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Abstract: Different studies have revealed that oxidative stress and inflammation are crucial in NAFLD
(Non-alcoholic fatty liver disease). The aim of this study is to analyze whether pterostilbene and
resveratrol are able to either avoid or delay the progression of non-alcoholic liver steatosis towards
steatohepatitis. This has been performed by examining their effects on oxidative stress, inflammation,
fibrosis and pre-carcinogenic stages. Rats were distributed into five experimental groups and were
fed with either a standard diet or a high-fat high-fructose diet, supplemented or not with pterostilbene
(15 or 30 mg/kg/d) or resveratrol (30 mg/kg/d), for 8 weeks. Liver histological analysis was carried
out by haematoxylin—eosin staining. Serum and hepatic oxidative stress-related parameters were
assessed using spectrophotometry, and the expression of genes related to inflammation, fibrosis and
cancer by qRT-PCR. The dietary model used in this study led to the development of steatohepatitis,
where rats displayed oxidative stress, inflammation and ballooning, although not fibrosis. It also
modified the expression of hepatocarcinoma-related genes. The results show, for the first time,
that pterostilbene was able to partially prevent these alterations, with the exception of changes in
hepatocarcinoma-related genes, mainly at 30 mg/kg/d. Pterostilbene was more effective than its
parent compound resveratrol, probably due to its high bioavailability and higher anti-oxidant and
anti-inflammatory activities, attributable to its different chemical structure.

Keywords: pterostilbene; resveratrol; (poly)phenols; liver steatosis; liver steatohepatitis;
hepatocarcinoma; oxidative stress; inflammation; rat
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1. Introduction

Non-alcoholic fatty liver disease (NAFLD) has become a global health problem affecting around
17-33% of the population worldwide [1]. It is characterized by excessive fat accumulation in the liver,
not related to alcohol consumption or any other liver diseases [2]. A pathological broad spectrum of
conditions is associated with NAFLD, ranging from simple steatosis to steatohepatitis (NASH), which
can lead to cirrhosis and hepatocarcinoma.

Different animal studies and clinical trials have revealed that oxidative stress and inflammation
are crucial in the pathophysiology of NAFLD. It has been observed that oxidative stress can increase
inflammation, which in turn can boost the oxidative stress, thus resulting in a vicious cycle that
promotes the progression of fatty liver to steatohepatitis [3,4].

Oxidative stress can be defined as a disturbance in the balance between the intrinsic antioxidant
defence system and the formation of endogenous reactive oxygen species (ROS), which induce oxidative
damage in biological molecules, such as lipids and proteins [5]. ROS include different molecules, like
hydroxyl radicals, superoxide anion radicals and lipid peroxides, among others, that can be neutralized
by enzymatic or non-enzymatic antioxidants. Regarding enzymatic defences, superoxide dismutase
(SOD) catalyzes the dismutation of superoxide anion (O, ) into molecular oxygen (O;) and hydrogen
peroxide (H,O,). This H,O; is less reactive than ROS. Nevertheless, not only can it be toxic for the
cells, and but it can also be transformed into hydroxyl radicals. H,O, is degraded into water and O,
by catalase, mainly in the peroxisomes, and by glutathione peroxidase (GPx) in the mitochondria and
cytosol. GPx also converts lipid peroxides into their corresponding alcohols [6].

A long-term oxidative stress can induce chronic inflammation through the NF-kB pathway, p53 or
erythroid 2-related factor 2 (Nrf2), which could regulate the expression of inflammatory cytokines [7].
On the other hand, sustained inflammation could also induce oxidative stress. The phagocytic and
non-phagocytic cells are able to produce large amounts of ROS in response to the pro-inflammatory
cytokines [8].

With regard to the relationship between these two processes and hepatocarcinoma, it has been
observed that ROS and pro-inflammatory molecules can act as carcinogens, causing DNA damage
and mutations, as well as promote cell proliferation [9,10]. This outcome can be observed through the
induction of genes associated with the initial phase of liver tumorigenesis, before the hepatocarcinoma
becomes evident [11].

Since the options to manage NAFLD are limited, the scientific community is looking for new
preventive and therapeutic agents. Oxidative stress being one of the causes of the progression of
NAFLD, antioxidants like polyphenols are one of the most studied groups of molecules. Resveratrol
is a polyphenol that has clear beneficial effects on liver steatosis in animal models [12,13]. The
reported results in humans are controversial, although positive effects have been described in several
studies [14,15]. However, the effects of resveratrol can be limited due to its low bioavailability [16]. For
that reason, structural analogues of resveratrol with higher viability are being studied. Pterostilbene is
a methoxylated derivative of resveratrol, in which the substitution of two hydroxyl groups with two
methoxy groups improves its oral bioavailability [17]. As far as the prevention and treatment of NAFLD
go, the effects of this phenolic compound have been much less studied than those of resveratrol.

In the cohort of rats used in the present study, we previously observed that high-fat, high-fructose
feeding induced microvesicular steatosis, which was the expected type of steatosis considering that
the experimental period length was 8 weeks [18,19]. This lipid alteration was partially prevented
by the administration of both pterostilbene and resveratrol. This effect was seen in the histological
analysis—steatosis was reduced by 49% in rats treated with pterostilbene at a dose of 15 mg/kg/d and
by 87% in the group treated with pterostilbene or resveratrol at a dose of 30 mg/kg/d. The values of
transaminases were also significantly reduced—in the case of alanine aminotransferase (ALT), the
values were reduced by 45%, 55% and 48% in PT15, PT30 and RSV30 groups, respectively. Similarly,
aspartate aminotransferase (AST) values were reduced by 39% in the PT15 rat group, by 38% in the
PT30 group and by 29% in the RSV30 group.
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After checking the anti-steatotic effect of both phenolic compounds, we were interested in
analyzing whether they were able to avoid or delay the progression of non-alcoholic liver steatosis
towards steatohepatitis, because very little is known concerning the potential benefits of resveratrol
on this pathology. Furthermore, no information has been reported so far in relation to pterostilbene.
For this purpose, we assessed the effects on oxidative stress of these compounds, as well as the liver
inflammation of rats fed with a high-fat high-fructose diet. Moreover, their effects on pre-carcinogenic
stages were also assessed.

2. Material and Methods

2.1. Animals, Diets and Experimental Design

Fifty male Wistar Rats (6-week-old; 140-150 g), purchased from Envigo (Barcelona, Spain), were
housed in pairs in polycarbonate cages and placed in an air-conditioned room (22 + 2°C)ina 12 h
light-dark cycle. After a 6-day adaptation period, rats were randomly distributed into 5 experimental
groups (n = 10) and fed with experimental diets for 8 weeks. The control group (CC) was fed a
commercial standard diet (AIN-93G, OpenSource Diets, Gentofte, Denmark, D10012G) and rats in the
high-fat high-fructose group (HFHF) a diet containing 40% of lipids and 22% of fructose (OpenSource
Diets, Gentofte, Denmark, D09100301). The other three groups received the same high-fat high-fructose
diet, which was enhanced with the phenolic compounds. Rats in the PT15 and PT30 groups received
pterostilbene at doses of 15 mg/kg body weight/d or 30 mg/kg body weight/d, respectively. In the
RSV30 group, rats received resveratrol at a dose of 30 mg/kg body weight/d. With regard to the dose
selection, in the case of resveratrol, in a previous study we analyzed the effects of different doses (6, 30
and 60 mg/kg) on obesity, and we observed that the most effective one was 30 mg/kg/d [20]. In further
studies, we used this dose and we observed that it was effective in reducing liver steatosis [21,22].
Moreover, by revising the literature, we observed that this dose was in the range of the doses more
commonly used by other authors [12]. In the case of pterostilbene, we selected the dose of 30 mg/kg/d in
order to compare the effects of resveratrol and pterostilbene under the same conditions. It is well known
that pterostilbene shows higher bioavailability than resveratrol [23]. This could lead to the effects of
pterostilbene at 30 mg/kg/d being greater than those of resveratrol at the same dose. Considering
that, depending on the dose range, resveratrol can reach a plateau in its effectiveness, or even that
lower doses can induce greater effects than higher doses, we believe that the use of 15 mg/kg/d was
interesting. Pterostilbene was kindly supplied by Chromadex (Irvine, CA, USA) and resveratrol by
Monteloeder (Elche, Alicante, Spain). All animals had free access to food and water. Food intake and
body weight were measured on a daily basis.

At the end of the experimental period (8 weeks), and after 12 h of fasting, animals were euthanized
under anaesthesia (chloral hydrate) by cardiac exsanguination. Thee liver was dissected and weighed.
Serum was obtained from blood samples after centrifugation (1000x g, 10 min, 4 °C). All samples
were stored at —80 °C until analysis. The experiment was performed in agreement with the Ethical
Committee of the University of the Basque Country (document reference M20_2015_245 CUEID),
following the European regulations (European Convention-Strasburg 1986, Directive 2003/65/EC and
Recommendation 2007/526/EC).

2.2. Histopathological Evaluation of NAFLD

To perform a histological study by light microscopy right after sacrifice, liver samples were fixed
in 10% buffered formalin and subsequently embedded in paraffin. Liver sections were stained with
both haematoxylin and eosin along with Masson’s trichrome using standard techniques. The treatment
group each animal belonged to was deliberately concealed during the analysis of the sections.

The evaluated features were steatosis, lobular inflammation, ballooning degeneration and fibrosis.
Lobular inflammation was graded based on the number of inflammatory foci per 200 x field—0 when
there were no inflammatory foci, 1 when there was 1 to 2 inflammatory foci per 200 X field, and 2
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when 2 to 4 inflammatory foci per 200 X were found. Ballooning was evaluated based on numbers of
hepatocytes showing this lesion—0 when there was no ballooning, 1 when few hepatocytes showed
ballooning, and 2 when many cells showed ballooning degeneration. Finally, the NAFLD Activity Score
(NAS) was calculated using data from steatosis, lobular inflammation, ballooning and fibrosis scores.

2.3. Serum Uric Acid Concentration

Uric acid was determined in serum samples by using a commercial kit (SpinReact, Girona, Spain).
2.4. Parameters Related to Oxidative Stress in Liver

2.4.1. Lipid Peroxidation Measurement

Lipid peroxidation in rat liver lysates was determined by a commercial TBARS assay kit (Cayman
Chemical, Ann Arbor, MI, USA). The method is based on the determination of thiobarbituric acid
reactive substances (TBARS) as a marker for lipid peroxidation. The method uses the reaction of
malondialdehyde (MDA) and thiobarbituric acid (TBA) in an acid medium. MDA-TBA adduct can be
measured in an Infinite 200Pro plate reader (Tecan, Médnnedorf, Ziirich, Switzerland). Results were
expressed as pg MDA/mg of tissue.

2.4.2. Total Antioxidant Capacity Determination

The total antioxidant capacity in rat liver homogenates was determined by using the commercial
kit OxiSelect Oxygen Radical Antioxidant Capacity (ORAC) activity assay (Cell Biolabs, San Diego,
CA, USA). The ORAC assay was carried out using fluorescein as a fluorescence probe. After that,
the free radical initiator AAPH (2,2-azobis(2-amidinopropane) dihydrochloride) utilized to produce
peroxyl radicals was added to the sample and the fluorescence was reordered in an Infinite 200Pro
plate reader (Tecan, Mannedorf, Ziirich, Switzerland). Trolox solution was used for building the
calibration curve. Results were calculated based upon differences in areas under the fluorescence
decay curve among blank, samples and standards. Final ORAC values were expressed as uM Trolox
equivalents/mg protein.

2.4.3. Determination of Reduced Glutathione

Reduced glutathione (rGSH) concentrations were measured using the glutathione colorimetric
assay kit (Biovision, Milpitas, CA, USA). The assay is based on the glutathione recycling system
in the presence of GSH and the DTNB fluorophore. The reduction of DTNB produces a stable
fluorescent product which can be detected in an Infinite 200Pro plate reader (Tecan, Mannedorf, Ziirich,
Switzerland). Results were expressed as ng/mg of tissue.

2.4.4. Superoxide Dismutase Activity

Total superoxide dismutase (SOD; EC 1.15.1.1) activity in rat liver lysate was measured by the
SOD activity assay kit (Biovision, Milpitas, CA, USA). This method uses the xanthine—xanthine oxidase
system to generate superoxide anions. The superoxide anion reduces WST-1, which is converted into
WST-1 formazan. The absorbance of this reduced form is recorded on an Infinite 200Pro plate reader
(Tecan, Mannedorf, Ziirich, Switzerland). In the presence of SOD, O,~ undergoes a dismutation into
O, and H,0O,, thus decreasing the WST-1 formazan formation. As such, this competing assay yields
to the indirect measurement of SOD activity. The SOD activity (% inhibition rate) was calculated
according to the manufacturer’s instruction.

2.4.5. Catalase

Catalase (CAT; EC 1.11.1.6) activity was measured according to Aebi (1984) [24], by observing
spectrophotometrically the H,O, disappearance at 240 nm. The reaction took place in a final volume
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of 250 pL containing 90 mM potassium phosphate buffer (pH 6.8) and started with the addition of
H,0, (37.5 mM final concentration). Catalase activity was expressed as nmol/min/pg of protein.

2.4.6. Glutathione Peroxidase

Glutathione peroxidase (GPx; EC 1.11.1.9) activity in rat liver lysate was evaluated by measuring
the HyO, scavenging capacity using the GPx assay kit (Biovision, Milpitas, CA, USA) according to
the manufacturer’s instructions. GSSG, produced upon reduction of H,O, by GPx, was recycled
in its reduced state by both glutathione reductase and reduced nicotinamide adenine dinucleotide
phosphate (NADPH). The decrease in absorbance of NADPH was monitored in an Infinite 200Pro
plate reader (Tecan, Madnnedorf, Ziirich, Switzerland). Results were expressed as GPx U/mg of protein.

2.4.7. Determination of Total Proteins

Total protein was spectrophotometrically quantified in lysates and homogenates at 595 nm by
Bradford assay [25], using bovine serum albumin as standard.

2.4.8. Extraction, Reverse Transcription and Quantification of RNA by Real-Time Polymerase Chain
Reaction (PCR)

Total RNA was isolated from 100 mg of liver using Trizol (Invitrogen, Carlsbad, CA, USA),
according to the manufacturer’s instructions. After DNase treatment (Ambion, Foster City, CA, USA),
the integrity of the RNA was verified and quantified using an RNA 6000 Nano Assay (Thermo Scientific,
Wilmington, DE, USA). RNA samples were then treated with a DNA-free kit (Ambion, CA, USA).
Measurements of 1.5 pg of total RNA from each sample were reverse-transcribed into complementary
DNA (cDNA) using iScript cDNA Synthesis Kit (Bio-Rad, Hercules, CA, USA).

Actin alpha 2 smooth muscle (Acta2), ARM protein lost in epithelial cancers on chromosome X 3
(Alex3), BCL2 associated X protein (Bax), macrophage mannose receptor 1 (C4206), collagen type I alpha
1 chain (Col1a1), C-reactive protein (Crp), adhesion G protein-coupled receptor E1 (F4/80), fibroblast
growth factor 21 (Fgf21), glutathione S-transferase mu 2 (Gstm2), interleuquin 1 beta (II1), myeloid
differentiation factor 88 (MyD88), NADPH oxidase 4 (Nox4), cytochrome B-245 alpha chain (P22phox),
sirtuin 1 (Sirt1), survivin (Birc5), telomerase reverse transcriptase (Tert), transforming growth factor
beta 1 (Tgf 1), TIMP metallopeptidase inhibitor 1 (Timp1), toll-like receptor 2 and 4 (TIr-2, Tlr-4) and
tumor protein P53 (Tp53) genes were quantified, as well as 3-Actin, which served as the reference gene
in posterior normalization. A 4.75 puL aliquot of each diluted cDNA sample was used for Real-Time
PCR amplification ina 12.5 pL reaction volume. The cDNA samples were amplified in an iCycler-MyiQ
Real-Time PCR Detection System (Bio-Rad, Hercules, CA, USA), in the presence of SYBR Green Master
Mix (Applied Biosystems, Foster City, CA, USA) and of the sense and antisense primers (300 nM each).
The sequences are described in Table 1. The PCR parameters were as follows: initial 2 min at 50 °C,
denaturation at 95 °C for 10 min followed by 40 cycles of denaturation at 95 °C for 15 s, annealing at
60 °C for 30 s and extension at 60 °C for 30 s. For /18 and Tgf f1, the annealing temperature was 59 °C.
Genes Bcl2, CD206, Collal, Crp, MyD88, Nox4, Tgfp1 and Timp1 were amplified in 45 cycles.

Monocyte Chemoattractant Protein 1 (Mcp1) and tumor necrosis factor o (Tnfa) were amplified
using TagMan probes (Table 1). 185 mRNA levels were similarly measured and served as the reference
gene. In total, 4.5 uL of each diluted cDNA sample was added to the PCR reagent mixture, which
consisted of TagMan Fast Advanced Master Mix (Applied Biosystems, Vilna, Lithuania) and TagMan
Gene Expression Assay Mix (Applied Biosystems, Foster City, Ca, USA) containing specific primers
and probes (18S: Rn03928990; Mcp1: Rn00580555; Tnfa: Rn01525859). The PCR parameters were as
follows: initial 2 min at 50 °C, denaturation at 95 °C for 2 min followed by 40 cycles of denaturation at
95 °C for 3 s and combined annealing and extension at 60 °C for 30 s.

In all cases, the results were expressed as fold changes of the threshold cycle (Ct) value relative to
controls using the 2-8ACt method [26].
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Table 1. Primer sequences for quantitative Real-Time PCR amplification with SYBR Green Master Mix.

SYBR Green RT-PCR:

Gene Name

Gene Accession

Sense Primer

Antisense Primer

B-Actin
Acta2
Alex3
CD206
Collal

Crp
F4/80
Fgf21
Gstm?2
11-1p

MyDS88

Nox4
P22phox
Sirtl
Birc5
Tert
Tgfp 1
Timp1
Tlr-2
Tlr-4
Tp53

NM_031144.3
NM_031004.2
NM_001014273.1
XM_032885181.1
NM_053304.1
NM_017096.3
NM_001007557.1
NM_130752.1
NM_177426.1
NM_031512.2
NM_198130.1
NM_053524.1
NM_024160.1
NM_001372090.1
XM_032914019.1
NM_053423.1
NM_021578.2
NM_053819.1
NM_198769.2
NM_019178.1
NM_030989.3

5-CCC GCG AGT ACA ACCTTC T-3’
5-GCC GAG ATC TCA CCG ACT AC-3
5-GGT GAA GGT CGA GTT GAG GG-3’

5-ACT GCG TGG TGA TGA AAG G-3/

5-TCC TGG CAA GAA CGG AGA T-¥

5-TGT CTC TAT GCC CAC GCT GAT G-3
5-CTC TTC CTG ATG GTG AGA AAC C-3’

5-CAA ATC CTG GGT GTC AAA G-3/
5-CCA AAC CTG AAG GAC TTC GT-3’
5-TGT GAT GAA AGA CGG CAC AC-¥

5-CCG TGA GGA TAT ACT GTA TGA ACT G-3’
5-GAA CCC AAG TTC CAA GCT CA-¥
5-GCC ATT GCC AGT GTG ATC TA-3’
5-GAT ACC TTG GAG CAG GTT GC-3’
5-CTG GAC TGC CTT GAG GTG TA-3’
5-GGA TGT ACT TTG TTA AGG CAG-3’

5-CCT GGA AAG GGC TCA ACA C-3’
5-CAG CAA AAG GCC TTC GTA AA-3’
5-ATG GGC TGT GGT ATC TGA GAA-3’

5-CGG AAA GTT ATT GTG GTG GTG T-3’
5-ACA GCG TGG TGG TAC CGT AT-3’

5-CGT CAT CCA TGG CGA ACT-3'
5-GTC CAG AGC GAC ATA GCA CA-¥
5-ACT TAT GCC ACA CCC AGC AA-3
5-TAA CCC AGT GGT TGC TCA CA-3’
5’-CAG GAG GTC CAC GCT CAC-3’
5-GGC CCA CCT ACT GCA ATA CTA AAC-3’
5’-CCC ATG GAT GTA CAG TAG CAG A-3
5-AAA GTG AGG CGA TCC ATA G-3’
5-GCC GCT CTT CAT GTA GTC AGA T-3’
5-CTT CTT CTT TGG GTA TTG TTT GG-3’
5-TTT CTG CTG GTT GCG TAT GT-3’
5-GCA CAA AGG TCC AGA AAT CC-3’
5-CTC AAT GGG AGT CCA CTG CT-3
5-CAC CTA GGA CAC CGA GGA AC-3
5-TGAG TCC ATC GGC CTA GC-3
5-ATA TTG GCG ACA ATT TCC AC-3’
5-TGC CGT ACA CAG CAG TTC TT-3'
5-TGG CTG AAC AGG GAA ACA CT-%
5-AAA CAA AGG CAT CAT AGC AAA GG-3'
5-GGA CAA TGA AGA TGA TGC CAG A-3’
5-GGA GCT GTT GCA CAT GTA CT-3’

Acta2, Actin alpha 2 smooth muscle; Alex3, ARM protein lost in epithelial cancers on chromosome X 3; Birc5, survivin; CD206, macrophage mannose receptor 1; Collal, collagen type I
alpha 1 chain; Crp, C-reactive protein; F4/80, adhesion G protein-coupled receptor E1; Fgf21, fibroblast growth factor 21, Gstm2, glutathione s-transferase mu2; Il-13, interleukin 1 beta;
MyD88, myeloid differentiation factor 88; Nox4, NADPH oxidase 4; P22phox, cytochrome B-245 alpha chain; Sirtl, sirtuin 1Tert, telomerase reverse transcriptase; Tgf 31, transforming
growth factor beta 1; Timp1, TIMP metallopeptidase inhibitor 1; Tlr-2, toll-like receptor 2; Tlr-4, toll-like receptor 4; Tp53, tumor protein P53.
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2.4.9. Statistical Analysis

The results are presented as means + standard error of the means. Statistical analysis was
performed using SPSS 25.0 (SPSS Inc. Chicago, IL, USA). The normal distribution of the data was
confirmed by Shapiro-Wilks test. Data were analyzed by one-way ANOVA followed by Tukey post-hoc
test. Statistical significance was established at the p < 0.05 level.

3. Results

3.1. Histopathological Assessment

When the histological characteristics of the livers were evaluated by microscopy (n = 10 in
all groups of rats), the control (CC) group expectedly showed no lobular inflammation, ballooning
degeneration or fibrosis. By contrast, in the high-fat high-fructose (HFHF) group, 50% of the animals
showed mild inflammation whilst the other 50% exhibited moderate inflammation. Additionally, all of
them presented prominent ballooning (Table 2 and Figure 1).

Figure 1. Representative H&E stained histological liver samples (magnification x20). (A) healthy
liver from CC group, (B) liver from HFHF group showing moderate inflammation and ballooning
degeneration, (C) liver from PT15 group showing moderate inflammation and ballooning degeneration,
(D) liver from PT30 group showing mild inflammation and ballooning degeneration and (E) liver
from RSV30 group showing mild—-moderate inflammation and ballooning degeneration. White arrows
indicate inflammation.

The treatment with pterostilbene, at a dose of 15 mg/kg body weight/d, reduced lobular
inflammation (20% of animals showed moderate inflammation, whereas 80% of them displayed
mild inflammation). Treatment with pterostilbene at a higher dose better reduced lobular inflammation.
In the PT30 group, the phenolic compound avoided lobular inflammation in 20% of the animals,
whereas 80% showed mild inflammation. In the case of resveratrol treatment, 30% of the animals
exhibited moderate inflammation and 70% mild inflammation. Finally, phenolic compounds were
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not able to reduce ballooning (Table 2 and Figure 1). NAS score, which shows values in the range
0-8, was strongly increased in the HFHF group when compared to the CC group, and it was reduced
in all groups that received the phenolic compounds when compared to the HFHF group (Table 2).
Regarding fibrosis, none of the animals showed hepatic fibrosis, with the exception of one rat from the
HFHF group that showed mild perisinusoidal fibrosis (Table 2).

Table 2. Histopathologic characteristics of the livers of the rats fed with the experimental diets for

8 weeks.
CC HFHF PT15 PT30 RSV30
Lobular inflammation

None (0) 10 0 0 2 0

Mild (1) 0 5 8 8 7

Moderate (2) 0 5 2 0 3

Ballooning degeneration

None (0) 10 0 0 0 0

Few (1) 0 0 0 0 0

Many (2) 0 10 10 10 10

Fibrosis

Stage 0 0 9 10 10 10

Stage 1A 0 1 0 0 0
NAS 0+0 54+04 3.8+0.3 31+03 3.8+0.3

Lobular inflammation was graded according to the number of inflammatory foci per 200 field (0 is no foci; 1 is < 2
foci per 200 X field; 2 is 2—4 foci per 200 X field); hepatocellular ballooning was graded as none (0), few balloon cells
(1), and many cells/prominent ballooning (2); fibrosis stage was graded as none (Stage 0) or mild perisinusoidal
fibrosis (Stage 1A); NAS: non-alcoholic fatty liver disease score.

3.2. Serum Uric Acid Concentration

High-fat, high-fructose feeding induced an increase in serum uric acid concentration (+ 31.2%),
but this did not reach statistical significance (1.6 + 0.2 in the control group vs. 2.1 + 0.2 in HFHF
group, expressed as mg/dL). No significant changes were observed in rats treated with the phenolic
compounds when compared to the HFHF group (1.7 + 0.1 in PT15 group, 2.1 + 0.2 in PT30 group and
2.2 + 0.2 in RSV30 group, expressed as mg/dL).

3.3. Hepatic Oxidative Stress Markers

When oxidative stress was evaluated, rats fed with the HFHF diet showed a significant increase
in lipid peroxidation (MDA; Figure 2A). Moreover, in these animals the antioxidant capacity (ORAC;
Figure 2B) and the non-enzymatic antioxidant rGSH (Figure 2C) was decreased. However, the HFHF
diet induced the activation of the antioxidant enzymes SOD (Figure 2D) and GPx (Figure 2F), whereas
no changes were observed in CAT activity (Figure 2E).

With regard to the effects of the phenolic compounds, lipid peroxidation in rats from the PT30
group showed intermediate values among those from the CC and HFHF groups (Figure 2A). In
addition, both pterostilbene doses were able to restore the antioxidant capacity; in fact, rats from both
PT groups displayed similar values to those found in the control group (Figure 2B). Regarding the
non-enzymatic protection, the high dose of pterostilbene partially avoided the rGSH reduction induced
by the high-fat high-fructose diet, although the change did not reach statistical significance (+44%,
p = 0.078 vs. HFHF group; Figure 2C). In the case of antioxidant enzyme activities, the high dose of
pterostilbene completely restored the control values of SOD and GPx (Figure 2D,F). The low dose of
this phenolic compound significantly reduced CAT antioxidant activity, when compared to the HFHF
group (-26%; Figure 2E). In resveratrol-treated rats, only SOD and GPx activities were significantly
modified when compared to the HFHF group; the antioxidant activity of these enzymes achieved a
total restoration (Figure 2D,F).
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Finally, high-fat high-fructose feeding significantly increased P22phox mRNA levels, whereas
no changes were observed in Nox4 gene expression. The increase induced in P22phox by HFHF
feeding was not prevented by the phenolic compounds. What is more, the high dose of pterostilbene
significantly reduced Nox4 gene expression below the level of the control group (Figure 2G,H).
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Figure 2. Lipid peroxidation (MDA content), ORAC, rGSH, activities of SOD, CAT and GPx, and gene
expression of Nox4 and P22phox in liver from the rats fed with a control diet (CC group), a high-fat
high-fructose diet (HFHF group), a high-fat high-fructose diet supplemented with pterostilbene at
a dose of 15 mg/kg body weight/d (PT15 group), a high-fat high-fructose diet supplemented with
pterostilbene at a dose of 30 mg/kg body weight/d (PT30 group) or a high-fat high-fructose diet
supplemented with resveratrol at a dose of 30 mg/kg body weight/d (RSV30 group) (A-H). Values are
presented as mean + SEM. Bars not sharing common letters a—c are significantly different (p < 0.05).
MDA: malondialdehyde; ORAC: Oxygen Radical Antioxidant Capacity; rGSH: reduced glutathione;
SOD: superoxide dismutase; CAT: catalase; GPx: glutathione peroxidase; Nox4: NADPH oxidase 4;
P22phox: cytochrome B-245 alpha chain.
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3.4. Gene Expression of Inflammation-Related Markers in the Liver

The mRNA levels of the inflammatory cytokines in the liver are shown in Figure 3. Animals fed
the high-fat high-fructose diet displayed higher expression levels of II-1ff and Tnf-a. In the case of II-1f,
animals treated with either pterostilbene or resveratrol showed intermediate values between the CC
and the HFHF groups. However, Tnf-a expression levels decreased significantly in the two groups
treated with pterostilbene. No differences were observed in Crp mRNA levels among the experimental

groups (Figure 3A).
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Figure 3. II-18, Tnfa and Crp mRNA levels (A), F4/80, Mcp1 and Cd206 mRNA levels (B) and TIr-2, Tir-4
and MyD88 mRNA levels (C) in the livers from the rats fed with a control diet (CC group), a high-fat
high-fructose diet (HFHF group), a high-fat high-fructose diet supplemented with pterostilbene at a dose
of 15 mg/kg body weight/d (PT15 group), a high-fat high-fructose diet supplemented with pterostilbene
at a dose of 30 mg/kg body weight/d (PT30 group) or a high-fat high-fructose diet supplemented with
resveratrol at a dose of 30 mg/kg body weight/d (RSV30 group). Values are presented as mean + SEM.
Bars not sharing common letters are significantly different (p < 0.05). II-1b: interleukin 1b; Tnfa: tumor
necrosis factor «; Crp: C-reactive protein; Mcpl: monocyte chemoattractant protein 1; Cd206: mannose
receptor C; Tlr-2 and TlIr-4: toll-like receptor 2 and 4; MyD88: myeloid differentiation factor 88 MyDS88.

Regarding macrophage infiltration, MCP, a marker of M1 macrophages, and CD206, a marker
of M2 macrophages, were measured. In the HFHF group, Mcp1 gene expression increased by 250%,
although no statistical difference was achieved due to the high value of the standard error of the mean.
Furthermore, CD206 gene expression was significantly decreased when compared to the control group.
The phenolic compounds did not avoid these effects, with the exception of the expression of CD206 in
the PT30 group, which was significantly reduced when compared to the HFHF group. F4/80, a protein
involved in the generation of antigen-specific efferent regulatory T (T reg) cells, was also measured,
and no significant differences were observed among the experimental groups (Figure 3B).

With regard to TLRs, Tlr-2 expression was increased in the HFHF group when compared to the
CC group. This effect was partially prevented by the treatment with the phenolic compounds (—-37%,
—31% and —47% in the PT15, PT30 and RSV30 groups, respectively). No differences among groups
were observed in Tlr-4 gene expression. Lastly, the expression of MyD88, a gene that codifies for
a protein used by the Toll-like receptor aimed at activating the transcription factor NF-«B, was not
significantly modified by the steatotic diet. The PT15 and PT30 groups showed lower values than the
CC group did (Figure 3C).

3.5. Gene Expression of Fibrogenic Markers in the Liver

No differences were observed in Tgf1, Collal, Timpl and Acta? gene expression among
experimental groups (Figure 4).
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Figure 4. Acta2, Collal, Timpl and Tgff1 mRNA levels in the livers from the rats fed with a control diet
(CC group), a high-fat high-fructose diet (HFHF group), a high-fat high-fructose diet supplemented
with pterostilbene at a dose of 15 mg/kg body weight/d (PT15 group), a high-fat high-fructose diet
supplemented with pterostilbene at a dose of 30 mg/kg body weight/d (PT30 group) or a high-fat
high-fructose diet supplemented with resveratrol at a dose of 30 mg/kg body weight/d (RSV30
group). Values are presented as mean + SEM. Bars not sharing common letters a,b are significantly
different (p < 0.05). Acta2: x-smooth muscle actin; Col1al: collagen 1; Timp: tissue inhibitor of matrix
metalloproteases; Tgff1: transforming growth factor betal.

3.6. Gene Expression of Hepatocarcinoma Markers in the Liver

High-fat high-fructose feeding decreased the gene expression of Tp53, Tert, Sirtl and Birc5.
Pterostilbene, at a dose of 15 mg/kg body weight/d, partially prevented this decrease in Tp53 and
Sirtl. Surprisingly, the high dose of this phenolic compound induced no changes. Similar effects were
observed in rats treated with resveratrol to those observed in the PT15 group, as well as a partial
prevention of the decrease in Birc5 (Figure 5).
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Figure 5. Gstm2, Tp53, Tert, Sirt1, Birc5, Tgf 1, Alex3 and Fgf21 mRNA levels in the livers from the rats
fed with a control diet (CC group), a high-fat high-fructose diet (HFHF group), a high-fat high-fructose
diet supplemented with pterostilbene at a dose of 15 mg/kg body weight/d (PT15 group), a high-fat
high-fructose diet supplemented with pterostilbene at a dose of 30 mg/kg body weight/d (PT30 group)
or a high-fat high-fructose diet supplemented with resveratrol at a dose of 30 mg/kg body weight/d
(RSV30 group) (A-H). Values are presented as mean + SEM. Bars not sharing common letters a,b are
significantly different (p < 0.05). Alex3: ARM protein lost in epithelial cancers on chromosome X 3; Bircb:
survivin; Fgf21: fibroblast growth factor 21; Gstm2: glutathione s-transferase mu2; Sirt1: sirtuin 1; Tert:
telomerase reverse transcriptase; Tgf f1: transforming growth factor beta 1; Tp53: tumor protein P53.

4. Discussion

Non-alcoholic fatty liver is characterized by an excess of triglyceride accumulation in hepatocytes.
The main features that differentiate this metabolic alteration from non-alcoholic steatohepatitis are
hepatocyte injury and cell death exhibiting inflammation and very often fibrogenesis [27]. As was
described in the Introduction section, we previously analyzed the steatosis induced by high-fat high
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fructose feeding and the preventive effects of pterostilbene and resveratrol in this precise cohort of
rats. We observed a clear reduction in all the groups treated with the phenolic compounds. In the case
of pterostilbene, this reduction was greater when the high dose of this compound was administered.
At a dose of 30 mg/kg/d, the effectiveness of resveratrol and pterostilbene was similar. In the present
manuscript, we focus our interest on steatosis progression to steatohepatitis, and thus the effects of the
experimental treatments on inflammation and oxidative stress are presented.

Histological analysis shows that steatohepatitis was developed. Indeed, although fibrosis was not
appreciated after 8 weeks, all rats in the HFHF group exhibited mild or moderate inflammation, in
addition to steatosis. Moreover, all of them also displayed ballooning degeneration, which is a form of
hepatocyte death generally considered as a form of apoptosis and a descriptor of steatohepatitis [28].
When the NAS score, which represents the sum of scores for steatosis, lobular inflammation and
ballooning, was calculated, the mean value increased from 0 in the control group to 5.8 in HFHF group.

The functional alterations commonly found in NAFLD lead to the production of deleterious
reactive oxygen species (ROS) and a decrease in antioxidant defences [29,30]. In this sense, ROS attack
polyunsaturated fatty acids inducing lipid peroxidation in the cells, which leads to the subsequent
MDA formation [31]. Therefore, we further investigated the oxidative status in this cohort of rats by
measuring the hepatic MDA level, ORAC, rGSH, and the antioxidant enzyme activity. Our results
show that the ability of the antioxidant defences to neutralize ROS diminished in rats under the
high-fat high-fructose diet, since the antioxidant capacity and the non-enzymatic antioxidant GSH were
decreased. Due to this oxidant/antioxidant imbalance, lipid peroxidation augmented, which suggests
oxidative stress induction by the high-fat high-fructose diet in this experimental model, although ROS
levels were not directly measured.

Regarding the endogenous enzymatic defences, the oxidative stress prompted by the high-fat
high-fructose diet in this experimental model induced an increase in SOD enzyme activity, which
could be interpreted as a compensatory mechanism aimed at minimizing the harmful effect of the ROS.
Although controversial results have been reported with regard to changes in SOD activity observed in
NAFLD models [32,33], our results are in good accordance with those shown in a rat model of insulin
resistance induced by a high-fat diet, where the over-expression of mitochondrial SOD played a central
role in counteracting the redox imbalance and protecting against the insulin resistance set off by the
diet in rat skeletal muscle [34]. Moreover, in the present study, rats fed the high-fat high-fructose diet
showed increased GPx enzyme activity. This result is in line with those reported by Perlemuter et al.
(2005) in the livers of NAFLD patients. These authors observed increased Cu/Zn-SOD and GPx enzyme
activity [35].

As far as uric acid is concerned, circulating levels are independently associated with NASH [36].
It has been suggested that uric acid might not be just an inert by-product of fructose metabolism, but
instead a mediator of some of the hepatotoxic effects of fructose. Numerous studies have shown that
uric acid can induce both cytosolic and mitochondrial oxidative stress by the activation of NADPH
oxidase (Nox) [37,38]. In this metabolic pathway, Nox4 directly interacts with the P22phox protein to
form the functional NADPH oxidase enzyme [39,40]. Moreover, uric acid can also cause oxidative
stress directly [41].

In the present study, rats fed with the high-fat high-fructose diet showed an increase (+31.2%) in
serum levels of this metabolite, but this reached no statistical significance. Regarding the Nox4-P22phox
pathway, these rats showed unchanged levels of Nox4 gene and a significant increase in P22phox gene
expression. These results suggest that, under our experimental conditions, uric acid did not seem to be
involved in the oxidative stress induced by high-fat high-fructose feeding.

It is known that pterostilbene plays a key role as a free radical scavenger, and that it protects
against DNA damage induced by oxidative instability [42]. In the present study, pterostilbene at
a dose of 30 mg/kg/d was able to partially avoid lipid peroxidation and to prevent the antioxidant
capacity depletion induced by the high-fat high-fructose diet. This effect could be related to the partial
prevention of the reduction in rGSH observed in the PT30 group when compared to the HFHF group.
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These results are consistent with those reported by other authors. On this topic, Kosuru and Sing (2017)
observed restored GSH levels in fructose-fed diabetic rats under oral administration of pterostilbene,
at a dose of 20 mg/kg/d [43]. With respect to antioxidant enzymes, the increase in both SOD and GPx
activity prompted by the high-fat high-fructose diet was not observed in the PT30 group. This suggests
that the compensatory mechanism achieved by the antioxidant enzymes in order to counteract the
oxidative stress was no longer necessary. In general terms, these effects were not observed in the PT15
group, showing that under our experimental conditions, 15 mg/kg/d was not enough to prevent the
oxidative stress produced by high-fat high-fructose feeding. With regard to resveratrol, it has been
reported that it is less efficient than pterostilbene in reducing oxidative stress and DNA damage [44—46],
as well as in inhibiting hepatic oxidative stress and lipid peroxidation [47]. This fact was confirmed in
the present study:.

Inflammation, observed by histology in HFHF group, was paralleled by gene expression, since the
hepatic mRNA levels of II-1f§ and Tnfa, two cytokines that are relevant mediators in the development
of NAFLD, were increased in HFHF rats. In addition, the gene expression of TIr-2 and Mcp1 (a marker
of the pro-inflammatory macrophages M1) was also increased, when in fact that of CD206 (a marker of
anti-inflammatory macrophages M2) was decreased. Taking into account that the activation of M1
macrophages, which is mediated by TLRs, leads to the production of inflammatory cytokines [48], the
increase in Tlr-2, Mcpl, II-18 and Tnfa was a related feature.

Pterostilbene acted as an anti-inflammatory molecule because, at a dose of 15 mg/kg body
weight/d, it reduced the number of rats that showed moderate inflammation. Moreover, after the
treatment at 30 mg/kg body weight/d, no rats showed moderate inflammation and two rats displayed
no inflammation at all. The increase induced by high-fat high-fructose feeding in hepatic II-1f§ gene
expression was partially prevented by this molecule (-18% in PT15 group and —48% in PT30 group),
and there was a significant reduction in Tnfa gene expression. Conversely, the anti-inflammatory effect
of pterostilbene did not seem to be mediated by a reduction in M1 macrophage infiltration. With
regard to TLRs, the partial prevention of the increase induced by the high-fat high-fructose feeding,
and the reduction in MyD88, suggest the involvement of this pathway in the anti-inflammatory effect
of this phenolic compound. Nonetheless, this issue requires further research. By contrast, ballooning
degeneration was not prevented by pterostilbene.

Taking these results into account, and considering that pterostilbene also reduced steatosis, the
values of the NAS score in the PT groups (3.8 + 0.3 and 3.1 + 0.3 for PT15 and PT30, respectively) were
lower than those in the HFHF group (5.4 + 0.4). Our data cannot be compared to other studies since no
data concerning the effects of pterostilbene on steatohepatitis have been reported so far. Nevertheless,
the effects observed in the present study are in line with the anti-inflammatory action of pterostilbene
observed in several diseases, including neuroinflammation, dermatitis, pancreatitis, inflammatory
bowel disease, atherosclerosis and obesity [49].

Resveratrol (30 mg/kg body weight/d) also showed an anti-inflammatory effect, although it is
worth highlighting the fact that the extent of this effect was similar to that of pterostilbene at a dose of
15 mg/kg body weight/d. Thus, as observed in this cohort of rats, pterostilbene and resveratrol were
equally efficient in preventing liver steatosis, although the former was more successful in preventing
inflammation. The value of NAS in the RSV30 group was lower than that in the HFHF group (3.8 + 0.3
vs. 5.4 + 0.4), and similar to that observed in the PT15 group. As in the case of pterostilbene, the
inflammation was not associated with macrophage infiltration. This fact has also been observed by
other authors that have treated rodents with high-fat diets and resveratrol [50].

The absence of fibrosis development was evidenced by the histological analysis, as well as by the
lack of change in the expression of genes related to this process, such as Tgfp1, Collal, Timp and Acta2.
This is in good accordance with the reported literature. In fact, a high-fat high-fructose diet does not
always induce fibrosis [51,52].

A relevant issue to consider regarding the NAFLD pathophysiology is that this metabolic disorder
contributes to the development of hepatocarcelullar carcinoma unrelated to viruses [53,54]. In this
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regard, although a complete study of carcinogenesis was out of the scope of the present work, because
it was not induced in our experiment when the HFHF group was compared to the control group, we
did measure several genes related to this process due to the relevance of having biomarkers for very
early stages of alterations, even before the possible onset of the disease.

Tp53 and Sirt1 showed statistically significant lower expressions in the HFHF group. These
genes being tumor suppressors, they can be regulated by oxidative stress, and they are involved in
the protection against the initiation of tumorigenesis [55-57]. These results are concordant with the
dysregulation of oxidative stress and inflammation induced in the HFHF group, and show that high-fat
high-fructose feeding can represent a real risk in hepatocarcinoma development. It has been reported
that Birc5/survivin decreases in the progression of NAFLD from hepatic steatosis to cirrhosis and
hepatocarcinoma [58]. These data contrast with the fact that Birc5/survivin is up-regulated in malignant
transformed cells because it is essential for cell division [59,60], and suggest that the control of cell cycle
and of apoptosis may be quite different among different liver diseases [58]. Taking into account that
Birch/survivin is a specific inhibitor of caspases 3, 7 and 9, the explanation provided by several authors
to understand the decrease in Birc5/survivin gene expression in the progression of steatohepatitis
to hepatocarcinoma is that this change could be associated with an increased apoptosis for liver
regeneration after hepatic injury [61]. On this topic, we were also able to observe a down-regulation
of Birc5/survivin in the HFHF group compared to the control group, which also paralleled with the
expression of Tp53 and Sirt1. The treatments with pterostilbene or resveratrol did not significantly
avoid the changes induced in those genes by high-fat high-fructose feeding.

In conclusion, the dietary model used in the present study leads to the development of hepatic
steatohepatitis and shows oxidative stress, inflammation and ballooning, although it does not result
in fibrosis. The present results show, for the first time, that pterostilbene was able to partially
prevent these alterations, mainly at the dose of 30 mg/kg body weight/d. In view of these results,
this phenolic compound could be considered as a useful tool to delay the evolution of steatosis to
steatohepatitis. Clinical studies are needed to test if this positive action could also be found in human
beings. Pterostilbene was more effective than its parent compound resveratrol, probably due to its
high bioavailability and higher anti-oxidant and anti-inflammatory activities, which are attributed
to its different chemical structure (the presence of two methoxy groups instead of two hidroxyl
groups). To conclude, neither of the phenolic compounds are able to prevent the negative pattern of
hepatocarcinoma-related genes induced by high-fat high-fructose feeding.
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