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Abstract: Systemic rheumatic diseases are a heterogeneous group of autoimmune disorders that affect
the connective tissue, characterized by the involvement of multiple organs, leading to disability, organ
failure and premature mortality. Despite the advances in recent years, the therapeutic options for these
diseases are still limited and some patients do not respond to the current treatments. Interleukin-17
(IL-17) is a cytokine essential in the defense against extracellular bacteria and fungi. Disruption of
IL-17 homeostasis has been associated with the development and progression of rheumatic diseases,
and the approval of different biological therapies targeting IL-17 for the treatment of psoriatic arthritis
(PsA) and ankylosing spondylitis (AS) has highlighted the key role of this cytokine. IL-17 has
been also implicated in the pathogenesis of systemic rheumatic diseases, including systemic lupus
erythematosus (SLE), Sjögren’s syndrome (SS) and systemic sclerosis (SSc). The aim of this review is
to summarize and discuss the most recent findings about the pathogenic role of IL-17 in systemic
rheumatic and its potential use as a therapeutic option.

Keywords: Interleukin-17; systemic rheumatic diseases; T helper 17 cells; Sjögren’s syndrome;
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1. Introduction

Systemic rheumatic diseases are chronic, inflammatory, autoimmune disorders that may affect
every organ system. Similar to other autoimmune pathologies, systemic rheumatic diseases are
characterized by the loss of homeostatic tolerance of the immune system, which is a consequence of the
abnormal activation against self-antigens and leads to the production of autoantibodies, inflammatory
mediators and immune complexes. All these processes trigger local and systemic inflammation that
induce damage to the affected organs and finally lead to disability, loss of quality of life and premature
death [1–3]. The best-characterized systemic rheumatic diseases are likely rheumatoid arthritis (RA),
systemic lupus erythematosus (SLE), or Sjögren’s syndrome (SS), but there are also other less frequent
disorders, such as systemic sclerosis (SSc), vasculitis or immunoglobulin G4–related disease (IgG4-RD).

Cytokines are soluble mediators that have an essential role in immune functions, and the
dysregulation of homeostatic cytokine levels has been associated with the pathogenesis of autoimmune
diseases [4]. The interleukin-17 (IL-17) family is a group of pro-inflammatory cytokines with a key role
in defense against fungi and bacteria. Elevated IL-17 levels have been associated with the development
of chronic inflammatory immune-mediated diseases [5–7] and several therapeutic strategies targeting
IL-17 are approved for the treatment of psoriasis, psoriatic arthritis (PsA) and ankylosing spondylitis
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(AS) [8], pointing to the role of this cytokine in the pathogenesis of these autoimmune diseases [9–11].
The role of IL-17 on RA has been extensively studied [7,12,13]; therefore, this review will focus on the
role of IL-17 in the pathogenesis of other systemic rheumatic diseases, mainly SLE, SS and SSc, as well
as the potential therapeutic intervention on these diseases.

2. IL-17 Expression and Function

The IL-17 family consists of six family members: IL-17A (also named IL-17), which was the first
member reported [14], IL17B, IL-17C, IL-17D, IL-17E and IL-17F [15]. IL-17A has a predominant
role in the pathogenesis of autoimmune diseases, and therefore in this review we will focus on this
member [6].

Several cell types (cytotoxic T 17 cells (Tc17), γδ T cells, invariant natural killer T cells (iNKT),
group 3 innate lymphoid cells (ILC3), natural killer (NK) cells and double-negative T cells [16,17]) are
able to produce IL-17, although T helper 17 (Th17) cells are the best-characterized IL-17-producing cell
type [18,19]. Th17 cells are a subset of CD4+ T helper cells that are characterized by the production
of the cytokines IL-17 and IL-22, but also secrete other important cytokines such as IL-21 and tumor
necrosis factor (TNF). Th17 cells are essential for the host defense against fungi and bacteria, and the
excessive activation of Th17 cells is associated with the pathology of multiple sclerosis (MS) [20,21],
inflammatory bowel disease (IBD) [22,23], systemic sclerosis (SSc) [24,25], psoriasis [26,27], rheumatoid
arthritis (RA) [28] and spondyloarthropathies [29,30].

Multiple works have shown that IL-23 is a key cytokine involved in Th17 differentiation and in
the production of IL-17 by other cell types (iNKT, NK, γδ T cells, CD8+ T cells) [31,32]. IL-23, through
binding to its receptor IL-23R, promotes the phosphorylation of the signal transducer and activator of
transcription 3 (STAT3) by janus kinase 2 (JAK2) and tyrosine kinase 2 (TYK2), allowing its entrance
into the nucleus and enhancing the expression of the retinoic acid receptor-related orphan receptor
gamma t (RORγt), which is responsible for the expression of IL-17 and other Th17 cytokines [12,33].
Although IL-23 is the main cytokine involved in Th17 differentiation, other inflammatory mediators,
such as IL-21 [34,35], IL-1 [36], TGF-β [37] and IL-6 [38], are essential for proper cell differentiation.

IL-17 signaling occurs through specific membrane receptors: the IL-17 family receptors (IL-17R).
There are five IL-17R members, which are heterodimers consisting of two different subunits:
IL-17RA/IL-17RC, the receptor for IL-17A [39–41]. The binding of IL-17 to its receptor activates
two different pathways, the canonical and the non-canonical. In the canonical pathway, the binding of
IL-17 to the IL17RA/IL17RC complex induces the binding of the adaptor protein Act1 to the SEFIR
(similar expression of fibroblast growth factor genes/IL-17 Receptor) complex, which triggers the
ubiquitylation of TNF-receptor-associated factor-6 (TRAF6) and the activation of mitogen-activated
protein kinase (MAPK), CCAAT-Enhancer-Binding protein β/δ (C/EBPβ/δ), and nuclear factor κB
(NF-κB) pathways [15,42]. These pathways promote the production of antimicrobial peptides and
proinflammatory cytokines and chemokines [15,42,43].

On the other hand, the non-canonical pathway promotes the stabilization of m(essenger)RNAs
encoding for inflammatory mediators. In this pathway, IL-17 induces the phosphorylation of Act1 that
leads to the inhibition of splicing factor 2 (SF2), which is a factor involved in mRNA destabilization,
and to the recruitment of the mRNA stabilizer human antigen R (HuR), which induces the stabilization
of the mRNA and the secretion of inflammatory cytokines and chemokines [15,43–45].

Regarding the biological function, IL-17 is a cytokine with a crucial role in the host defense against
the pathogen infections, mainly against extracellular bacteria and fungi on epithelial and mucosal
surfaces [31]. IL-17 acts on fibroblasts, immune cells and epithelial cells, inducing the production
of antimicrobial molecules, cytokines, chemokines and matrix metalloproteinases (MMPs) [15,17,42].
The secretion of these mediators promotes the recruitment of neutrophils and other immune cells,
like Th17 themselves and ILC3s, to the affected tissues, producing an effective and protective immune
response. In addition, IL-17 is also involved in the activation of B cells and the formation of germinal
centers [15,43,46–48].
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3. IL-17 in Systemic Rheumatic Diseases

3.1. Systemic Lupus Erythematosus

Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease that predominantly
affects women of reproductive age and is characterized by the production of autoantibodies and the
formation and deposition of immune complexes that induce systemic inflammation and tissue damage.
SLE can affect almost any organ, although the most commonly affected are skin and joints. SLE is
a complex multifactorial disease and environmental, genetic and immunologic factors are involved
in its development [49,50]. Although some pathogenic mechanisms of SLE are still unknown, it has
been widely reported that the main immunological events involved in the pathogenesis of SLE are the
disbalance between apoptotic material production and its removal, the type I interferon (IFN) altered
signaling and the T and B cells’ abnormal activation, which lead to autoantibody production.

Different human and mice studies have demonstrated a dysregulation of IL-17 in SLE and its
role in this disease. The levels of IL-17 and the frequency of IL-17-producing cells were elevated in
two different lupus mouse models [51] and, importantly, the genetic deletion of IL-17 was shown to
ameliorate the pathology of SLE [52]. Regarding IL-17 studies in humans, the levels of IL-17 producing
cells were increased in the peripheral blood of SLE patients [53–55] as well as in target tissues like
kidneys [56]. Circulating levels of IL-17A are also elevated in patients with SLE compared to HC [57–59].
The association between these levels and the disease activity is controversial, as Chen et al., Wong et al.
and Abdel Galil et al. found a positive correlation between IL-17 levels and the activity of the disease
measured by the SLE Disease Activity Index (SLEDAI), but these correlations were not observed in a
further study [60]. Therefore, the use of IL-17 as a biomarker of disease activity needs to be elucidated
in further studies. IL-17A levels were also positively correlated with the RORγt mRNA expression in
SLE patients, pointing out the relevance of the Th17-IL-17 axis in this disease [57]. This assumption is
supported by the fact that IL-23 and IL-21, two cytokines involved in Th17 differentiation, are also
elevated in SLE patients [58,61,62].

There is important evidence showing that IL-17 has a pleiotropic role on SLE pathology [7].
IL-17 induces the recruitment of neutrophils and other immune cells to the target tissues, promoting
and maintaining the inflammatory process. The IL-17-induced neutrophil recruitment is an important
effect, as neutrophils are key cells in SLE pathology. The low-density granulocytes, a subpopulation
of neutrophils that are prone to cell death, have been seen to contribute to the pathology of this
disease, through the Neutrophil Extracellular Traps formation (NETosis) process, in which the release
of intracellular material to the surrounding milieu contributes to the initiation and maintenance of
immunological alteration in SLE [63,64]. In fact, the cellular debris released by these cells induce the
activation of the type I IFN pathway by plasmacytoid dendritic cells (pDCs), which ultimately leads to
the hyperactivation of T and B cells [49,54], consequently perpetuating the characteristic inflammatory
processes of SLE. Remarkably, it has been demonstrated that IL-17 is able to induce NETosis in SLE in
an animal model of lupus [65].

IL-17 also induces the production of pro-inflammatory cytokines by different cell types.
An essential IL-17-induced cytokine is IL-6, which is produced by macrophages and monocytes,
and also in SLE patients by B cells. Among the roles of IL-6 on SLE pathogenesis, its effect on B
cells’ differentiation into plasma cells and the consequent production of autoantibodies is the most
relevant [59]. Furthermore, as IL-6 promotes the differentiation of Th17 cells, it has been shown that
the IL-17/IL-6 axis induces a positive feedback loop in SLE [66]. Finally, IL-17 also induces the survival,
proliferation and differentiation of B cells, generating the subsequent production of autoantibodies [67].

Altogether, these works demonstrate that IL-17 is involved, in several ways, in the development
and onset of SLE, and therefore targeting IL-17 might be a promising therapeutic option.
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3.2. Systemic Sclerosis

Systemic sclerosis (SSc), also known as scleroderma, is a chronic autoimmune disease that may
involve virtually any organ system, and whose mortality rate is the highest among the rheumatic
diseases. Similarly to other systemic autoimmune diseases, genetic, environmental and immunological
factors are involved in its pathogenesis. SSc is characterized by the inflammation, dysregulation of
innate and adaptive immune systems, vascular abnormalities, and fibrosis, which is the hallmark
of this disease and is due to an excessive production of collagen in several organs, mainly skin and
lungs [68,69].

Several studies have shown a dysregulation of IL-17 homeostasis in SSc patients, but there are
certain discrepancies about the levels at which IL-17 is found in patients with SSc. Despite some authors
indicating that IL-17A is not increased in SSc patients [24,70], other studies have found that circulating
IL-17 levels are elevated in patients with SSc [25,71]. These differences may be attributed to the
difficulty of measuring IL-17 systemically, as the circulating levels are really low. However, the elevated
frequency of Th17 cells and IL-17+ cells found in the peripheral blood and skin in SSc patients [25],
as well their association with the skin thickening, demonstrate the deregulated IL-17 signaling and
the potential implication in SSc pathology [24,25,72–74]. On the other hand, and analogously to what
occurs in SLE, increased levels of IL-23 and other cytokines that promote Th17 differentiation (IL-1,
IL-6, TGF-β and IL-21) have been found in SSc patients [75,76].

The works about the role of IL-17 on fibrosis showed opposite effects in mice and human studies.
In mouse models, it has been widely reported that IL-17 has a pro-fibrotic role. Okamoto and colleages
found that IL-17 deficiency reduced skin fibrosis in two SSc mice models: the bleomycin-induced
and the TSK-1 model. Moreover, IL-17 stimulation induced a pro-fibrotic phenotype in a fibroblast
murine cell line [77,78]. These findings were corroborated in another work in which IL-17 promoted
the expression of type I collagen, TGF-β and IL-6 by pulmonary mouse fibroblasts [79]. Moreover,
Park et al. showed that IL-1-mediated skin and lung fibrosis was dependent on IL-17 activity [77],
pointing out the fibrotic role of mouse IL-17.

Despite the work of Yang et al., which showed that, in dermal fibroblasts of SSc patients, the
blockage of IL-17 diminished the expression of Col(lagen) I and III induced by the supernatants of SSc
peripheral blood mononuclear cells (PBMCs) and Th17 cells [25]; the profibrotic role of IL-17 was not
observed in isolated human fibroblasts. In fact, Brembilla et al. [80] found that IL-17 stimulation did
not regulate the expression of Col I by dermal fibroblasts of SSc patients and Carvalheiro et al. [81]
showed that IL-17 neutralization did not affect the expression of collagen family members by dermal
fibroblasts, by reducing the expression of fibrotic mediators such as IL-6. Remarkably, complex human
models appear to have contributed to solving the discrepancies regarding the role of IL-17, as, in an
organotypic full human skin model, IL-17 had a strong anti-fibrotic role through the reduction in Col I
production and the promotion of the MMP-1 secretion [82].

The role of IL-17 in inflammatory processes observed in SSc patients is well defined. IL-17
induces the production of cytokines (IL-6, IL-1), chemokines (IL-8, CCL-2, CCL-8, CCL-20, CXCL-2),
matrix metalloproteinases (MMP-1, MMP-2, MMP-9) and other adhesion molecules by the dermal
fibroblast and endothelial cells (ECs) of SSc patients, which perpetuate the inflammatory processes and,
as mentioned above, contribute to fibrosis and vascular dysfunction-related processes [71,75,76,81,82].

Another essential aspect of SSc in which IL-17 has been implicated is vascular thickening and
endothelial dysfunction. Besides the induction of inflammatory mediators by ECs, it has been reported
that IL-17 activates and regulates the proliferation and migration of vascular smooth muscle cells,
which are key in vascular pathology in SSc since, among other functions, they promote the production
of collagen [76,83].

In summary, current works show that IL-17 plays a key role in SSc and that it is involved in the
development of the disease, representing a therapeutic target of great interest.
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3.3. Sjögren Syndrome

Sjögren’s syndrome (SS) is an autoimmune disease characterized by inflammation of the salivary,
lacrimal and other exocrine glands, leading to symptoms that are a consequence of dryness, particularly
in the eyes and mouth. SS patients present other clinical manifestations such as arthralgia, asthenia
and pulmonary, skin, renal and neurological disorders, so it is also a systemic disease [84,85]. Besides
this, SS patients have a higher risk of developing B cell lymphomas [86]. SS can develop autonomously
(primary SS) or in the context of other autoimmune diseases such as SLE or RA (secondary SS) [85].

Similarly to other systemic rheumatic diseases, IL-17 levels are also elevated systemically and
locally in SS patients. IL-17-producing cells are increased in the salivary glands of SS patients. Among
the infiltrated IL-17-producing cells found in these glands, Th17 cells are the predominant population,
although other IL-17-producing cells such as CD8+ T cells and double-negative T cells have also
been found [87–90]. As a consequence of this higher infiltration of IL-17-producing cells, IL-17
levels are elevated in the salivary glands [87,90]. Moreover, IL-17 levels and IL-17-producing cells
are also elevated in the peripheral blood and ocular surfaces of SS patients compared with healthy
individuals [88–95]. Interestingly, lachrymal IL-17 levels were associated with two ocular parameters
(tear film break-up time (TBUT) and Schirmer’s test), suggesting a pathological role of IL-17 in SS [96,97].
Remarkably, the IL-17R expression levels are also elevated in the glandular ducts of patients with
SS [98]. These results in SS patients are also supported by similar findings in mouse models of SS,
in which systemic and local levels of IL-17, as well the frequency of Th17 cells, are elevated in the
salivary and lacrimal glands of these mice [99–101]. In addition, it has been found that cytokines that
promote Th17 differentiation, such as TGF-β, IL-6 and IL-23, are also elevated in SS patients [90].

Several works have demonstrated the involvement of IL-17 in the development of SS. Lin et al.
found, in a mouse IL-17 knockout model, that IL-17 plays a key role in the regulation and activation of
B cells in SS [102]. In this model, IL-17, alone or in combination with B-cell-activating factor (BAFF),
induced the activation and maturation of B cells, promoting this manner of isotype class switching
and differentiation into plasma cells, triggering the hyperproduction of antibodies and the associated
damage [103]. In addition, B cell activation and maturation in SS lead to IL-6 production, promoting,
in a positive feedback loop, Th17 differentiation and IL-17 production [104].

On the other hand, IL-17 has a prominent inflammatory role that triggers the induction of cytokines,
chemokines and MMPs, leading to the perpetuation of inflammation and tissue damage [104]. IL-17
promotes IL-8 and IL-6 production by human salivary gland cells [87]. Different works have shown
that the expression levels of MMP-3 and MMP-9 are elevated in the plasma and salivary glands of SS
patients, contributing in this way to tissue damage [105,106]. As the inhibition of IL-17 reduced the
expression of MMP-9 and MMP-3 in the corneal epithelial cells of a dry-eye disease animal model [107],
it is tempting to speculate that IL-17 is also involved in the elevated levels of MMPs observed in
SS patients.

Altogether, these data suggest that neutralization of the IL-17 signaling could be also beneficial
for the treatment of SS pathology.

3.4. Other Systemic Rheumatic Diseases

In the recent years, different studies have demonstrated that IL-17 has a key role in the pathogenesis
of other systemic rheumatic diseases, including vasculitides and immunoglobulin G4–related disease,
among others.

Primary vasculitides are a group of disorders characterized by the inflammation of the blood
vessels, and whose mechanisms of action and etiopathology are mostly unknown. Although primary
vasculitides are a heterogeneous group of diseases, they have been classified according to the size of
the blood vessels affected [108]. Giant cell arteritis (GCA) is one of the most studied and prevalent
vasculitides. Specifically, it belongs to the group of large vessel vasculitides. In GCA patients,
expression levels of IL-17 are elevated in the affected tissues [109]. Likewise, high circulating levels of
IL-17 and IL-17-producing cells were found in GCA patients [110]. Moreover, IL-17 levels have been
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postulated as a predictor of the response to treatment with glucocorticoids, as patients with higher
levels of IL-17 were more sensitive to glucocorticoid treatment. In contrast, it was found that increased
IFNγ levels in GCA patients resulted in resistance or relapse during glucocorticoid treatment [109,111],
suggesting a different and maybe opposite role of these cytokines in the pathogenesis of GCA.

Similar findings have been observed in other vasculitides, as increased levels of IL-17 were
found in primary angiitis of the central nervous system [112], Kawasaki’s disease [113] and Behcet’s
disease [114], as well as in other vasculitides [115].

Despite IL-17 expression being elevated in vasculitides, the functional consequences of this
dysregulation are still unclear. However, the fact that IL-17 target cells, such as fibroblasts, endothelial
cells, and vascular smooth muscle cells [17], are key in the development of vasculitides and these cells
express IL-17 receptors, suggest that IL-17 might be responsible for the production of pro-inflammatory
mediators in these diseases [110]. However, further studies are needed to elucidate the role and
mechanisms of action of IL-17.

IgG4-related disease (IgG4-RD) is characterized by an increase in IgG4+ cells and circulating
IgG4, which is associated with the development of a fibro-inflammatory process mediated by tissue
infiltrations of immune cells, including IgG4-positive plasma cells. This process leads to the formation of
pseudotumor structures that produce dysfunction or lesions in the affected organs [116,117]. Despite the
mechanisms of action involved in this disease remaining largely unknown [118], some studies have
suggested that IL-17 might be implicated in the pathogenesis of the disease.

Grados et al. [119] found that levels of IL-17, as well as the frequency of IL-17-producing cells, were
increased in patients with IgG4-RD compared to control patients. Moreover, the number of T follicular
helper 17 cells (Tfh17) was higher in patients with IgG4-RD, which could contribute to the pathology of
the disease by promoting activation, differentiation and IgG4 class switching in B cells [119]. However,
other studies indicate that there are no differences in the number of circulating Tfh17 cells between
patients and controls and that Tfh17 cells are not key in the activation and differentiation of B cells [120].
Therefore, further studies are needed in order to determine whether IL-17 signaling is dysregulated in
this disease. Regarding the possible effect of IL-17 on this disease, it has been postulated that IL-17
could act as a profibrotic cytokine in IgG4-RD, as well as to promote inflammatory reactions in affected
tissues [121], although further studies are needed in order to validate these findings.

4. IL-17 Inhibitors in Systemic Rheumatic Diseases

The relevance of IL-17 in rheumatic diseases has been demonstrated with the approval of three
different inhibitors of the IL-17 signaling for the treatment of PsA and AS [122].

Secukinumab (AIN457) is a fully human, anti-IL-17A monoclonal antibody indicated for the
treatment of moderate to severe plaque psoriasis and active psoriatic arthritis in adult patients who
have shown an inadequate response to previous treatments with disease-modifying antirheumatic drugs
(DMARDs), axial spondyloarthritis (AxSpA), and active AS in adults who have not responded adequately
to conventional treatment and non-radiographic axial spondyloarthritis (nr-AxSpA) [123,124].

There are currently a couple of ongoing clinical trials testing the efficacy of Secukinumab on
systemic rheumatic disease (Table 1):

1. An active and recruiting phase III trial of Secukinumab for lupus nephritis (Clinicaltrials.gov
identifier: NCT04181762) a 2-year, phase III randomized, double-blind, parallel-group,
placebo-controlled trial to evaluate the efficacy and safety of secukinumab in combination
with the standard of care therapy in patients with active lupus nephritis. The primary endpoint is
the proportion of subjects achieving complete renal response (CRR) [125];

2. An active but not recruiting phase II trial of secukinumab for giant cell arteritis (Clinicaltrials.gov
identifier: NCT03765788) randomized, parallel-group, double-blind, placebo-controlled,
multicenter, Phase II study to evaluate the efficacy and safety of secukinumab to maintain
disease remission up to 28 weeks including corticosteroid tapering, in patients with newly
diagnosed or relapsing giant cell arteritis (GCA) who are naïve to biological therapy [125].
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Brodalumab (AMG 827) is a human, anti-IL17 receptor monoclonal antibody that binds with
high affinity to human IL-17 receptor A and blocks the biological activity of the pro-inflammatory
cytokines IL-17A and IL-17F, resulting in the inhibition of inflammation and clinical symptoms
associated with psoriasis. The clinical efficacy and safety of brodalumab have been adequately
contrasted in the authorized indication of psoriasis by means of three phase-3-randomized,
double-blind, placebo-controlled (two of them with ustekinumab as an active comparator) clinical
trials: the AMAGINE-1, 2 and 3 [126,127].

Table 1. Ongoing clinical trials on systemic rheumatic diseases.

Drug Mechanism of Action Description Current Trials in Systemic
Rheumatic Diseases Trial Identifier

Secukinumab Anti-IL-17A Human Monoclonal antibody Phase II trial in Giant cell arteritis NCT03765788

Phase III trial in Lupus nephritis NCT04181762

Brodalumab Anti-IL-17RA Human Monoclonal antibody Phase III trial in Systemic sclerosis NCT03957681

Phase I trial in Systemic sclerosis NCT04368403

Ixekizumab Anti-IL-17A and IL-17A/F Humanized Monoclonal antibody - -

Regarding its efficacy in rheumatic diseases, there are several clinical trials on PsA, AS and RA
and, importantly, two clinical trials on SSc (Table 1):

1. An active but not recruiting phase III clinical trial (Clinicaltrials.gov identifier: NCT03957681)
of brodalumab for moderate to severe systemic sclerosis: placebo-controlled, double-blind
comparative study of brodalumab with an open-label extension period in subjects with systemic
sclerosis who have moderate to severe skin thickening. The primary outcome measures the
change in modified Rodnan skin score (mRSS) from baseline at week 24 [125];

2. An active but not recruiting phase I clinical trial (Clinicaltrials.gov identifier: NCT04368403),
open-label, multiple-dose study of brodalumab in subjects with systemic sclerosis. The primary
outcome measures the serum concentration of brodalumab [125].

Ixekizumab (LY2439821) is a humanized monoclonal antibody (IgG4) directed against IL-17A
and IL-17A/F. It is currently approved for moderate to severe plaque psoriasis in adult candidates for
systemic treatments and active PsA in adult patients with an insufficient response or intolerance to one
or more DMARDs [128,129]. However, the efficacy of this antibody has not been tested in systemic
rheumatic diseases (Table 1).

5. Concluding Remarks and Future Perspectives

In this review, we summarized the role of IL-17 in systemic rheumatic diseases and the potential
use of therapeutic approach. Multiple studies have shown that levels in IL-17 and IL-17-producing
cells are elevated in SLE, SSc, SS, vasculitides and IgG4-related diseases. Importantly, IL-17 plays
different pathological roles in these diseases, like the promotion and perpetuation of inflammation
and the damage to the affected tissues. In conclusion, targeting IL-17 signaling might be a potential
option in the treatment of systemic rheumatic diseases, which is highly important due to the need
for new therapeutic options for these diseases, as an effective therapy is lacking for SLE, SSc and SS
patients. The most common therapies are broad-spectrum immunosuppressive drugs, which have
moderate to severe side effects and therapies that only treat organ manifestations or simply relieve the
clinical symptoms [49,130–133]. However, the ongoing clinical trials with different IL-17 inhibitors
need to be finished before concluding whether IL-17 blocking is an effective therapeutic strategy for
these diseases.
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