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Abstract: Aberrant DNA methylation detected in liquid biopsies is a promising approach for
colorectal cancer (CRC) detection, including premalignant advanced adenomas (AA). We evaluated
the diagnostic capability of serum NEUROG1 methylation for the detection of AA and CRC. A CpG
island in NEUROG1 promoter was assessed by bisulfite pyrosequencing in a case-control cohort to
select optimal CpGs. Selected sites were evaluated through a nested methylation-specific qPCR custom
assay in a screening cohort of 504 asymptomatic family-risk individuals. Individuals with no colorectal
findings and benign pathologies showed low serum NEUROG1 methylation, similar to non-advanced
adenomas. Contrarily, individuals bearing AA or CRC (advanced neoplasia—AN), exhibited increased
NEUROG1 methylation. Using >1.3518% as NEUROG1 cut-off (90.60% specificity), 33.33% of AN and
32.08% of AA were identified, detecting 50% CRC cases. Nonetheless, the combination of NEUROG1
with fecal immunochemical test (FIT), together with age and gender through a multivariate logistic
regression resulted in an AUC = 0.810 for AN, and 0.796 for AA, detecting all cancer cases and 35–47%
AA (specificity 98–95%). The combination of NEUROG1 methylation with FIT, age and gender
demonstrated a convenient performance for the detection of CRC and AA, providing a valuable tool
for CRC screening programs in asymptomatic individuals.

Keywords: DNA methylation; NEUROG1; colorectal cancer; advanced adenomas; screening; serum
biomarker; FIT

1. Introduction

Colorectal cancer (CRC) is one of the most common cancers worldwide, accounting for over one
million new cases each year [1]. Neoplastic transformation from precancerous adenomas to cancer
can last decades, providing the opportunity to implement screening strategies that could reduce CRC
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incidence and mortality [2,3]. Screening is especially important in individuals with a family history of
CRC because of the increased risk of developing CRC and adenomas [4,5]. The most used non-invasive
screening test is the fecal immunochemical test (FIT), despite its limited sensitivity for premalignant
advanced adenomas (AA) mainly due to the intermittent and infrequent bleeding of these lesions [6–8].
Moreover, as bleeding from the lower intestinal tract is a symptom related to conditions like diverticular
disease, colitis, Crohn′s disease and anorectal disorders, false-positive results may be increased [9].
Another limitation of FIT is its dependence on localization, resulting more useful for distal lesions
compared with proximal ones [10]. Therefore, there is an imperative need for the identification of
non-invasive, blood-based markers that can help in the detection of cancer and AA.

The presence of widespread CpG island methylation in a tumor, known as CpG island methylator
phenotype (CIMP), has been described in colorectal cancer biology, which is useful for the understanding
of carcinogenic pathways [11,12]. Several CIMP gene panels have been proposed, some including
NEUROG1 as one of the frequently methylated genes [13–15]. The NEUROG1 gene, located on
chromosome 5 (5q23–q31), encodes for a transcriptional factor that binds to E box elements. Methylation
analysis of NEUROG1 in CRC tumors showed progressive hypermethylation associated with neoplastic
development, from normal mucosa–hyperplastic polyp–adenoma–primary carcinoma, and finally
metastatic colorectal carcinoma, showing the highest methylation [16].

Aberrant DNA methylation has been described in liquid biopsies, resulting in a feasible approach
to provide new potential biomarkers for CRC screening [17,18]. In a small cohort Herbst et al. [19]
found that methylation of NEUROG1 in serum could discriminate healthy individuals from CRC
patients, suggesting its utility for CRC diagnosis. However, no further reports have confirmed these
findings in a large population, nor have extended the study to the diagnosis of premalignant lesions.

The aim of this study was to evaluate serum NEUROG1 methylation and analyze the diagnostic
capability for the detection of AA and CRC in a cohort of asymptomatic individuals with at least one
first-degree relative (FDR) with CRC. In our study we demonstrate that serum NEUROG1 methylation
could be useful for the detection of AA and cancer. A convenient performance was found when
NEUROG1 was combined with data from FIT, age and gender, providing a valuable tool for CRC
screening programs in asymptomatic individuals.

2. Materials and Methods

2.1. Study Population and Study Design

The study included two different cohorts: A case-control and a screening cohort. The case-control
cohort was used to evaluate individual CpG sites in NEUROG1 promoter using bisulfite pyrosequencing
and optimize the CpG sites with increased discriminatory capability, while the screening cohort was
used to evaluate and validate the selected CpG sites through a nested methylation-specific qPCR.
The study design is summarized in Figure 1, as well as the exclusion and inclusion criteria.

The case-control cohort included 12 symptomatic CRC cases (4 stage I, 3 stage II and 5 stage III,
classified according to the AJCC staging system [20], 36 individuals with AA and 33 individuals with
no colorectal findings from Complexo Hospitalario Universitario de Ourense. Controls (individuals
with no colorectal findings) included 16 men and 17 women (median age 54.25 years), while CRC and
AA cases included 29 men and 19 women (median age 58.19 years).

The screening cohort included 504 asymptomatic individuals with at least one FDR with confirmed
CRC (205 men and 299 females, median age 54.45 years).
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Figure 1. Study design flow-chart. FDR: first-degree relative; NCF: no colorectal findings; BEN: benign
pathology; NAA: non-advanced adenomas; AA: advanced adenomas; CRC: colorectal cancer.

Individuals from this prospective, controlled, double-blinded study were also recruited from
Complexo Hospitalario Universitario de Ourense and were referred to each undertake a colonoscopy
and a FIT, besides a blood extraction to obtain serum. Following colonoscopy, individuals were
classified as: 171 with no colorectal findings, 159 with benign pathologies (4 inflammatory polyps, 38
hyperplastic polyps, 65 hemorrhoids, 46 diverticula, and 6 with other benign pathologies), 117 with
non-advanced adenomas, 53 AA and 4 CRC cases (two stage I, one stage II, and one stage III). AA
included adenomas ≥10 mm, with villous component or high-grade dysplasia. CRC and AA cases
were referred as advanced neoplasia (AN). Lesions were classified as ‘proximal’ when located only
proximal to the splenic flexure, and ‘distal’ when found only in the distal or in both the distal and
proximal colon.

The study followed the clinical and ethical practices of the Spanish Government and the Helsinki
Declaration, and was approved by the Galician Ethical Committee for Clinical Research. Informed
consent was obtained from each individual and anonymity was warranted.

2.2. Blood Samples and Stool Samples

Blood and a stool sample were obtained one week before colonoscopy. Blood samples were
coagulated at room temperature for 20 min, and centrifuged at 2000× g for 15 min. Serum was stored
at −20 ◦C. There were no diet or medication restrictions for stool collection.

The fecal occult blood (µg hemoglobin/g feces) was measured using a quantitative immunological
test for the automated OC-Sensor (Eiken Chemical, Tokyo, Japan).
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2.3. DNA Extraction and Sodium Bisulfite Modification

Genomic DNA was isolated from 300–1000 µL serum using QIAamp DNA Blood Mini Kit (Qiagen,
Hilden, Germany) and was bisulfite converted using EZ DNA Methylation-Direct kit (Zymo Research,
Irvine, CA, USA), following the manufacturers′ protocol. Modified DNA was stored at −80 ◦C.

A fully-methylated control was prepared from DNA extracted from peripheral blood obtained
from a control individual, and treated with CpG methyltransferase (M.SssI; New England Biolabs,
Ipswich, MA, USA). An unmethylated control using the same DNA, not treated with M.SssI, was also
prepared. Both fully-methylated and unmethylated controls were treated with sodium bisulfite, and
their methylation status, at least for the region analyzed in the NEUROG1 promoter, was corroborated
through bisulfite pyrosequencing.

2.4. Bisulfite Pyrosequencing

Bisulfite pyrosequencing was performed for quantitative methylation analysis of the CpG island
(including 12 CpG sites—Figure 2) in the NEUROG1 promoter, previously analyzed by others [13,19].
Methylation differences at each single CpG site was evaluated between individuals with no colorectal
pathology and AN. The combination of CpG sites that better discriminated these groups was selected.
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Figure 2. Representation of the CpG island analyzed located in the promoter of NEUROG1. The relative
position of the 12 CpG sites is shown. Forward and reverse primers (solid arrows), and sequencing
primer (dashed line) used for bisulphite pyrosequencing (B = biotin) is shown on the top of the figure.
Forward and reverse primers (solid arrows), and probe (dashed line) used for the MS-qPCR is shown
on the bottom of the figure.

PCR primers externally targeting the region of interest (191 bp), besides the sequencing primer,
were designed using Pyromark Assay Design software v2.0 (Qiagen, Hilden, Germany). In each
amplification set, a fully-methylated control, an unmethylated control and a no template control were
included, besides the samples from the case-control cohort. PCR condition and primer sequences are
described in the Supplementary Materials.

The sequencing reaction and quantification of methylation were conducted using the PyroMark MD
instrument, and analyzed with the Pyro Q-CpG software (Qiagen, Hilden, Germany). A methylation
percentage was obtained for each CpG site interrogated, per sample.

2.5. Nested Methylation-Specific qPCR

NEUROG1 methylation was quantified at the CpG sites selected by bisulfite pyrosequencing,
using a custom qPCR approach. The first pre-amplification step targeted the region of interest, followed
by a MS-qPCR (methylation-specific qPCR), using diluted pre-amplification products as template.
Further details are provided in the Supplementary Materials.

A standard curve for NEUROG1 methylation was elaborated with dilutions of the fully-methylated
control (100−0.1% methylation; amplification efficiency = 96.16%; slope = −3.418; R2 = 0.9996). A linear
fit of the mean Cq (quantification cycle) as a function of the log10 methylation percentage was obtained,
and a non-normalized methylation percentage was estimated for each sample. To normalize for input
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DNA across the samples, the ACTB gene was used in a nested qPCR, and a relative DNA quantity was
obtained (Supplementary Material).

The normalized methylation percentage (NMP) for NEUROG1 was calculated using this formula:

NMP =
Non− normalized methylation percentage

Relative DNA quantity
× 100 (1)

2.6. Statistical Analysis

Mean, standard deviation, median and interquartile range (IQR) were presented for continuous
variables. Non-parametric statistic was used for two-sample group comparisons (Mann–Whitney U
test).

Receiver–operating characteristic (ROC) curves were used to evaluate the ability of the marker to
discriminate AN or AA from individuals with no neoplasia, providing the area under the curve (AUC).
The cut-offs selected resulted from setting specificity close to 90%, 95% or 98%, prioritizing specificity
instead of sensitivity. This criterion guaranteed a low proportion of false positives, which is highly
desirable for a colorectal cancer screening test. Sensitivity, and negative and positive predictive values
were estimated for the fixed specificity values. Logistic regression models based on NEUROG1 and/or
FIT transformed to log10 (marker + 2), were elaborated, including gender and age as confounders.
Differences in model fit were evaluated with a likelihood ratio test. AUC values were compared
using the method of DeLong. McNemar test was used to compare the proportion of AN or AA cases
detected, while Fisher′s exact test was employed to compare the proportion of distal and proximal
lesions detected. Statistical analyses were done with the SPSS software (v.20.0; Chicago, IL, USA), R
environment (v.3.6.3) and MedCalc Software (v.14.12.0; Oostende, Belgium). All tests were two-sided
and p-values ≤ 0.05 were considered statistically significant.

3. Results

3.1. Selection of CpG Sites in Serum NEUROG1 in the Case-Control Cohort

The methylation status of NEUROG1, based on bisulfite pyrosequencing, was analyzed to evaluate
the individual discriminatory capability of each of the 12 CpG sites interrogated. Methylation values
were skewed towards 0% and did not follow a normal distribution. Methylation differences at each
single CpG site was evaluated in individuals with no colorectal pathology and AN. Mean and median
methylation for each CpG site are shown in Supplementary Table S1. All CpG sites showed increased
methylation in the AN group compared to controls, with statistically significant differences only
for CpG 9. The highest AUC values for the detection of AN were found for CpG 7, 8, 9 and 12,
ranging from 0.573 to 0.633. Hence, the mean methylation percentage of these four sites resulted in
significant differences when comparing no colorectal findings and AN, with an AUC value of 0.652
(Supplementary Table S1). Based on this result, the methylation analysis of NEUROG1 using MS-qPCR
was restricted to CpG sites 7, 8, 9 and 12.

3.2. Methylation Analysis of Serum NEUROG1 in the Screening Cohort

Methylation analysis by MS-qPCR of the selected CpG sites, quantified in 504 individuals, did not
show a normal distribution, resulting in 73.02% of the cases with 0% methylation. Methylation levels
analyzed according to demographic variables (Supplementary Table S2) indicated that older individuals
and males showed slightly higher NEUROG1 methylation, though no statistically significant. No
differences regarding familial risk were found.

In relation to the colorectal findings groups (Table 1), 0.00% (0.00–0.00%) median and IQR
methylation of NEUROG1 resulted in individuals with no colorectal findings and all the benign
pathology sub-groups (inflammatory and hyperplastic polyps, hemorrhoids, diverticula and other
benign pathologies). When methylation was compared between groups with no colorectal findings and
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benign sub-groups, no statistical differences were found, except for hyperplastic polyps (Mann–Whitney
test, p-value = 0.037).

Table 1. Serum NEUROG1 methylation according to colorectal findings in the screening cohort.

Colorectal Findings n Mean ± SD Median (IQR) p-Value 1

a b

No neoplasia 330 1.96 ± 10.39 0.00 (0.00–0.00)
No colorectal findings 171 2.32 ± 9.53 0.00 (0.00–0.00)

Benign pathologies 159 1.58 ± 11.26 0.00 (0.00–0.00) 0.083
Inflammatory polyps 4 0.00 0.00 0.229
Hyperplastic polyps 38 3.03 ± 16.31 0.00 (0.00–0.00) 0.037

Hemorrhoids 65 0.45 ± 1.89 0.00 (0.00–0.00) 0.122
Diverticula 46 2.33 ± 14.73 0.00 (0.00–0.00) 0.526

Other benign pathologies 6 0.00 0.00 0.141
Non-advanced adenomas 117 1.15 ± 9.30 0.00 (0.00–0.00) 0.192 0.547

Advanced neoplasia 57 10.92 ± 27.79 0.00 (0.00–3.52) <0.001 <0.001
Advanced adenomas 53 10.85 ± 28.51 0.00 (0.00–2.74) <0.001 <0.001

Cancer 4 11.91 ± 17.93 4.87 (0.00–30.86) 0.026 0.011

SD: standard deviation; IQR: interquartile range. 1 p-value for Mann–Whitney test for comparison with no colorectal
findings group (a) and no neoplasia group (b).

Methylated NEUROG1 was comparable in non-advanced adenomas and no neoplasia which
included those with no colorectal findings and benign pathologies. However, individuals bearing
AA exhibited increased methylation, resulting in significant differences compared to no colorectal
findings, no neoplasia, and even non-advanced adenomas (Mann–Whitney tests, p-values < 0.001). In
a detailed analysis according to the characteristics of adenomas (Table 2), we found that individuals
with adenomas sized ≥10 mm and with villous component registered elevated methylated NEUROG1
in contrast to small and tubular adenomas (Mann–Whitney tests, p-values < 0.001). Differences were
absent between 1–2 vs. 3 or more adenomas, or distal vs. only proximal location.

Table 2. Serum NEUROG1 methylation according to the characteristics of adenomas in
the screening cohort.

Characteristic n Mean ± SD Median (IQR) p-Value 1

Number
1–2 138 3.55 ± 16.40 0.00 (0.00–0.00) 0.429
≥3 32 6.84 ± 24.51 0.00 (0.00–0.32)

Size
<10 mm 123 2.69 ± 14.74 0.00 (0.00–0.00) 0.001
≥10 mm 47 8.05 ± 24.78 0.00 (0.00–2.05

Histology
Tubular 143 2.65 ± 14.60 0.00 (0.00–0.00) <0.001

Villous component 27 12.21 ± 30.00 0.46 (0.00–6.50)

Adenomas
Non-advanced 117 1.15 ± 9.30 0.00 (0.00–0.00) <0.001

Advanced 53 10.85 ± 28.51 0.00 (0.00–2.74)

Location
Distal 129 5.32 ± 20.70 0.00 (0.00–0.13) 0.680

Only proximal 41 0.56 ± 2.06 0.00 (0.00–0.00)

SD: standard deviation; IQR: interquartile range. 1 p-value for Mann–Whitney test.
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Regarding CRC, increased NEUROG1 methylation was also evidenced, with statistically significant
differences when compared to no colorectal findings group and no neoplasia (Mann–Whitney tests,
p-value = 0.026 and p-value = 0.011, respectively). Differences were maintained when considering AN
as a whole (Mann–Whitney test, p-value < 0.001), suggesting its utility for the detection of both CRC
and AA.

3.3. Diagnostic Performance of Serum NEUROG1 Methylation for the Detection of Advanced Neoplasia and
Advanced Adenomas

The discriminatory capacity of NEUROG1 was assessed by ROC curve analyses. The AUC for
the detection of AN was 0.674 (95% CI 0.631–0.715), while for AA it resulted 0.666 (95% CI 0.622–0.707).
As shown in Table 3, using >1.3518% as the NEUROG1 cut-off (90.60% specificity), 33.33% of AN and
32.08% of AA were identified, detecting 50% of CRC cases. However, the increase in specificity to
95.30% resulted in a considerable loss of sensitivity (17.54% for AN and 15.09% for AA). Proximal
lesions were better detected compared to distal ones, though differences were not statistically significant
for any of the cut-offs.

3.4. Evaluation of a Diagnostic Model Including Serum NEUROG1 Methylation and FIT

The diagnostic performance of NEUROG1 in combination with FIT was tested since fecal
hemoglobin concentration results in the screening population were available. Older and male patients
showed higher fecal hemoglobin concentrations, which were statistically significant. No differences
regarding familial risk were found.

To account for the impact of age and gender, the linear predictors of the logistic regression models
using age, gender and each of the markers as regressors were used. Based on this, the resulting AUC
for the model including FIT, age and gender was 0.742 (95% CI 0.702–0.780) for AN, and 0.724 (95% CI
0.682–0.762) for AA. The inclusion of NEUROG1 methylation in the model increased the AUC up to
0.810 (95% CI 0.773–0.843) for the discrimination of AN, and 0.796 (95% CI 0.758–0.830) for AA. When
AUCs from the FIT model and the NEUROG1 + FIT model were compared, statistically significant
differences were found for both AN and AA (DeLong, p-values = 0.006). The diagnostic performance
of the models is summarized in Table 4.
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Table 3. Diagnostic performance of serum NEUROG1 methylation for the detection of advanced neoplasia and advanced adenomas in the screening cohort.

Advanced Neoplasia Advanced Adenomas

NEUROG1
Cut-Off (NMP)

Specificity %
(95% CI)

Sensitivity %
(95% CI)

NPV %
(95% CI)

PPV %
(95% CI)

Sensitivity %
(95% CI)

NPV %
(95% CI)

PPV %
(95% CI)

Detection %
Distal/Proximal1

>1.3518% 90.60
(87.5–93.1)

33.33
(21.4–47.1)

91.4
(88.4–93.9)

31.1
(19.9–44.3)

32.08
(19.9–46.3)

91.8
(88.9–94.2)

28.8
(17.8–42.1)

28.21/42.86
(NS)

>7.4194% 95.30
(92.9–97.1)

17.54
(8.7–29.9)

90.1
(87.0–92.6)

32.3
(16.7–51.4)

15.09
(6.7–27.6)

90.4
(87.4–92.9)

27.6
(12.7–47.2)

17.95/21.43
(NS)

NMP: normalized methylation percentage; NS: not significant differences for Fischer′s exact test for detection of distal vs. proximal AA. 1 Detection % of distal and only proximal AA.

Table 4. Diagnostic performance of the models for the detection of advanced neoplasia and advanced adenomas in the screening cohort.

Advanced Neoplasia Advanced Adenomas

Cut-Off
Specificity %

(95% CI)
Sensitivity %

(95% CI)
NPV %

(95% CI)
PPV %

(95% CI)
Sensitivity %

(95%CI)
NPV %

(95% CI)
PPV %

(95% CI)
Detection %

Distal/Proximal

FIT
>0.2684

95.75
(93.4–97.4)

45.61 a

(32.4–59.3)
93.2

(90.6–95.4)
57.8

(42.2–72.3)
41.51 c

(28.1–55.9)
93.243

(90.6–95.4)
53.7

(37.4–69.3)
48.72/21.43

(NS)

FIT
>0.4190

98.21
(96.5–99.2)

29.82 b

(18.4–43.4)
91.6

(88.8–94.0)
68.0

(46.5–85.1)
26.42 d

(15.3–40.3)
91.8

(89.0–94.1)
63.6

(40.7–82.8) 35.90/0.00 *

NEUROG1 + FIT
>0.2899

95.75
(93.4–97.4)

50.88 a

(37.3–64.4)
93.9

(91.2–95.9)
60.4

(45.3–74.2)
47.17 c

(33.3–61.4)
93.9

(91.2–95.9)
56.8

(41.0–71.7)
53.85/28.57

(NS)

NEUROG1 + FIT
>0.4598

98.21
(96.5–99.2)

40.35 b

(27.6–54.2)
92.8

(90.1–95.0)
72.4

(55.4–88.1)
35.85 d

(23.1–50.2)
92.8

(90.1–95.0)
70.4

(49.8–86.2)
43.59/14.29

(NS)

NS: not significant differences for Fischer′s exact test for comparison of detection of distal vs. proximal AA. McNemar test for comparison of proportions based on the NEUROG1 + FIT vs.
FIT: AN cases (a p-value = 0.375; b p-value = 0.031); AA cases (c p-value = 0.375; d p-value = 0.063). * Fisher′s test p-value = 0.011
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To assess the contribution of the variables age and gender in the models, we elaborated a new
model including only these variables. The AUC resulted 0.674 (0.608–0.741) and 0.684 (0.618–0.749)
for the detection of AN and AA, respectively. Additionally, age + gender models were compared to
NEUROG1 + FIT (+ age + gender), resulting in statistically significant differences for AN and AA
(likelihood ratio tests, p-values < 0.0001). These results indicate that the latter model fits significantly
better than the age + gender models.

Furthermore, the superior performance of NEUROG1 + FIT was evident especially for the fixed
98.21% specificity. At this value, FIT model detected 29.82% of AN, including 75% of CRC cases,
while the model including NEUROG1 resulted positive in 40.35% of AN, with all CRC cases detected
(McNemar test, p-value = 0.031). Regarding AA, though sensitivities at 98.21% specificity also differed
between models (FIT: 26.42%; NEUROG1 + FIT: 35.85%), statistical significance was not reached
(McNemar test, p-value = 0.063). In general, the detection of distal lesions compared to proximal was
superior for the two cut-offs analyzed in both models. However, a significant difference was only
found for AA in the FIT model at 98.21% specificity (distal: 35.9% vs. proximal: 0%; Fisher′s test
p-value = 0.011).

4. Discussion

The detection of methylated DNA in liquid biopsies represents one of the most promising
biomarkers for cancer diagnosis, and efforts have also centered in their use for CRC screening [21,22].
In this study we committed to determine the diagnostic capability of serum NEUROG1 methylation
for the detection of CRC and AA in an asymptomatic family-risk screening cohort, based on known
NEUROG1 increased methylation in CRC [19].

In a first approach, the CpG island in the promoter of NEUROG1 targeted in previous studies [13,
19,23] was assessed by bisulfite pyrosequencing in a case-control cohort. These results allowed
the selection of CpG sites 7, 8, 9 and 12, that better discriminated individuals with AN (CRC or AA)
from individuals with no colorectal findings. Hence, we designed a custom nested qPCR assay for
quantifying methylation at these selected sites and extended the study to an asymptomatic family-risk
screening cohort.

We found that individuals with no colorectal findings and benign pathologies exhibited low
serum NEUROG1 methylation. This similarity is of great value since biomarkers are frequently altered
in benign pathologies, limiting their clinical utility [24]. However, individuals bearing hyperplastic
polyps showed slightly increased methylation that could probably be related to the serrated carcinoma
pathway [25]. This increase in NEUROG1 methylation from normal colonic mucosa to hyperplastic
polyps, also progressing in adenomas, primary adenocarcinomas and metastatic adenocarcinomas,
was previously evidenced in tissue [16].

In line with this, we describe for the first time a trend towards increased serum methylated
NEUROG1 for the most severe characteristic of adenomas: Number (≥3), size (≥10 mm) and histology
(villous component), consistent with the significant elevation of methylation in AA but not in
non-advanced adenomas. As regards CRC, increased methylation was also registered, coinciding with
previous results [19].

In terms of discriminatory capacity, NEUROG1 showed an AUC of 0.674 for separating individuals
with AN from the rest of the cohort (no colorectal findings, benign pathologies and non-advanced
adenomas), and 0.666 for AA. Sensitivity for AN ranged from 17.54 to 52.63%, detecting 50 or 75%
of cancer cases, with specificity between 95.30% and 80.09%. Regarding AA, 15.09–50.94% of these
lesions were detected. It should be noted that for all the cut-offs evaluated, the detection of distal and
only proximal AA was comparable, with no statistically significant differences.

Many studies have examined blood-based DNA methylation markers for the diagnosis of CRC.
Although methylated markers such as RASSF1A, SDC2, BCAT1, IKZF1, ALX4, SDC2 and WIF-1,
among others, have demonstrated some usefulness for the detection of established cancers [17,21,22],
the goal of detecting precancerous adenomas has not been achieved yet. The most known methylation



Diagnostics 2020, 10, 437 10 of 13

marker in blood is SEPT9, which is FDA approved. The PRESEPT study [26], conducted in a real
screening scenario, indicated 48.2% sensitivity for CRC with 91.5% specificity. The sensitivity of the test
was reported to be increased, especially among Asians [27]. However, sensitivity for AA was very low
(11.2%), slightly higher than the false positive rate for all non-cancer individuals [26], indicating no
utility in detecting precancerous lesions [28].

In our study, we also analyzed the performance of NEUROG1 combined with FIT. The variations
in NEUROG1 methylation found intrinsic to age and gender, together with the epidemiological fact
that both AA and CRC have a higher prevalence in males and in older-aged groups, well justify
the need of including these confounders in the diagnostic models.

NEUROG1 + FIT model detected all CRC cases, besides 35.85–47.17% of AA, when specificity
was fixed around 98% and 95%. The diagnostic competence of this model resulted more evident
when compared to the FIT model (including FIT, age and gender), proposed in other works for CRC
detection in symptomatic [29] and asymptomatic [30] patients. For the FIT model, sensitivity for AN
and AA considerably decreased, more abruptly for 98.21% specificity. At this cut-off, 75% of CRC cases
and 26.42% of AA were detected, instead of all cancers and 35.85% of AA as seen for NEUROG1 +

FIT. Therefore, the combination of methylated NEUROG1 and FIT, both non-invasive tests, could be
very helpful for the detection of cancers and premalignant AA, to be incorporated into CRC screening
programs. Additionally, the approximate cost per patient of NEUROG1 methylation is USD 11 and
the cost of FIT is USD 5-23.

According to literature, studies combining blood methylation markers with FIT are scarce. Two
of these are centered on SEPT9. Johnson and colleagues [31] reported 88.7% sensitivity for CRC and
18.5% for AA, with specificity lower than 80%. A higher sensitivity for CRC and AA (94.2% and
42.9%, respectively) was reached in another study combining methylated SEPT9 and the stool test,
with 80.8% specificity [32]. On the other hand, methylated BCAT1 and IKZF1 combined with FIT
showed 82% sensitivity for CRC and 25% for AA, at 73% specificity [33]. These studies do not meet
the high specificity recommended for a screening test, while in our work specificity was intentionally
conditioned for screening. However, to make an equitable comparison, our NEUROG1 + FIT model
at 80% specificity rendered 100% sensitivity for CRC and 67.92% for AA, noticeably superior to
the above studies.

Unlike other studies analyzing methylation markers using qPCR but reporting qualitative
interpretations [26,34], we report relative quantifications using a custom nested MS-qPCR. This enabled
us to evaluate the diagnostic performance of NEUROG1, as well as the combination with FIT, fixing
specificity at the desirable level for screening. The large, asymptomatic screening cohort analyzed
constitutes another strength of our study, allowing the estimation of the diagnostic capability of
methylated NEUROG1 in a real-life screening scenario that included a variety of colorectal pathologies.

One of the limitations of the study is the reduced number of CRC cases, though the 0.8% prevalence
corresponds to that observed in other comparable screening cohorts [35–37]. A larger number of
asymptomatic CRC cases from screening would be desirable not only to confirm the diagnostic capacity,
but also to evaluate the performance for detecting distal and proximal tumors. Additionally, among
the 54 AA cases, only 14 patients had proximal lesions, limiting the analysis performed regarding
the detection of distal vs. proximal lesions. On the other hand, the evaluation of NEUROG1 in other
non-colorectal tumors and benign gastrointestinal pathologies would also be of utility to estimate
the specificity of the biomarker.

Liquid biopsies are readily available and contain stable methylated DNA targets. In our study, we
demonstrate that serum NEUROG1 methylation could be a useful test for the detection of premalignant
advanced adenomas and cancer, for the screening of CRC in asymptomatic individuals. The convenient
diagnostic capability of methylated NEUROG1 combined with the also non-invasive FIT results in
an improved performance and should be further examined in larger studies, including average-risk
individuals, to confirm the utility of the marker combination.
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