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It remains elusive whether some of the associations identified in genome-wide association

studies of prostate cancer (PrCa) may be due to regulatory effects of genetic variants on CpG

sites, which may further influence expression of PrCa target genes. To search for CpG sites

associated with PrCa risk, here we establish genetic models to predict methylation (N= 1,595)

and conduct association analyses with PrCa risk (79,194 cases and 61,112 controls). We

identify 759 CpG sites showing an association, including 15 located at novel loci. Among those

759 CpG sites, methylation of 42 is associated with expression of 28 adjacent genes. Among

22 genes, 18 show an association with PrCa risk. Overall, 25 CpG sites show consistent

association directions for the methylation-gene expression-PrCa pathway. We identify DNA

methylation biomarkers associated with PrCa, and our findings suggest that specific CpG sites

may influence PrCa via regulating expression of candidate PrCa target genes.
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Prostate cancer (PrCa) is the second most frequently diag-
nosed malignancy among men and the fifth leading cause of
cancer death worldwide1. Its survival rate is relatively high for

localized stage disease, but decreases substantially for metastatic
disease2. Effective strategies are critical for risk assessment,
screening, and early detection of PrCa, aimed at decreasing its
public health burden. Although prostate-specific antigen (PSA) has
demonstrated efficacy for detecting PrCa early3,4, there lacks a clear
cutoff point for PSA with high sensitivity and specificity5–7. The
benefits of PSA screening for reducing PrCa mortality remains
controversial8–10. Furthermore, there are adverse effects, such as
overdiagnosis11. Therefore, additional effective biomarkers are
needed for risk assessment and early detection of PrCa.

Aligned with findings of a crucial role for DNA methylation in
PrCa development12, research has identified several methylation
markers to be potentially associated with PrCa risk, such as
methylation at GSTP1, CDKN2A, DNMT3B, SCGB3A1, and
HIF3A12–16. However, most prior studies have assessed only a
couple of candidates. Recent emerging studies profiling genome-
wide methylation usually included a relatively small number of
subjects17, resulting in inadequate power for the identification of
associated methylation biomarkers. Besides these limitations,
there are a number of biases commonly encountered in con-
ventional epidemiologic studies, including selection bias, uncon-
trolled confounding, and reverse causation, that make it difficult
to determine whether the identified associated markers are cau-
sally associated with PrCa.

One strategy to reduce some of these biases is to use genetic
variants to develop an instrument to assess the association between
DNA methylation and PrCa. Such an approach is based on the
principle of the random assortment of alleles from parents to off-
spring during gamete formation, and thus a genetically determined
proportion of DNA methylation levels should be less susceptible to
selection bias and reverse causation in principal. Research has
shown that a large portion of CpG sites have high heritability18,19.
Genome-wide association studies (GWAS) have also identified a
large number of genetic loci associated with DNA methylation
levels20,21. Many of these genetic variants could potentially serve as
strong instrumental variables for evaluating associations between
DNA methylation and PrCa risk in an adequately powered study.

Besides a potential utility in improving PrCa risk assessment, the
identification of promising DNA methylation markers using a
design of genetic instruments may also contribute to understanding
of the genetics and etiology of PrCa. Epidemiological research
provides strong support for a genetic predisposition to PrCa22,23.
To date, GWAS have identified ~150 genetic loci for PrCa24–26.
However, together these variants explain <30% of the familial
relative risk, and the underlying biological mechanisms for a
majority of the identified loci remain unclear24. Recently, we per-
formed a large transcriptome-wide association study (TWAS) of
PrCa, in which we identified multiple associations between
genetically predicted gene expression and PrCa risk27. Interestingly,
many of the associated genes were identified to be candidate target
genes of GWAS-identified risk SNPs27. Aligned with the recognized
role of DNA methylation in regulating gene expression, we hypo-
thesize that some GWAS-identified risk SNPs may regulate
expression of their target genes through influencing DNA methy-
lation levels. In this study, we perform a large integrative multi-
omics analysis involving data of genomics, methylomics, and
transcriptomics aiming to uncover novel CpG sites and genes that
may contribute to PrCa development.

Results
DNA methylation prediction models. Using FHS data, we were
able to build DNA methylation prediction models for 223,959

CpG sites, of which 81,432 showed a prediction performance (R2)
of at least 0.01 (≥10% correlation between predicted and mea-
sured DNA methylation levels). For 77,243 of those CpG sites,
there were no SNPs within the binding site. Interestingly, there
tended to be positive weak correlations between methylation
prediction model performance and number of input variants
within the 2-MB window of each CpG site (Pearson correlation
coefficient 0.03, P= 1.60 × 10−13; Spearman correlation coeffi-
cient 0.02, P= 1.43 × 10−6). We further applied these 77,243
models to the genetic data in WHI and evaluated their perfor-
mance by comparing predicted methylation levels with measured
levels. Overall, DNA methylation that could be predicted well in
FHS also tended to be predicted well in WHI (a correlation
coefficient of 0.96 for R2 in two datasets; Supplementary Fig. 1).
These 77,243 CpG sites were selected for analyses for their
associations between predicted DNA methylation and PrCa risk.

Associations of genetically predicted methylation with PrCa.
Of the 77,243 CpG sites tested, genetically predicted DNA
methylation of 759 located at 82 genomic loci were associated
with PrCa risk after Bonferroni correction (P ≤ 6.47 × 10−7)
(Table 1; Supplementary Table 1 and Supplementary Data 1;
Manhattan plot in Fig. 1). This included 15 located at 10 genomic
loci that were more than 500 kb away from any PrCa risk variant
identified in GWAS or fine-mapping studies (Table 1). An
association between a higher DNA methylation level and
increased PrCa risk was detected for cg18800143, cg07645299,
cg12627844, cg16397176, cg11562153, cg13866093, cg00444740,
cg20100049, cg22370235, cg04739953, cg01715842, and
cg23397578. Conversely, an inverse association between methy-
lation level and PrCa risk was identified for cg24388424,
cg06836406, and cg13230424. Of these 15 CpG sites at novel loci,
after conditioning on the near PrCa risk variant, the associations
of genetically predicted DNA methylation levels for four CpG
sites (cg18800143, cg16397176, cg06836406, and cg13230424)
remained at P ≤ 6.47 × 10−7 (Table 1).

For the remaining 744 CpG sites located at known PrCa risk
loci (Supplementary Table 1 and Supplementary Data 1), after
conditioning on the adjacent PrCa risk SNP, an association at P ≤
6.47 × 10−7 persisted for 63 CpG sites (Supplementary Table 1).
This suggests that the associations of these 63 CpG sites with
PrCa risk are potentially independent of the PrCa risk SNPs
identified in GWAS or fine-mapping studies (Supplementary
Table 1). For the other 681 CpG sites, their associations with
PrCa risk became weaker, if not completely attenuated, after
conditioning on the PrCa risk SNP (Supplementary Data 1).
These are potentially due to (1) the previously identified
associations of risk SNPs with PrCa at these loci may be
mediated through the DNA methylation of these CpG sites
identified in the current study, or (2) confounding effects
(Supplementary Data 1). We estimated that the 15 CpG sites at
novel loci and the 63 CpG sites independent of PrCa risk SNPs
could explain 0.69% of familiar risk of PrCa (methods
in Supplementary Information).

Based on annotation using ANNOVAR, there were substantial
inflations of the “exonic” and “ncRNA exonic” regions for the
identified PrCa-associated CpG sites when compared with the
overall tested 77,243 CpG sites (chi-square tests: 15.28% versus
7.44%, P= 6.36 × 10−16; 5.53% versus 2.42%, P= 6.37 × 10−8)
(Supplementary Table 2). Also, a substantial decreased propor-
tion of the “intergenic” region was observed (chi-square test:
15.42% versus 25.10%, P= 1.13 × 10−9) (Supplementary Table 2).

Through an annotation of the 759 PrCa-associated CpG sites
using eFORGE v1.2, there tends to be an overlap of their
positions with regions containing lysine 4 mono-methylated H3
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histone (H3K4me1) markers across 38 of 39 cell types included in
the consolidated Roadmap Epigenomics Project, including blood
tissues (Supplementary Fig. 2). This suggests that the identified
CpG sites associated with PrCa risk may be enriched in enhancers
and may be involved in transcriptional activation. We also
observed significant enrichment for the associated CpG sites with
positions of genes encoding transcription factors (P= 0.001).

For the identified 759 CpG sites showing an association in the
PRACTICAL, CRUK, CAPS, BPC3, and PEGASUS consortia, we

further evaluated their associations using independent UK
Biobank data. In this analysis with far fewer PrCa cases, 554
CpG sites (73%) also showed an association at P < 0.05 with the
same direction of effect (Supplementary Data 2). These suggested
that the CpG-PrCa risk associations identified in the main
analyses using data of the PRACTICAL, CRUK, CAPS, BPC3,
and PEGASUS consortia were quite robust. We performed
downstream analyses focusing on these 759 CpG sites.

Potential target genes of the PrCa-associated CpG sites. Of the
759 PrCa-associated CpG sites, association analyses were per-
formed for 689 pairs of CpG site-gene, including 613 CpG sites
with 244 flanking genes. Overall, associations at a false discovery
rate (FDR) < 0.05 were observed for methylation levels of 42 CpG
sites with expression of 28 neighbor genes in blood tissue (Sup-
plementary Table 3). Interestingly, we also observed several
associations between DNA methylation and expression of genes
encoding transcription factors at P < 0.05 (Supplementary
Table 4). In the TCGA dataset of tumor-adjacent normal prostate
tissue, albeit with a quite limited sample size (n= 34), we
observed that 26 of the 37 associations that could be assessed
showed the same direction of effect compared with that in the
blood tissue (Supplementary Table 5). Among them, 11 showed
statistical significance at P < 0.05 in this small dataset (Supple-
mentary Table 5).

Associations of potential target genes with PrCa risk. Of the 28
potential target genes of the identified CpG sites based on blood
tissue analyses, blood tissue gene expression prediction models
were built for 22 genes, and prostate tissue prediction models were
built for 14 genes with a prediction performance (R2) of at least
0.01 (≥10% correlation). Using the S-PrediXcan method, we
evaluated associations between the genetically predicted expres-
sion of these genes and PrCa risk. Of the 22 genes with blood
tissue prediction models built, 18 demonstrated an association at
FDR < 0.05 (Table 2). For 12 of them with prostate tissue pre-
diction models built as well, nine showed an association at P < 0.05
(Table 2). For all of the nine genes except for VPS53, the direction
of associations was consistent for the predicted expression in
blood versus prostate tissue. Of two other genes with models built

Table 1 Fifteen novel methylation-prostate cancer associations for CpG sites located at genomic loci at least 500 kb away from
any known prostate cancer risk varianta.

CpG site Chr Position (build37) Classification R2b OR (95% CI)c P valued risk SNP Distance to the
risk SNP (kb)

P value after adjusting
for risk SNPe

cg18800143 1 16393791 Intronic 0.10 1.12 (1.07–1.17) 7.56 × 10−8 rs636291 5837.7 7.07 × 10−9

cg07645299 2 63991864 Intergenic 0.01 1.49 (1.30–1.71) 1.58 × 10−8 rs58235267 714.0 0.80
cg12627844 2 64245000 Intronic 0.03 1.38 (1.28–1.50) 1.98 × 10−15 rs58235267 967.2 0.61
cg16397176 5 110899314 ncRNA_intronic 0.05 1.15 (1.09–1.22) 6.42 × 10−7 rs10793821 22936.9 6.25 × 10−7

cg11562153 6 28493500 Upstream 0.04 1.22 (1.13–1.31) 1.57 × 10−7 rs7767188 1580.3 1.56 × 10−4

cg13866093 6 28502727 UTR3 0.05 1.14 (1.09–1.20) 2.09 × 10−7 rs7767188 1571.0 3.26 × 10−5

cg24388424 6 28565403 Intronic 0.01 0.78 (0.71–0.86) 3.31 × 10−7 rs7767188 1508.4 1.08 × 10−5

cg00444740 8 129162178 Upstream 0.02 1.21 (1.13–1.30) 1.55 × 10−7 rs7837688 622.8 1.01 × 10−3

cg06836406 9 130461544 Intergenic 0.02 0.79 (0.72−0.86) 3.55 × 10−7 rs1182 2114.5 1.74 × 10−7

cg20100049 11 67979188 Intronic 0.02 1.30 (1.22–1.39) 2.79 × 10−15 rs11228565 999.4 2.44 × 10−4

cg22370235 11 68451852 Upstream 0.02 1.29 (1.17–1.41) 1.50 × 10−7 rs11228565 526.7 0.37
cg04739953 11 68451858 Upstream 0.01 1.62 (1.41–1.87) 2.06 × 10−11 rs11228565 526.7 0.15
cg01715842 16 85045600 Upstream 0.47 1.05 (1.03–1.07) 2.95 × 10−7 rs199737822 2866.7 NA
cg13230424 17 45930033 Intronic 0.05 0.87 (0.82–0.91) 3.16 × 10−7 rs138213197 875.7 5.74 × 10−8

cg23397578 19 37742925 ncRNA_exonic 0.01 1.40 (1.24–1.57) 1.81 × 10−8 rs8102476 992.7 1.57 × 10−3

NA not available. Bold values represent that these association p values remain largely unchanged after adjusting for risk SNP.
aRisk SNPs identified in previous GWAS or fine-mapping studies.
bR2: model prediction performance (R2) derived using FHS data.
cOR (odds ratio) and CI (confidence interval) per one standard deviation increase in genetically predicted DNA methylation.
dP value: derived from association analyses of 79,194 cases and 61,112 controls (two-sided); associations with P≤ 6.47 × 10−7 based on Bonferroni correction of 77,243 tests (0.05/77,243) are shown.
eUsing COJO method.

150

100

–l
og

10
(p
)

50

0
1 2 3 4 5 6 7 8

Chromosome
9 11 13 15 17 20

Fig. 1 A Manhattan plot of the association results from the prostate
cancer methylome-wide association study using S-PrediXcan. The red
line represents P= 6.47 × 10−7 (Bonferroni correction of 77,243 tests
(0.05/77,243)). Each dot represents the genetically predicted DNA
methylation of one specific CpG site. The x axis represents the genomic
position of the corresponding CpG site, and the y axis represents the
negative logarithm of the association P value. CpG sites at novel loci were
highlighted with green color. Two-sided test was conducted.
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for prostate tissue only, HLA-DOB showed a significant associa-
tion with PrCa risk (beta= 0.068, P= 2.65 × 10−4), and C11orf21
did not show a significant association (P= 0.21).

Associations showing consistent direction of effect. There were
25 CpG sites and 14 genes with consistent directions of association
for the DNA methylation–gene expression–PrCa pathway
(Table 3). For example, the CpG site cg20240347 located upstream
ofMDM4, and its DNA methylation level was positively associated
with expression of MDM4 (coefficient 0.21; P= 1.69 × 10−14).
There was an inverse association between genetically predicted
expression ofMDM4 and PrCa risk (OR= 0.36; P= 1.55 × 10−19).
There was also evidence supporting the genetically predicted DNA
methylation of cg20240347 to be associated with a decreased PrCa
risk (OR= 0.93; P= 2.61 × 10−19). Interestingly, MDM4 has been
previously implicated as a potential target gene that is responsible
for the identified association signal of index SNP rs4245739 in
GWAS25, and in our recent TWAS study27. Our results highlight a
possible role of the CpG site cg20240347 in the underlying bio-
logical mechanism of the link between MDM4 and PrCa. Whether
the DNA methylation of these CpG sites at the corresponding loci
of the genes in Table 3 may play a role in PrCa etiology through
the regulation of expression of these genes warrants further
investigation. Ingenuity pathway analysis (IPA)28 suggested
potential enrichment of cancer-related functions for the 14
implicated genes (Supplementary Table 6). The top canonical
pathways identified included cell cycle (P= 0.033) and cancer drug
resistance (P= 0.039). It is worth noting that based on the pre-
dicted DNA methylation–PrCa risk, DNA methylation–gene
expression, and predicted gene expression–PrCa risk results, we
also observed six CpG sites and four genes (VAMP8, C4B,
BAIAP2L1, and NCOA4) with inconsistent directions of associa-
tion for the DNA methylation–gene expression–PrCa pathway
(Supplementary Table 7). Of these genes, NCOA4, BAIAP2L1, and
VAMP8 are candidate PrCa susceptibility genes identified in ear-
lier TWAS27,29,30. Future work is needed to better understand
these associations.

Discussion
This is the first large-scale study to comprehensively evaluate
associations of genetically predicted DNA methylation levels with
PrCa risk. We identified 759 CpG sites whose predicted DNA
methylation levels demonstrated an association after Bonferroni
correction, including 15 located at novel loci. Of the 744 CpG
sites located at known PrCa risk loci, 63 showed an association,
even after conditioning on adjacent PrCa risk SNPs. In additional
analyses involving gene expression, we observed some evidence
suggesting that 25 CpG sites may influence PrCa risk via reg-
ulating expression of 14 candidate PrCa target genes. Our study
provided substantial information to improve the understanding
of genetics and etiology for PrCa, and it also generated multiple
CpG sites as potential biomarkers for risk assessment of PrCa, the
most common male malignancy globally.

For processing DNA methylation data for genetic model
building, we performed quartile normalization for subjects
followed by rank normalization for methylation levels, a stan-
dard approach widely used in the community for DNA
methylation analyses31. We acknowledge, however, that such an
approach could be suboptimal for CpG sites whose distribu-
tions of methylation do not resemble standard normal. Future
endeavors for developing more sophisticated methods to deal
with this are needed to pick up additional relevant signals. In
this study, we identified 759 associated CpG sites, of which 42
were observed to be associated with expression of 28 flanking
genes that were annotated by ANNOVAR, based on positions.
For the other identified CpG sites, it is possible that genes that
are not the most proximal ones could be target genes for local
or distal regulation. However, to determine the exact target
genes of these CpG sites involves additional lines of evidence
besides statistical association, which is beyond the scope of this
study. We observed 25 CpG sites with consistent directions of
association for the DNA methylation–gene expression–PrCa
pathway. Of the 14 linked genes, 10 (MDM4, NUCKS1,
PM20D1, VAMP5, GPR160, PDK1, UHRF1BP1, MCAT,
LY6G5C, and VPS53) demonstrated an association with PrCa

Table 2 Associations between genetically predicted mRNA expression levels of candidate target genes of identified CpG sites
and prostate cancer risk.

Gene Blood tissue prediction model Prostate tissue prediction model

R2a OR (95% CI)b P valuec R2a OR (95% CI)b P valuec

NCOA4 0.14 3.80 (2.91–4.96) 1.39 × 10−22 0.18 1.41 (0.67–2.96) 0.36
MDM4 0.06 0.36 (0.29–0.45) 1.55 × 10−19 NAd NA NA
BAIAP2L1 0.03 2.21 (1.84–2.67) 5.86 × 10−17 NA NA NA
GPR160 0.46 0.78 (0.73–0.83) 2.03 × 10−16 NA NA NA
PDK1 0.09 1.86 (1.56–2.22) 8.81 × 10−12 NA NA NA
TRIM26 0.04 0.43 (0.34–0.55) 1.19 × 10−11 0.03 0.97 (0.53–1.78) 0.93
UHRF1BP1 0.40 1.11 (1.07–1.15) 1.99 × 10−8 0.21 1.18 (1.11–1.25) 3.24 × 10−8

MCAT 0.03 0.71 (0.62–0.80) 2.13 × 10−8 NA NA NA
NUCKS1 0.05 3.20 (2.12–4.83) 2.81 × 10−8 0.09 1.35 (1.17–1.55) 3.59 × 10−5

C4B 0.22 0.92 (0.89–0.95) 3.65 × 10−8 0.06 0.79 (0.69–0.89) 2.18 × 10−4

PM20D1 0.44 1.07 (1.04–1.10) 2.40 × 10−7 0.15 1.10 (1.06–1.14) 5.61 × 10−7

CFAP44 0.04 1.25 (1.14–1.36) 7.44 × 10−7 0.03 1.91 (1.61–2.26) 9.11 × 10−14

LY6G5C 0.48 1.06 (1.03–1.10) 9.52 × 10−5 0.17 1.11 (1.04–1.18) 1.16 × 10−3

MICB 0.37 0.94 (0.90–0.97) 8.86 × 10−4 0.18 0.89 (0.85–0.94) 3.32 × 10−6

VAMP8 0.01 0.66 (0.51–0.85) 1.37 × 10−3 0.09 1.08 (0.99–1.18) 0.08
ZDHHC7 0.10 0.80 (0.69–0.92) 2.52 × 10−3 0.15 0.83 (0.77–0.89) 3.78 × 10−7

VAMP5 0.10 1.19 (1.05–1.34) 5.01 × 10−3 NA NA NA
VPS53 0.63 1.03 (1.01–1.06) 9.02 × 10−3 0.45 0.95 (0.92–0.98) 2.86 × 10−3

aR2: mRNA expression prediction model performance (R2) derived using GTEx data.
bOR (odds ratio) and CI (confidence interval) per one standard deviation increase in genetically predicted mRNA expression levels.
cP value: derived from association analyses (two-sided); associations of genetically predicted expression in blood tissue with FDR < 0.05 are shown.
dNA: no prostate tissue prediction model was built.
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risk in recent TWAS studies27,30. Furthermore, MDM4 and
NUCKS1 have been previously implicated as potential target
genes at GWAS-identified PrCa risk loci25,32. Our results
incorporating DNA methylation provide additional insight into
the potential mechanism for the link between these genes and
PrCa development. Interestingly, in vitro experiments of
silencing PDK1 could decrease cell proliferation and inhibit the
invasion and migration capability of PrCa cells33. Further
functional studies are needed to better characterize whether
there are potential regulatory effects of the identified 25 CpG
sites on the expression of the 14 adjacent genes for PrCa
development. Importantly, our design of integrating genome,
methylome, and transcriptome data provides some evidence
that 25 CpG sites may regulate expression of 14 candidate
target genes, which further influences PrCa risk. Through the
innovative integrative analyses harnessing large-scale human
subject data, our study not only identifies several associations
consistent with prior findings but it also uncovers potentially
important roles of novel CpG sites and putative target genes
(e.g., CFAP44, TRIM26, MICB, and ZDHHC7) in prostate
tumorigenesis.

For the aim of identifying effective methylation biomarkers for
risk assessment of PrCa, a design focusing on blood tissue would be
optimal. Such a design could be suboptimal for characterizing the
biological mechanism of PrCa development, when compared with
the design using genetic instruments of DNA methylation levels
identified in prostate tissue, considering potential tissue specificity
in DNA methylation levels. On the other hand, research has shown
that the genetic regulation of DNA methylation for many CpG sites
tends to have a cross-tissue consistency, as indicated by studies
comparing blood and different brain region tissues, and among
lung, breast, and kidney tissues20,34. Furthermore, it is challenging
to obtain prostate tissues from a large number of healthy indivi-
duals. Although prostate tumor-adjacent normal tissue methylation
data are available in TCGA, tumor-adjacent normal tissue samples
from PrCa patients may contain cancer cells; therefore, the
methylation profile of these samples could be different from that of
normal prostate tissue samples from healthy men. The statistical
power for the model building using TCGA data could also be low

due to the relatively small sample size available. In this study, for
assessing DNA methylation–gene expression associations to deter-
mine potential target genes of identified CpG sites, besides using
data from blood tissue (Supplementary Table 3), we also leveraged
data from tumor-adjacent normal prostate tissue in TCGA. Despite
a small sample size, we observed evidence supporting many of the
associations identified using blood tissue data (Supplementary
Table 5). For evaluating predicted gene expression–PrCa risk
associations, our analyses using prostate tissue gene expression
prediction models also support many of the associations identified
using blood tissue prediction models (Table 2).

In the current work, a large number of subjects (N= 1595) in
the reference FHS dataset was used for the DNA methylation
prediction model building. Aligned with the huge sample size for
our main association analyses for PrCa risk (79,194 cases and
61,112 controls), our study provides an unparalleled opportunity
to detect the DNA methylation–PrCa associations. The use of
genetic instruments rendered our study as potentially less sus-
ceptible to several limitations commonly encountered in con-
ventional epidemiological studies, such as selection bias and
reverse causation. On the other hand, it is worth noting that
similar to TWAS, the associations observed in our analyses
focusing on CpG sites are also vulnerable to confounding due to
pleiotropy and co-localization of genetic signals. For instance, it
would be difficult to distinguish a situation in which one causal
methylation quantitative trait locus (mQTL) regulates the
methylation of two CpG sites from a scenario in which two CpG
sites have two causal mQTLs that are in linkage disequilibrium
(LD) with each other. Correlated total methylation levels across
CpG sites, correlated predicted DNA methylation across CpG
sites, as well as shared genetic variants between DNA methylation
genetic prediction models and gene expression prediction models,
could all lead to spurious associations in our analyses35. When
faced with two correlated predictors, regularized regression
models like elastic net will randomly down weight one of them,
which may be the true causal variant. Despite these potential
limitations, our study generated a list of promising PrCa-
associated CpG sites that warrant further investigation. By inte-
grating the relationship between DNA methylation, gene

Table 3 Associations showing consistent direction of effect for the methylation–gene expression–prostate cancer risk pathway.

CpG site Chr Position Associated gene Classification DNA methylation and
prostate cancer risk

DNA methylation and gene expression Gene expression and
prostate cancer risk

OR P value Association coefficient Association P value OR P value

cg20240347 1 204465584 MDM4 Upstream 0.93 2.61 × 10−19 0.21 1.69 × 10−14 0.36 1.55 × 10−19

cg15199181 1 205670604 NUCKS1 Upstream 0.94 5.10 × 10−9 −0.08 2.18 × 10−3 3.20 2.81 × 10−8

cg14893161 1 205819251 PM20D1 UTR5 0.97 1.11 × 10−7 −0.08 2.70 × 10−3 1.07 2.40 × 10−7

cg07167872 1 205819463 Upstream 0.97 1.47 × 10−7 −0.08 1.83 × 10−3

cg24503407 1 205819492 Upstream 0.97 1.27 × 10−7 −0.08 2.78 × 10−3

cg07157834 1 205819609 Upstream 0.96 1.07 × 10−7 −0.08 2.12 × 10−3

cg02652597 2 85811292 VAMP5 Upstream 0.93 6.31 × 10−7 −0.16 8.76 × 10−9 1.19 5.01 × 10−3

cg10165864 2 173419899 PDK1 Upstream 0.89 6.02 × 10−14 −0.14 9.34 × 10−8 1.86 8.81 × 10−12

cg16797009 2 173472347 Downstream 0.90 2.31 × 10−16 −0.17 3.52 × 10−10

cg25053018 2 173477995 Downstream 1.19 4.47 × 10−20 0.11 3.10 × 10−5

cg07128416 3 113160490 CFAP44 Upstream 1.25 9.81 × 10−11 0.09 6.67 × 10−4 1.25 7.44 × 10−7

cg07054641 3 113160554 Upstream 1.22 6.46 × 10−11 0.09 6.47 × 10−4

cg20138861 3 169775992 GPR160 Intronic 1.17 3.70 × 10−14 −0.11 5.97 × 10−5 0.78 2.03 × 10−16

cg24064041 6 30165027 TRIM26 Intronic 0.91 3.36 × 10−9 0.13 8.69 × 10−7 0.43 1.19 × 10−11

cg00266604 6 30178343 Intronic 1.21 2.05 × 10−12 −0.10 3.84 × 10−4

cg12001709 6 31466798 MICB Intronic 0.96 4.25 × 10−8 0.10 1.73 × 10−4 0.94 8.86 × 10−4

cg13892322 6 31648564 LY6G5C Upstream 0.88 5.48 × 10−7 −0.12 4.42 × 10−6 1.06 9.52 × 10−5

cg22786465 6 31649502 Downstream 1.23 7.28 × 10−10 0.08 2.49 × 10−3

cg02733847 6 31649519 Downstream 1.27 2.76 × 10−7 0.11 1.05 × 10−4

cg25769566 6 31651278 Downstream 1.05 5.09 × 10−8 0.26 <2.00 × 10−16

cg24520975 6 31651362 Downstream 1.15 6.87 × 10−10 0.10 2.37 × 10−4

cg07306190 6 34760872 UHRF1BP1 Intronic 0.95 2.36 × 10−8 −0.33 <2.00 × 10−16 1.11 1.99 × 10−8

cg01715842 16 85045600 ZDHHC7 Upstream 1.05 2.95 × 10−7 −0.09 6.68 × 10−4 0.80 2.52 × 10−3

cg01799818 17 594735 VPS53 Intronic 1.10 7.40 × 10−19 0.09 4.81 × 10−4 1.03 9.02 × 10−3

cg10288850 22 43539588 MCAT Upstream 2.18 6.23 × 10−19 −0.09 8.52 × 10−4 0.71 2.13 × 10−8
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expression, and PrCa risk using multi-omics data from different
sources, we were able to identify consistent associations of the
DNA methylation–gene expression–PrCa risk pathway. This
supports a very interesting hypothesis that methylation at selected
CpG sites could influence PrCa risk through the regulation of
expression of adjacent target genes, which warrants further
investigation. The current work generates a list of promising CpG
sites showing an association with PrCa, which can be investigated
further in future studies that directly measure levels of these CpG
sites. Identification of circulating DNA methylation biomarkers
could be useful for PrCa risk assessment.

In conclusion, in a large-scale study to evaluate associations
between genetically predicted DNA methylation levels and PrCa
risk, we identified 759 CpG sites that showed an association,
including 15 at novel loci, and an additional 63 that represent
association signals independent of known risk variants. We also
observed that specific CpG sites may influence PrCa risk via reg-
ulating expression of candidate PrCa target genes. Further investi-
gation of these findings will provide additional insight into the
biology and genetics of PrCa, as well as facilitate risk assessment
of PrCa.

Methods
Study design. The overall study design is shown in Fig. 2. First, we built compre-
hensive genetic prediction models for DNA methylation levels by using data of the
Framingham Heart Study (FHS). After external validation, we selected methylation
models with satisfactory prediction performance for association analyses of genetically
predicted methylation levels with PrCa risk, by using data of the PRACTICAL
consortia which involves 79,194 cases and 61,112 controls. For CpG sites showing an
association with PrCa risk, we assessed associations of their methylation with
expression of adjacent genes (FHS, N= 1367), to identify potential target genes of
these CpG sites. For the suggested candidate target genes, we further assessed asso-
ciations of their genetically predicted expression with PrCa risk.

Building of DNA methylation prediction models. We obtained the individual
level genome-wide genotyping and white blood cell DNA methylation data from
the FHS Offspring Cohort (dbGaP accession numbers: phs000342 and phs000724).
The details of the FHS Offspring Cohort have been described elsewhere36. In brief,

DNA was genotyped using the Affymetrix 500 K array, and DNA methylation was
profiled using the Illumina HumanMethylation450 BeadChip. The genotype data
were imputed to the Haplotype Reference Consortium reference panel37. SNPs
with high imputation quality (R2 ≥ 0.8), minor allele frequency ≥0.05, included in
the HapMap Phase 2 version, and those that were not strand ambiguous were used
to build DNA methylation prediction models. For DNA methylation data, the
“minfi” package38 was used to filter out low-quality samples, exclude low-quality
methylation probes, estimate cell-type composition, and calculate methylation beta
values. We performed quantile normalization to bring the methylation profile of
each sample to the same scale, and rank normalization for each CpG site to map
each set of DNA methylation values to a standard normal. We adjusted for age, sex,
six cell-type composition variables, and the top ten principal components (PCs)
derived from genotype data. Genetic and DNA methylation data from 1595
genetically unrelated subjects of European descent were used to build DNA
methylation prediction models for this study.

For each CpG site, we built a genetic model to predict DNA methylation levels
using the elastic net method as implemented in the “glmnet” package of R, with
α= 0.539–41 (Supplementary Software 1). Genetic variants flanking a 2-Mb window
of each CpG site were used to build the model. Tenfold cross-validation was used
for internal validation. Prediction R2 values, the square of the correlation between
predicted and measured methylation levels, were used to estimate the model
prediction performance.

External validation of the models. To further evaluate the validity of the built
methylation prediction models, we performed external validation using data from
883 unrelated healthy female participants of European descent included in The
Women’s Health Initiative (WHI) (dbGaP accession numbers: phs000315,
phs000675, and phs001335). Genotype data and white blood cell DNA methylation
data were processed using a similar approach, as described above. The predicted
DNA methylation for each CpG site was calculated using the models that were
established using FHS data, and then compared with the measured level using
Spearman’s correlation.

Associations between predicted methylation and PrCa. Considering that our
model external validation dataset WHI included females only, and that there is a high
concordance of the model performance (R2) in FHS and WHI, we included DNA
methylation prediction models (1) with a R2 ≥ 0.01 (≥10% correlation between pre-
dicted and measured methylation levels) in FHS, a standard criterion used in TWAS
for gene expression27,39,42–44, heritability of which tends to be similar to that of DNA
methylation in blood31,45, and (2) for probes with no SNPs within the probe-binding
site, considering that the measurement of DNA methylation levels for such probes
tends to be unbiased46. Overall, we evaluated associations between genetically pre-
dicted methylation levels of 77,243 CpG sites with PrCa risk.

Evaluate associations of genetically predicted methylation levels with prostate cancer (PrCa) risk
using iCOGS-Oncoarray-GWAS meta results

PrCa associated CpG sites: assess associations with expression of nearby genes in FHS

Potential target genes: assess associations of genetically predicted expression with PrCa risk

Assess the associations showing consistent direction of effect for DNA methylation-gene
expression-PrCa risk pathway

Build DNA methylation prediction models using the framingham heart study (FHS) data

Genetic prediction models DNA methylation

PrCa risk

1

Gene expression
4

2

3

5Genetic prediction models

a

b

Fig. 2 Study design. a Study design flow chart; b overview of the integrative-omics analysis. (1) Genetic prediction model building for blood DNA
methylation levels; (2) associations of genetically predicted DNA methylation in blood and prostate cancer risk; (3) expression quantitative trait
methylation; (4) genetic prediction models for blood and prostate tissue gene expression levels; (5) associations of genetically predicted gene expression
in blood and prostate tissue with prostate cancer risk. Results in 1 were based on data of the Framingham Heart Study (FHS) (N= 1595). Results in 2 and 5
were based on the summary statistics of the PRACTICAL, CRUK, CAPS, BPC3, and PEGASUS consortia (N= 79,194 cases and 61,112 controls). Results in 3
were based on data of the FHS (N= 1367) and The Cancer Genome Atlas (N= 34). Results in 4 were based on data of the Genotype-Tissue Expression
project (version 8).
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We estimated the association between genetically predicted DNA methylation
levels and PrCa risk using S-PrediXcan, which has been described elsewhere47

(Supplementary Software 1). We used the summary statistics data for the
association of genetic variants with PrCa risk that had been generated from 79,194
PrCa cases and 61,112 controls of European ancestry in the PRACTICAL, CRUK,
CAPS, BPC3, and PEGASUS consortia26,48. In brief, 46,939 PrCa cases and 27,910
controls were genotyped using OncoArray, which included 570,000 SNPs (http://
epi.grants.cancer.gov/oncoarray/). Also included were data from several previous
PrCa GWAS of European ancestry: UK stage 1 and stage 2, CaPS 1 and CaPS 2,
BPC3, NCI PEGASUS, and iCOGS. These genotype data were imputed using the
June 2014 release of the 1000 Genomes Project data as reference. Logistic
regression summary statistics were then meta-analyzed using an inverse variance
fixed effect approach.

A Bonferroni-corrected threshold of P < 6.47 × 10−7 (0.05/77,243) was used to
determine a statistically significant association. For CpG sites showing a significant
association between genetically predicted methylation levels with PrCa risk, we
further evaluated whether the observed associations were independent of nearby
PrCa risk variants identified in GWAS or fine-mapping studies, by performing
GCTA-COJO analysis49. For this analysis, the risk SNP showing the most
significant association with PrCa risk in the PRACTICAL, CRUK, CAPS, BPC3,
and PEGASUS consortia was adjusted for calculating association betas and
standard errors of DNA methylation predicting SNPs with PrCa risk. These
association statistics were then used for re-running the S-PrediXcan analyses.

Familial relative risk of PrCa explained by novel CpG sites. For PrCa-associated
CpG sites that were located at novel loci or independent from known PrCa risk
variants, we used the linkage disequilibrium (LD) score regression method50 to
evaluate the proportion of familial relative risk of PrCa that could be explained by
predicted methylation levels of these CpG sites. In brief, we firstly applied the pre-
diction models of these CpGs to the genetic data of male controls included in the
pancreatic cancer GWAS data (N= 3655) to generate the predicted methylation of
these CpGs for each of the participants. Detailed information for this dataset, quality
control, and imputation has been described elsewhere51. We further used the formula
Z2= 1+ (NT l/M)/h2 to estimate the heritability explained by these CpG sites. Here
for each CpG, Z represents the Z score of the association between the predicted
methylation and PrCa risk; NT represents the number of individuals included in the
GWAS of the PRACTICAL, CRUK, CAPS, BPC3, and PEGASUS consortia, namely,
140,306; l represents the LD score of the CpG of interest;M represents the number of
CpG sites that were significantly associated with PrCa risk; and h2 is the estimated
heritability of PrCa risk that could be explained by the predicted methylation of the
CpG sites of interest. The LD score for each CpG was estimated by adding up the
squared Pearson correlation coefficient (R2) of the CpG of interest with all the other
CpG sites. Finally, after fitting a linear regression model using data of all these CpGs,
the estimated heritability of PrCa risk that could be explained by the predicted
methylation of the CpGs of interest, along with the standard error and P value, were
estimated. Given that the heritability of PrCa was estimated to be 57%52, the familial
relative risk of PrCa that could be explained by predicted methylation levels of these
CpGs was calculated as ℎ2/0.57.

Validation of identified CpG sites using the UK Biobank. Individual level data of
the UK Biobank were used to validate the identified associated CpG sites. The UK
Biobank released GWAS data on ~500,000 individuals53. PrCa cases were determined
by combining Hospital Episode Statistics (HES) data and self-reported data. Specifi-
cally, cases were defined as hospital admission, type of cancer, or cause of death due to
ICD-9 185.9 or ICD-10 C61 or a self-reported cancer code. We calculated associations
of genetically predicted DNA methylation of the identified CpG sites with PrCa risk,
adjusting for age, age2, and top 20 PCs provided by the UK Biobank. As the number
of cases in the UK Biobank is substantially smaller than that in the PRACTICAL,
CRUK, CAPS, BPC3, and PEGASUS consortia, we used results from the UK Biobank
to confirm the validity of the CpG sites identified in analyses of the consortia data,
instead of using their results to filter out CpG sites.

Functional annotation of PrCa-associated CpG sites. We annotated the position
and genomic region information of the identified PrCa-associated CpG sites
through ANNOVAR54. The CpG sites were annotated into one of 13 functional
categories, including exonic, intronic, intergenic, upstream, 3′-UTR, 5′-UTR,
ncRNA intronic, ncRNA exonic, splicing, downstream, upstream/downstream, 5′-
UTR/3′-UTR, and exonic/splicing. We used eFORGE55 v1.2 to assess whether the
identified CpG sites were enriched in DNase I hypersensitive sites (DHSs) and loci
overlapping with various histone modification types, such as H3K27me3,
H3K36me3, H3K4me3, H3K9me3, and H3K4me1, across different tissues and cell
lines available in the Roadmap Epigenomics Project56, the Encyclopedia of DNA
Elements (ENCODE)57 and the BLUPRINT Epigenome58. For each CpG site set of
interest, eFORGE performs an overlap analysis against the functional elements for
each tissue or cell line separately, and then counts the number of overlaps. A
background distribution of the expected overlap counts for the CpG site set of
interest is obtained by picking sets of CpG sites with the same number as the test
set, matched for gene relationship and CpG island relationship annotation. The
matched background sets are then overlapped with the functional elements and the

background distribution of overlaps are determined. 1000 matched sets are used.
The enrichment value for the test set is expressed as the -log10(binomial P value).
Enrichments outside the nominal 95th and 99th percentile of the binomial dis-
tribution (after Benjamini–Yekutieli multiple testing correction) are considered
significant. We also evaluated whether the associated CpG sites were enriched in
loci of genes encoding transcription factors59.

Determine genes associated with identified CpG sites. For CpG sites with
genetically predicted DNA methylation levels significantly associated with PrCa risk,
we evaluated associations between methylation and expression levels of genes flanking
their loci by using data from the FHS Offspring Cohort (dbGaP accession numbers:
phs000363 and phs000724) and The Cancer Genome Atlas (TCGA). Details of the
FHS Offspring Cohort, DNA methylation, and gene expression data have been
described elsewhere36,60,61. Overall, DNA methylation and gene expression data were
available for 1367 unrelated individuals. For the CpG sites showing a significant
association with PrCa risk, associations between the normalized methylation levels in
beta values and normalized expression levels of genes flanking the CpG sites were
estimated, after adjusting for age, sex, top PCs, and estimated cell-type compositions
based on methylation data. We further assessed significant methylation–gene
expression associations identified in blood tissue analyses in adjacent normal prostate
tissue of PrCa patients in the TCGA (N= 34). The processing of DNA methylation
and gene expression data has been described elsewhere62,63.

Associations of potential target genes with PrCa risk. For genes whose
expression levels were associated with DNA methylation levels, we assessed whe-
ther the genetically predicted expression levels of these genes in blood and prostate
tissue were also associated with PrCa risk44,64,65. We used prediction models
developed using the PrediXcan method (Elastic Net) and leveraging data from the
v8 version of the Genotype-Tissue Expression dataset (GTEx) project (http://
predictdb.org/). Details of the methods of building gene expression prediction
models using SNPs have been described elsewhere44,47,66. The prediction models
were used to estimate the associations between genetically predicted gene expres-
sion levels and PrCa risk in the PRACTICAL, CRUK, CAPS, BPC3, and PEGASUS
consortia using S-PrediXcan47.

Associations showing a consistent direction of effect. We assessed the asso-
ciations between genetically predicted DNA methylation levels and PrCa risk,
associations between DNA methylation and gene expression levels, and the asso-
ciations between genetically predicted gene expression and PrCa risk to assess
associations showing consistent direction of effect for the DNA methylation–gene
expression–PrCa risk pathway. This could indicate the possibility that genetically
predicted DNA methylation might putatively influence PrCa risk through the
regulation of expression of flanking target genes.

Functional enrichment analysis. We performed functional enrichment analysis
for the identified genes consistent with the DNA methylation–gene
expression–PrCa risk pathway. Canonical pathways, top associated diseases and
biofunctions, and top networks associated with these genes were estimated using
IPA software28.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The OncoArray genotype data and relevant covariate information (i.e., ethnicity, country,
principal components, etc.) for prostate cancer study are available in dbGAP (Accession
no.: phs001391.v1.p1). In total, 47 of the 52 OncoArray studies, encompassing ~90% of
the individual samples, are available. The previous meta-analysis summary results and
genotype data are currently available in dbGaP (Accession no.: phs001081.v1.p1). The
datasets of FHS Offspring Cohort and WHI are publicly available via dbGaP (www.ncbi.
nlm.nih.gov/gap): dbGaP Study Accession: phs000342 and phs000724 for FHS, and
phs000315, phs000675, and phs001335 for WHI. TCGA data can be accessed through
the Genomic Data Commons Data Portal.

Code availability
The relevant codes are available in the Supplementary Software 1.
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