- vs.-leverage plots are available upon
request. A p-value < 0.05 was considered as statistically significant. Given the number of analyzed
markers, we also considered the false discovery rate (FDR) as in Benjamini and Hochberg to correct for
multiple hypothesis testing in all analyses.

The ability of the pGRS to comprehensively discriminate between normal weight and subjects
with obesity was quantified (alone or in combination with other traditional risk factors) using the area
under the curve (AUC) of the receiver operating characteristic curve. This plot represents the true
positive rate (sensitivity) versus the false-positive rate (specificity) and is equivalent to the overall
probability that the predicted risk of an individual with disease is higher than the predicted risk
of an individual without disease [38,39]. Models were first constructed based on each risk factor
alone and then all models reaching an AUC ≥ 0.6 were combined. For that purpose, all samples
from the study population 1 with valid data for each factor were included (not restricted to the 574
children with genetics information). Only subjects with normal weight and obesity were then selected
and randomly assigned to training and test subsets in which predictive models were trained and
evaluated respectively. All predictive assessments were conducted using the PredictABEL and the
pROC R packages.

In order to study the ability of the pGRS as a predictor of future obesity outcomes following
puberty entrance (study population 2), we performed logistic regression models with the dichotomized
pGRS as an independent predictor variable (1st and 2nd tertiles vs. 3rd tertil), including the longitudinal
experimental group classifications from Figure 1B as dependent dummy variables (each category vs.
the reference normal weight group). Tertiles, instead of quartiles, were used here due to the low sample
size of the cohort. Moreover, these models included a range of confounding factors as independent
variables as indicated in the Results section. In study population 2, we further applied multiple linear
regressions with deltas for continuous cardio-metabolic measurements as input variables (computed
as T1–T0).

All statistical analyses were performed in R environment, version 3.6.0 (R Project for Statistical
Computing).

3.5.3. Identification of Gene × Environment Modulatory Effects

In the study population 1, and in each pubertal stage of the study population 2 separately, linear
regression models were used to estimate the effect of gene-environment interactions (pGRS × E) for
each collected lifestyle factor (E) individually. In addition to the pGRS × E interaction term, each tested
model also included covariates such as origin and puberty, in accordance with previously published
recommendations [40] (2):

BMI Z− Score = β0 + β1pGRS + β2E + β3(pGRS× E) + β4Origin + β5Tanner + ε (2)

For assessing statistical significance, we focused our attention on the estimate β3(pGRS× E) (2)
and, more specifically, whether this estimate significantly deviated from zero. The null hypothesis
H0 = 0 was either accepted or rejected, depending on the outcome of a two-sided marginal student’s
t-test, which in this case (i.e., one degree-of-freedom difference between the nested models and normal
regularity conditions) is equivalent to a likelihood-ratio test of the hypothesis H0 = 0. p-values lower
than the significance level α = 0.05 were considered as statistically significant after accounting for
the family-wise error rate using the FDR method. Calculations were performed in R environment,
version 3.6.0 (R Project for Statistical Computing) using the “lm” function included in the stats package.
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3.5.4. pGRS-Drug Interaction

Pharmacogenetics analyses of metformin response were performed using two parallel approaches
in the study population 3. First, we applied a multiple linear regression to test the effect of the pGRS
on BMI Z-Score responses. For that purpose, delta changes of BMI Z-Score (computed as T0–T1) were
calculated and used as the dependent variable. On the other hand, we applied a linear mixed-effects
(LME) model adjusted for confounders such as tanner stage and time as fixed effects and a random
intercept for each patient. Test significance for the LME model was evaluated on the pGRS:Time:Group
interaction term.

4. Results

4.1. The pGRS Associates with BMI Z-Score and Performs Well in the Identification of High-Risk Children

In order to investigate the general relationship between the pGRS and obesity, we merged the
anthropometric baseline data available in the cross-sectional study population 1 (N = 574) and the
metformin-RCT study population 3 (N = 124) (Figure 1A,C). Descriptive statistics for each study
population can be found in Supplementary Tables S1 and S3. In the resulting population (N = 698),
a model adjusted by puberty and origin showed a strongly significant association between the pGRS and
the BMI Z-score (B = 1.56, SE = 0.27, t value = 5.69 and p-value = 1.90× 10−8) (Figure 2). This association
was quantified with an increase of 1.56 Kg of weight by each additional 0.1 of the pGRS (B = 15.6,
SE = 3.93, t value = 5.69 and p-value = 8.06 × 10−5). The amount of BMI Z-score variance explained by
the full model was 14.12%, being 4.5 the percentage of variance explained by the genetic component
alone. Supplementary Figure S1 represents the density distribution plot of the constructed pGRS by
experimental condition and the Supplementary Figure S2 the observed obesity: overweight: normal
weight counts within each quartile of the pGRS. The pGRS followed a normal distribution in the whole
study sample (D = 0.03; p-value = 0.08 in Lilliefors test). The mean (SD) of the pGRS in the whole
sample was 1.18 (0.13), being 1.15 (0.12) in normal weight children, 1.18 (0.13) in overweight children
and 1.21 (0.14) in children with obesity. After excluding overweight subjects, a logistic regression
model adjusted for puberty and origin revealed a stronger risk association between the pGRS and
the obesity status, so that the odds of having obesity were estimated to increase 4.7 times for each
additional tenth in the pGRS (h2 = 5.6%, OR = 47.36; CI 95% = [9.8,229.38]; p-value = 1.64 × 10−6).
The obesity variability attributable to the genetic component under this model was estimated in 5.6%.
When comparing individuals presenting the highest risk scores (Q4 and Q3) to those belonging to
the first quartile (Q1), significant associations were also evidenced (OR = 3.33; CI 95% = [1.96, 5.67];
p-value = 9.14 × 10−6 and OR = 1.66; CI 95% = [1.02, 2.71]; p-value = 0.04 respectively) (Supplementary
Figure S2).

Next, we aimed to know which SNPs contribute the most to the pGRS-BMI association. For that
purpose, we performed a stepwise linear regression including all 44 tested SNPs and found the genetic
variants rs543874-LOC101928778:SEC16B, rs7138803-BCDIN3D:FAIM2, rs10132280-STXBP6:NOVA1,
rs1558902-FTO and rs12940622-RPTOR to be the most determinant polymorphisms for BMI Z-Score
(Supplementary Figure S3). This finding was further supported by the univariate association analyses
conducted between the BMI Z-score and each individual SNP (Supplementary Table S7).

To demonstrate the validity of the pGRS for the clinical prediction of obesity (alone or in
combination with other traditional risk factors), logistic regression models were constructed including
different combination of risk factors and further evaluated using AUC (Table 1). For each predictive
model, subjects presenting valid data for assayed variables were selected from the study population 1
and divided into a training set (composed of the 75% of total available samples) and a test set (formed
by the remaining 25%). Performance statistics from each trained model in the respective test set are
presented in Table 1. Among all single-variable predictive models, the model including the pGRS
demonstrated one of the greater predictive abilities (only surpassed by the model including parental
BMI information). The joint combination of all models individually surpassing an AUC of 0.6 yielded
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a considerable improvement in the predictive ability (AUC = 0.81 CI 95%= [0.7–0.93]), which could be
sufficient for clinical discrimination.
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Figure 2. Association between polygenetic risk scores (pGRS) and body mass index (BMI) Z-score in
the study population 1; analysis adjusted for origin and pubertal status of children. (A) Boxplot graph
for BMI Z-Score according to each quartile of the pGRS; the dashed line in the plot represents the cut-off

BMI Z-Score for overweight and obesity in the study population 1. (B) Histogram of genetic risk score
values in the study population 1 and their correlation with BMI (R2 = 0.2).
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Table 1. Obesity predictive ability for assessed traditional and genetics risk factors in the study population 1.

Whole Population Training Set Test Set

Predictors AUC [95% CI] n n Normal-Weight n Obese n n Normal-Weight n Obese n n Normal-Weight n Obese

Tanner, Origin, Sex and Age 0.66 [0.61–0.72] 1285 512 773 901 359 542 384 153 231
pGRS 0.72 [0.63–0.80] 443 187 256 311 131 180 132 56 76

Obesity Family History 0.70 [0.63–0.77] 686 232 454 481 163 318 205 69 136
Maternal Smoking 0.49 [0.43–0.55] 632 218 414 443 153 290 189 65 124

Gestational Diabetes 0.49 [0.45–0.54] 620 214 406 435 150 285 185 64 121
Birthweight 0.60 [0.51–0.69] 610 211 399 428 148 280 182 63 119

Gestational Weight Gain 0.54 [0.45–0.62] 569 206 363 400 145 255 169 61 108
Parents BMI 0.76 [0.68–0.84] 530 199 331 372 140 232 158 59 99

Type of Breastfeeding 0.55 [0.45–0.64 ] 555 193 362 390 136 254 165 57 108
Tanner, Origin, Sex, Age, pGRS,

Obesity Family History,
Birthweight, and Parents BMI

0.81 [0.7–0.93] 176 78 98 124 55 69 52 23 29

Models were first constructed based on each risk factor alone and then combined according to the improvements in area under the curve (AUC). For this purpose, subjects with normal
weight and with obesity were selected from the study population 1 and randomly assigned to training and test subsets in whichpredictive models were trained and evaluated, respectively.
Individual models showing an AUC ≥ 0.60 were combined into the full model presented in the last row. Abbreviations: AUC, area under the curve; BMI, body mass index; CI, confidence
interval; n; number of effective individuals for analysis; pGRS, polygenetic risk score.
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4.2. The pGRS is Associated with Longitudinal Trajectories for Obesity and IR in Children Undergoing Puberty

With the aim of studying the effects of the pGRS on obesity during the course of puberty, we also
performed a longitudinal design on 96 boys and girls undergoing sexual maturation (study population 2).
All details regarding the adopted longitudinal design are illustrated in Figure 1B. The 96 individuals
were stratified according to two classification criteria; (1) joint longitudinal trajectories for obesity
and IR, and (2) the longitudinal trajectories for obesity. The number of resulting experimental groups
per classification as well as the final sample size per group are shown in Figure 1B. Longitudinal
within-group and between-group changes for all analyzed biochemical variables are shown in
Supplementary Table S2, according to the experimental classification 1. Changes in anthropometric
variables showed a coherent behavior according to each experimental condition. In particular, for waist
circumference (WC), which is a metabolic health indicator in obesity, we found significant within-group
increases accompanying sexual maturation in all groups. The higher increase corresponded to group 4,
in which children with obesity become IR with pubertal maturation. The metabolic health derangement
observed in groups 4 and 5 for WC was also confirmed by changes in blood pressure, insulin and
glucose levels, QUICKI, HOMA-IR and triglycerides.

Regarding the pGRS, findings reported in the Results Section 4.1 (merged study populations
1 and 3) were independently validated here with the longitudinal study population 2 (N = 96),
using data from each time point individually. For the prepubertal stage, a multiple linear regression
analysis revealed a significant association between the pGRS and the BMI Z-Score after adjusting by
origin (B = 2.84, CI 95% = [0.31, 5.37]; p-value = 0.03). When excluding overweight individuals from
analysis, the odds of obesity were quantified as 8.22 times higher in the children belonging to the 3rd
tertile of the pGRS with regard to children belonging to the 1st and 2nd tertiles (CI 95% = [1.95, 34.61];
p-value = 0.004). For the pubertal stage, the multiple linear regression model did not find a significant
association between the continuous pGRS and the BMI Z-Score after adjusting by origin and
pubertal status (B = 0.9, CI 95% = [−1.57, 3.38]; p-value = 0.47). Instead, when excluding overweight
individuals, the odds of obesity were estimated to be 5.54 times significantly higher in pubertal children
belonging to the third tertile of the pGRS in comparison to those belonging to the first two tertiles
(CI 95% = [1.41, 21.52]; p-value = 0.01).

In order to study the ability of the pGRS to predict future outcomes after puberty entrance,
we next performed logistic regression models with the dichotomized pGRS as an independent
predictor variable (1st and 2nd tertiles vs. 3rd tertil), including the longitudinal experimental group
classifications from Figure 1B as dependent dummy variables (each category vs. the reference normal
weight group). These models also included the tanner stage and origin of children as confounding
factors. When modelling the experimental groups based on obesity and IR outcomes together
(classification 1), we found higher odds of being “obese or overweight with IR that remain IR after
puberty entrance” in children within the 3rd tertil of the pGRS when comparing them to the children
in the reference bottom pGRS group (1st and 2nd tertiles) (OR = 54.15, p-value = 0.008, FDR = 0.03).
Higher odds of being “obese or overweight non-IR that become IR after puberty entrance” were
also reported among 3rd tertile children in comparison to 1st and 2nd tertiles children though
without statistical significance (OR = 15.52, p-value = 0.05, FDR = 0.12). Nonsignificant results were
obtained for the rest of the comparisons performed. Figure 3A represents the boxplots for the
continuous pGRS in each of the mentioned experimental groups. On the other hand, when modelling
the experimental groups that consider only longitudinal trajectories for obesity (classification 2),
we reported higher odds of being “obese remaining obese after puberty entrance” (OR = 31.91,
p-value = 0.0009, FDR = 0.005), and “normal weight becoming overweight after puberty entrance”
(OR = 26.31, p-value = 0.02, FDR = 0.07) among children in the 3rd tertile of the pGRS when comparing
them to children in the reference bottom pGRS group (1st and 2nd tertiles). Nonsignificant results
were obtained for the rest of the comparisons performed. Figure 3B represents the boxplots for the
continuous pGRS in each mentioned experimental group.
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4.3. The pGRS Does not Correlate with Increased Cardio-Metabolic Alterations in Children and Adolescents

In our cross-sectional cohort study population 1, we studied if the quartilized pGRS was associated
with a metabolically unhealthy status as well as with any of its six dichotomized components (high
glucose, HOMA-IR, DBP, SBP or triglycerides values or low HDLc levels) according to the criteria
we have previously published [33]. In parallel, 30 continuous biochemical markers were tested
for potential association with the pGRS. These biomarkers included lipid and glucose metabolism
biomarkers, adipokines, as well as cardiovascular risk and proinflammatory biomarkers. From the
analyses on the components of metabolic syndrome, models adjusted for BMI Z-Score, sex, age,
puberty and origin showed no statistically significant association with pGRS (Supplementary Table S8).
Instead, from the analyses on the 30 continuous biochemical outcomes, we found only one significant
risk association for the APO B/LDLc ratio (Table 2) (that became nonsignificant after correction for
multiple-hypothesis testing).

In order to validate these findings at the longitudinal level, we further applied multiple linear
regressions with deltas for continuous cardio-metabolic measurements as input variables (computed as
T1–T0) in the longitudinal study population 2. All analyses were again adjusted for confounders such
as the change in BMI Z-score, sex, elapsed time, age at baseline or origin of the children. We found a
significant positive correlation between the pGRS and APO B levels (p-value = 0.02, FDR = 0.29) during
the course of puberty (Table 3). Moreover, a significant inverse correlation was also reported between
the pGRS and the change in HDLc levels (p-value = 0.03, FDR = 0.33). Again, no model passed the
multiple-hypothesis testing correction.
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Table 2. Association between the pGRS and metabolic outcomes in the cross-sectional cohort of 574
children (study population 1), in decreasing order of statistical significance.

Measurement Beta SE CI.LO CI.HI T-Value p-Value FDR

APO B/LDLc Ratio −0.12 0.05 −0.21 −0.02 −2.29 0.02 0.60
Triglycerides

(mg/dL) −17.69 9.17 −35.67 0.28 −1.93 0.05 0.68

APO B (mg/dL) −10.94 6.49 −23.66 1.78 −1.69 0.09 0.68
APO A/APO B 0.40 0.25 −0.09 0.88 1.61 0.11 0.68

WC/Height Ratio 0.03 0.02 −0.01 0.06 1.51 0.13 0.68
WC (cm) 3.75 2.52 -1.19 8.70 1.49 0.14 0.68

Adiponectin/Leptin
Ratio 0.50 0.36 -0.21 1.22 1.38 0.17 0.68

MCP1 (ng/L) −21.94 16.22 −53.73 9.84 −1.35 0.18 0.68
aPAI (ug/L) −3.56 2.90 −9.24 2.12 −1.23 0.22 0.69
IL8 (ng/L) −0.60 0.54 −1.66 0.45 −1.12 0.26 0.69
QUICKI 0.01 0.01 −0.01 0.03 0.96 0.34 0.69

DBP (mmHg) 3.11 3.35 −3.46 9.68 0.93 0.35 0.69
Adiponectin (mg/L) −3.09 3.34 −9.63 3.45 −0.93 0.35 0.69

IL6 (ng/L) 2.32 2.57 −2.71 7.35 0.90 0.37 0.69
HC (cm) 1.96 2.19 −2.32 6.25 0.90 0.37 0.69

HOMA-IR index −0.37 0.42 −1.19 0.46 −0.87 0.38 0.69
WC/HC Ratio 0.02 0.03 −0.03 0.08 0.85 0.39 0.69

Total cholesterol
(mg/dL) −5.95 9.48 −24.53 12.63 −0.63 0.53 0.88

hsCRP (mg/L) 0.42 0.81 −1.16 2.01 0.52 0.60 0.89
HDLc/LDLc Ratio −0.05 0.09 −0.22 0.13 −0.49 0.62 0.89
Glucose (mg/dL) −1.14 2.38 −5.81 3.53 −0.48 0.63 0.89
Resistin (ug/L) 1.28 2.88 −4.37 6.93 0.44 0.66 0.89
SBP (mmHg) −1.74 4.17 −9.92 6.44 −0.42 0.68 0.89
LDLc (mg/dL) −2.43 8.57 −19.21 14.36 −0.28 0.78 0.89

TNF (ng/L) 0.15 0.55 −0.93 1.24 0.28 0.78 0.89
Leptin (ug/L) 0.77 2.86 −4.84 6.37 0.27 0.79 0.89

APO A (mg/dL) −2.35 9.74 −21.44 16.75 −0.24 0.81 0.89
MPO (ug/L) −2.17 10.09 −21.95 17.60 −0.22 0.83 0.89

HDLc (mg/dL) −0.50 4.22 −8.76 7.77 −0.12 0.91 0.94
MMP9 (ug/L) −0.05 20.57 −40.38 40.27 0.00 1.00 1.00

Multiple linear regression analyses with the pGRS as independent variable were run adjusted for sex, BMI Z-Score,
origin and puberty. When the dependent variable was the blood pressure, we further added the height as a
confounder in the model. Abbreviations: APO, apolipoprotein; CI.HI, high confidence interval; CI.LO, low
confidence interval; DBP, diastolic blood pressure; FDR, false discovery rate; HC, hip circumference; HDLc,
high-density lipoproteins-cholesterol; HOMA-IR, homeostasis model assessment for insulin resistance; hsCRP,
high-sensitivity C reactive protein; IL, interleukin; LDLc, low-density lipoproteins-cholesterol; MCP1, monocyte
chemoattractant protein 1; MMP9, Matrix metallopeptidase 9; MPO, myeloperoxidase; PAI-1, plasminogen activator
inhibitor-1; QUICKI, quantitative insulin sensitivity check index; SBP, systolic blood pressure; SE, standard error;
TNF-α, tumour necrosis factor alpha; WC, waist circumference.
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Table 3. Association between the pGRS and deltas for continuous cardio-metabolic measurements
(computed as T1–T0) in the longitudinal study population 2.

Measurement (Delta T1–T0) Beta SE CI.LO CI.HI T-Value p-Value FDR

APO B (mg/dL) 57.44 21.63 15.05 99.82 2.66 0.02 0.29
HDLc (mg/dL) −18.91 8.98 −36.51 −1.32 −2.11 0.03 0.33

Triglycerides (mg/dL) 45.38 31.58 −16.51 107.27 1.44 0.15 0.78
APO A (mg/dL) −35.22 30.97 −95.92 25.48 −1.14 0.26 0.78

DBP (mmHg) −13.34 12.98 −38.79 12.10 −1.03 0.31 0.78
Insulin (mU/L) 8.94 8.89 −8.49 26.37 1.00 0.32 0.78
SBP (mmHg) 15.57 16.77 −17.29 48.43 0.93 0.36 0.78

HOMA-IR index 1.88 2.07 −2.17 5.94 0.91 0.37 0.78
HDLc/LDLc Ratio −0.29 0.43 −1.14 0.56 −0.67 0.51 0.86

Total cholesterol (mg/dL) −13.63 24.38 −61.42 34.16 −0.56 0.58 0.86
Glucose (mg/dL) −3.80 8.72 −20.89 13.29 −0.44 0.66 0.86

WC/HC −0.03 0.08 −0.19 0.12 −0.41 0.68 0.86
WC (cm) −3.11 9.17 −21.09 14.87 −0.34 0.74 0.86

LDLc (mg/dL) −5.94 18.41 −42.02 30.15 −0.32 0.75 0.86
QUICKI 0.01 0.04 −0.06 0.09 0.31 0.75 0.86

Multiple linear regression analyses with the pGRS as independent variable were run adjusted for sex, the change in
BMI Z-Score, the origin, the elapsed time from baseline to puberty as well as the pubertal stage reached. When
the dependent variable was the change in blood pressure, we further added the change in height as a confounder
in the model. Abbreviations: APO, apolipoprotein; CI.HI, high confidence interval; CI.LO, low confidence
interval; DBP, diastolic blood pressure; FDR, false discovery rate; HC, hip circumference; HDLc, high-density
lipoproteins-cholesterol; HOMA-IR, homeostasis model assessment for insulin resistance; hsCRP, high-sensitivity C
reactive protein; LDLc, low-density lipoproteins-cholesterol; QUICKI, quantitative insulin sensitivity check index;
SBP, systolic blood pressure; SE, standard error; WC, waist circumference.

4.4. Lifestyle Factors Interact with the Inherited Genetic Susceptibility to Obesity in Children

Once we demonstrated the relationship between the pGRS and obesity as well as discarded a
direct implication of the pGRS in the development of cardio-metabolic alterations, we next aimed to
describe the plausible modulatory role of environmental factors over inherited genetic susceptibility
to obesity. For that purpose, we applied multiple linear regression models including an interaction
term for the pGRS and each assessed environmental factor in the study population 1. As a result,
this approach revealed the pGRS to interact with three lifestyle factors related to parental educational
level and physical activity (Table 4 and Figure 4). When we applied FDR adjustment for multiple
testing, only two of them remained statistically significant. Interestingly, higher educational level
of mothers and fathers were separately associated with lower BMI Z-Score of children depending
on the pGRS (p-value = 0.0004 and FDR = 0.02 and p-value = 0.0008 and FDR = 0.02 respectively).
The “protective” effect of mother’s and father’s educational levels on BMI was only achieved in
children presenting low values of the pGRS (Figure 4A,B).
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Table 4. Interaction analyses between the pGRS and each assessed environmental factor in the study population 1.

Lifestyle Factor Beta SE CI.LO CI.HI T-Value p-Value FDR

Educational level of the mother 3.41 0.95 1.56 5.27 3.60 3.86 × 10−4 0.02
Educational level of the father 2.93 0.86 1.24 4.62 3.40 7.92 × 10−4 0.02

How many minutes per week do you spend exercising at a sport program? 0.02 0.01 0.00 0.04 2.13 0.03 0.47
Presence of AH in father or mother −4.01 2.01 −7.95 −0.08 −2.00 0.05 0.56

Mother BMI −0.22 0.11 −0.44 0.00 −1.93 0.06 0.56
How long does it take to get to the school on walk? −0.24 0.14 −0.52 0.04 −1.66 0.10 0.58

How often do you eat fruit while watching TV? 1.73 1.05 −0.34 3.80 1.64 0.10 0.58
How often do you eat snacks while watching TV? 1.80 1.14 −0.44 4.03 1.58 0.12 0.58

How many hours do you spend doing home activities? −2.55 1.62 −5.73 0.63 −1.57 0.12 0.58
How much time do you play videogames in a day during weekend? 1.03 0.70 −0.35 2.41 1.46 0.15 0.58

How many hours each day do you spend doing vigorous efforts like training activity? 2.27 1.55 −0.77 5.32 1.46 0.15 0.58
Presence of hypercholesterolemia in father or mother 1.78 1.24 −0.64 4.21 1.44 0.15 0.58

Presence of heart stroke in father or mother −9.74 6.86 −23.19 3.70 −1.42 0.16 0.58
Presence of vascular problems in father or mother −39.77 29.84 −98.26 18.72 −1.33 0.18 0.59

How many hours do you spend exercising in a sport club? 0.04 0.03 −0.02 0.10 1.30 0.19 0.59
How often do you eat salted potatoes while watching TV? 2.11 1.65 −1.12 5.34 1.28 0.20 0.59

Presence of diabetes in father or mother 11.59 9.96 −7.94 31.12 1.16 0.25 0.64
How often do you eat nuts while watching TV? 2.21 1.95 −1.62 6.04 1.13 0.26 0.64

How many days per week do you spend walking with vigorous efforts? 0.63 0.56 −0.47 1.73 1.13 0.26 0.64
How many hours each day do you spend practicing activities that do not require physical activity

(e.g., reading) 0.41 0.44 −0.44 1.27 0.95 0.34 0.77

How much time do you play videogames in a day during the week? −0.79 0.85 −2.46 0.87 −0.93 0.35 0.77
How many hours do you usually sleep every day during the week? 0.68 0.80 −0.89 2.26 0.85 0.40 0.77
How many hours do you spend doing physical activity in family? 1.21 1.42 −1.58 4.00 0.85 0.40 0.77

How often do you eat candies while watching TV? 1.50 1.77 −1.96 4.96 0.85 0.40 0.77
How many hours do you usually sleep every day during the weekends? −0.55 0.67 −1.85 0.76 −0.82 0.41 0.77

Diagnosed hypertriglyceridemia in father or mother 1.06 1.34 −1.57 3.69 0.79 0.43 0.77
How often do you eat sweets while watching TV? 1.37 1.78 −2.12 4.86 0.77 0.44 0.77

How much time per weekend do you usually use the smartphone? 0.69 0.95 −1.17 2.55 0.73 0.47 0.79
Do you usually eat in front of the TV? 0.77 1.15 −1.49 3.02 0.67 0.51 0.83

How many hours per week do you spend on physical education during school hours? −2.01 3.48 −8.83 4.82 −0.58 0.57 0.85
How often do you eat fruits while playing video games? −2.07 3.73 −9.38 5.23 −0.56 0.58 0.85

Presence of obesity in the father or mother −0.45 0.82 −2.07 1.17 −0.54 0.59 0.85
How much time during the week do you usually watch TV? 0.39 0.75 −1.07 1.85 0.52 0.60 0.85

How often do you eat fruits while surfing internet? 1.81 3.88 −5.80 9.43 0.47 0.64 0.88
How much time in per weekend do you usually use internet 0.25 0.63 −0.98 1.48 0.40 0.69 0.92

How many hours a day do you spend walking with vigorous efforts? −0.35 1.00 −2.32 1.62 −0.35 0.73 0.92
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Table 4. Cont.

Lifestyle Factor Beta SE CI.LO CI.HI T-Value p-Value FDR

How often do you eat snacks while surfing the internet? 1.26 3.77 −6.13 8.65 0.33 0.74 0.92
How many days per week do you spend doing home activities? 0.20 0.64 −1.05 1.44 0.31 0.75 0.92

How many days per week do you spend doing physical activity in family? −0.26 0.91 −2.05 1.53 −0.29 0.78 0.92
How many hours each day you spend walking quite a lot without vigorous efforts? 0.17 0.63 −1.07 1.40 0.26 0.79 0.92

Father BMI −0.04 0.17 −0.38 0.30 −0.25 0.80 0.92
How often do you eat snacks while playing videogames? −0.73 3.99 −8.56 7.09 −0.18 0.85 0.94

How much time during the weekend do you spend watching TV and DVD? 0.14 0.79 −1.41 1.70 0.18 0.86 0.94
How many days per week do you exercise in a sport club? 0.07 0.69 −1.28 1.43 0.11 0.92 0.98

How many hours do you spend doing homework outside of school hours? 0.05 0.99 −1.88 1.99 0.05 0.96 0.99
How much time per day do you use the internet during the week? −0.02 0.71 −1.41 1.37 −0.03 0.98 0.99

How many days do you spend doing vigorous efforts like training activity? −0.01 0.62 −1.22 1.19 −0.02 0.99 0.99

These analyses were adjusted for origin and pubertal status of children. Abbreviations: AH, arterial hypertension; BMI, body mass index; CI.HI, high confidence interval; CI.LO, low
confidence interval; FDR, false discovery rate; SE, standard error.
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Figure 4. Interaction plots for observed significant modulatory effects of environment over inherited
genetic susceptibility to obesity (pGRS-environment interactions) in study population 1; these analyses
were adjusted for the origin and pubertal status of children. (A) shows the modulatory effect of
the educational level of mothers over the pGRS-BMI Z-Score association. (B) shows the modulatory
effect of the educational level of fathers over the pGRS-BMI Z-Score association. In both subfigures,
the pGRS is categorized according to the cut off values −1 standard deviation and +1 standard deviation.
Abbreviations: BMI, body mass index; SD, standard deviation.

4.5. The pGRS is not Helpful for the Pharmacogenetics Management of Obesity in Children

On the other hand, we employed the data derived from a previous metformin RCT (study
population 3) in order to test whether the constructed pGRS presents utility for the pharmacological
management of obesity in children. As a result, we found no differential response (in terms of BMI
Z-Score reduction) according to the pGRS (B = 0.39, SE = 0.41, t value = 0.97, p-value = 0.34 for
the interaction term GRS*Treatment in the multiple linear regression, and p-value = 0.33 in for the
interaction term GRS:Time:Experimental Group under a LME model).

5. Discussion

In the present study, we evaluated the utility of an adult-BMI pGRS for the prediction and
pharmacological management of obesity in children, further investigating its implication in the
appearance of cardio-metabolic alterations. For that purpose, we counted on data from three
well-characterized children populations following both cross-sectional and longitudinal designs. As a
result, we demonstrated that the pGRS is associated with childhood BMI Z-Score and could be used as a
good predictor of obesity longitudinal trajectories during puberty. On the other hand, we demonstrated
that the pGRS is not associated with cardio-metabolic comorbidities in children and that certain
environmental factors interact with the genetic predisposition to the disease. Finally, according to the
results derived from a weight-reduction metformin intervention in children with obesity, we discarded
the utility of the pGRS as a pharmacogenetics marker of metformin response.

As one of the main findings from this work, it highlights the strongly significant association
evidenced between the pGRS and the BMI Z-score in a children population composed of 698 pre-
and pubertal subjects with and without obesity (Figure 1). When excluding overweight individuals,
significant results were also obtained with even stronger effects sizes and a higher percent of heritability
explained (Supplementary Figure S2). When performing logistic regressions based on quartiles,
the most significant and strongest result was obtained when comparing children in the 4th quartile of
the pGRS vs. those in the reference bottom group. On the other hand, we demonstrated that only 9
over the total 44 analyzed SNPs presented an individual significant association with the BMI Z-Score,
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showing barely significant p-values (Supplementary Table S7). The FTO locus was identified among
the most relevant loci, which is in accordance with previous studies pointing out the FTO as a central
piece within the genetics architecture of obesity [41]. A few conclusions could be extracted from these
results. The first remark is the fact that, although all assessed SNPs individually elicit small risk effects
for obesity, as shown here (Supplementary Table S7) and in previous studies [3]; it is the accumulation
of many of these small-risk effect variants in the same individual which finally triggers the clinical
manifestation of the obesity phenotype, leading to a robust significant association (Figure 2A). This is
what is known as “concerted polygenetic behavior” and has been previously described for obesity and
many other complex diseases [13,42]. Under these circumstances, the use of a weighted pGRS approach
is the only way to account for small risk genetics effects on disease that would otherwise remain
undetected. Thus the use of pGRSs is an additional way to unravel part of the missing heritability of
complex traits [13]. Furthermore, the use of a weighted approach (e.g., instead of a simple sum of the
number of risk alleles by individual) improved the robustness of associations and allowed us to create
a model with a higher similarity to the real to the real molecular basis of the disease.

The second remark that could be extracted from our results is the fact that the overweight
status seems to be a midway phenotype (between normal weight and obesity), in which genetics
might not play a determinant role (Supplementary Figure S1). Although both remarks had been
previously described in the literature [18,22], our approach reinforces these hypotheses and adds
novel insights for Iberian populations in Spain, which is quite important considering the well-known
genetic interpopulations variability within the European ancestry [43]. All these findings from our
cross-sectional study populations 1 and 3 were independently validated also at each pubertal stage
of the study population 2 (please see Results Section 4.2.). This corroborates the robustness of our
design and reaffirms the fact that genetic predisposition to obesity starts early in childhood and persists
during puberty [2]. Interestingly, the obesity heritability attributable to these genetic markers in our
study was estimated in 5.6%, which is far higher than the 1–2% reported in the adult study from
Locke et al. (2015) [3]. This could be explained by the fact that the environmental modulatory effects
on genetics during childhood may be softer than in adults.

As a secondary aim, we demonstrated that the pGRS is useful for the prediction of obesity
in children. Among all trained single-variable predictive models, the one based on the pGRS
showed one of the greater predictive abilities (only surpassed by the model including parental BMI
information). The joint combination of all models individually surpassing an AUC of 0.6 yielded a
considerable improvement in the predictive ability (AUC = 0.81 CI 95% = [0.7–0.93]), which could
be sufficient for clinical discrimination. All these results are in concordance with previous insights
from Butler et al., (2019) [44], who demonstrated that early clinical factors, including maternal age,
prepregnancy maternal (and paternal) BMI, birthweight, gestational age, weight gain during early
infancy and other easily and measurable factors, do fairly well in predicting childhood obesity.
Moreover, these results suggest that the combination of a high-risk genetic profile along with an
unhealthy familial environment (represented in terms of parents BMI and obesity family history)
could boost the predisposition to the disease. Beyond AUC predictive analyses, we also showed how
a higher pGRS is associated with obesity longitudinal trajectories when entering puberty in study
population 2. We found higher pGRS in children remaining obese after puberty when compared to
children remaining with normal weight when entering puberty (Figure 3). From these results, we can
conclude that the pGRS could be a powerful predictive tool, assayable from the moment of childbirth,
with application in the risk assessment for future obesity. Besides, since severe obesity is usually
accompanied by higher odds for metabolic complications during adulthood, these risk estimations
could lead to the application of personalized preventive strategies in order to tackle the relevant
problem of obesity-associated morbidity and mortality. Interestingly, as far as we are concerned, this is
the first time a study focused on the longitudinal effects of a pGRS during pubertal development.
Puberty has been identified as a major influence on cardiovascular risk factors, the impaired glucose
tolerance of pubertal adolescents with obesity being the best explanation [24,45,46]. The demonstrated
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ability of the pGRS to predict, from early childhood, the pubertal obesity status of each child is therefore
a tool of great interest for identifying children with higher odds for cardio-metabolic disturbances at
this metabolically critical stage of life.

In previous studies performed in adults, obesity pGRSs have also yielded secondary findings
for multiple cardio-metabolic outcomes, including a heightened risk of all-cause mortality, diabetes,
coronary artery disease, hypertension, stroke, and venous thromboembolism, all of them after
correcting for BMI. While we knew the clinical association of obesity with these outcomes and
conditions, the pGRS correlation now adds the genomic underpinning. To date, no studies have
demonstrated such associations in children populations otherwise. Here, we only found slightly
significant associations (BMI-adjusted) between the pGRS and certain lipid metabolism outcomes
(Table 2; Table 3, and Supplementary Table S8), none of them passing multiple-test adjustment. Among
the rest of the analyzed outcomes, such as inflammatory and cardiovascular biomarkers, no additional
significant association was found. From these results, we could conclude that the associations reported
in adults between the pGRS and cardio-metabolic disturbances could be a consequence of the strong
correlation between obesity, the obesogenic environment and these outcomes, rather than a direct
consequence of having a higher pGRS. This is not surprising since most of the loci conforming the
pGRS, 60% of them, are loci highly expressed in regions of the brain and hypothalamus regulating
energy balance, appetite, food preference, and reward-seeking behavior [3], rather than loci involved
in inflammatory or glucose metabolism-related processes.

From our gene-environment cross-sectional approach, we found that only the educational level of
the parents demonstrated a significant interaction with the pGRS. Compared with other socioeconomic
indicators, the educational level of the mother is the one that had presented the strongest association
with unhealthy factors in literature, such as adiposity, in both children and adolescents [47,48].
Particularly, in our cohort, we saw how this variable was not able to break the genetic determinism
or susceptibility to obesity conditioned by the pGRS. Although no other factor evidenced a genetic
risk modulatory capacity in our study (neither PA measurements), this does not mean that there is no
influence of the environment in the genetic predisposition to obesity in children.

Although we have previously shown that certain individual obesity-SNPs could act as
pharmacogenetics regulators of metformin response in children with obesity [36], we here discarded
the utility of the pGRS as a marker for the obesity pharmacological management. Again, this is not
surprising given the type of SNPs included in the pGRS, where the metformin target pathways are not
included. On this matter, we can conclude that a higher genetic predisposition to obesity (according
to the genes involved in satiety and energy balance regulatory mechanisms) does not determine a
worse BMI Z-Score response when treating with metformin. For the pharmacological personalized
management of children with obesity instead, we recommend the use of individual validated target
SNPs [36].

Among the limitations of our current approach, we can highlight the inclusion of only European
ancestry individuals, limiting extrapolation for other ancestries and the lack of objectively measured
physical activity and diet assessments. These important questions remain unanswered and will define
the potential benefit derived from using this obesity pGRS.

Prevention of key medical conditions such as obesity has been a long-standing dream that largely
remains unfulfilled. If we are to take advantage of the opportunity, we need to know as much as
possible for prediction, acknowledging it will never be deterministic. The obesity pGRS reported in the
present study provides an extremely powerful tool for the early risk detection. While there remains
uncertainties and practical limitations for making such pGRS results widely available, such as the
requirement for considerable education for the medical community and the general population, we
are moving in the right direction for someday pre-empting important conditions that would have
otherwise been manifest.

Supplementary Materials: The following are available online at http://www.mdpi.com/2077-0383/9/6/1705/s1,
Figure S1: Density distribution plots for the constructed pGRS according to the obesity status in study population 1,

http://www.mdpi.com/2077-0383/9/6/1705/s1
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Figure S2: Bar plot showing the number of normal weight, overweight and children with obesity according to each
quartile of the pGRS in the study population 1, Figure S3: Stepwise linear regression including all 44 tested SNPs
in order to know which of them contribute the most to the pGRS-BMI association, Table S1: General characteristics,
anthropometry, biochemical parameters, adipokines and cardiovascular/proinflammatory biomarkers in the
cross-sectional cohort of 574 children (study population 1), Table S2: Descriptive statistics for the longitudinal
study population 2, Table S3: Clinical characteristics of the study population 3 at baseline and post-treatment
stages, Table S4: Hardy-Weinberg Equilibrium test for all analyzed genetic variants in study population 1, Table S5:
List of 44 SNPs passing quality control filters and finally included in the Genetic Risk Score, Table S6: Lifestyle
factors assessed in our study for the study population 1, Table S7: Individual single-SNP analyses on BMI Z-Score
in the study population 1, Table S8: Association between the pGRS (quartilized) and the metabolic health status of
children in the study population 1.
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