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Glucodensities: A new representation
of glucose profiles using distributional
data analysis
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Abstract

Biosensor data have the potential to improve disease control and detection. However, the analysis of these data under

free-living conditions is not feasible with current statistical techniques. To address this challenge, we introduce a new

functional representation of biosensor data, termed the glucodensity, together with a data analysis framework based on

distances between them. The new data analysis procedure is illustrated through an application in diabetes with

continuous-time glucose monitoring (CGM) data. In this domain, we show marked improvement with respect to

state-of-the-art analysis methods. In particular, our findings demonstrate that (i) the glucodensity possesses an extraor-

dinary clinical sensitivity to capture the typical biomarkers used in the standard clinical practice in diabetes; (ii) previous

biomarkers cannot accurately predict glucodensity, so that the latter is a richer source of information and; (iii) the

glucodensity is a natural generalization of the time in range metric, this being the gold standard in the handling of CGM

data. Furthermore, the new method overcomes many of the drawbacks of time in range metrics and provides more in-

depth insight into assessing glucose metabolism.
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1 Introduction

The steadily increasing availability and prominence of biosensor data have given rise to new methodological
challenges for their statistical analysis. A primary feature of these data is that the monitored individuals are
in free-living conditions, making a direct analysis of the recorded time series between groups of patients prob-
lematic if not infeasible. A clear example of such data is found in the study of diabetes, where continuous
glucose monitoring (CGM) is increasingly used. The elevation of glucose is distinct between individuals and is
influenced by factors such as mealtimes, diet composition, or physical exercise.1 Consequently, an exciting topic of
debate is how to exploit the enormous wealth of information recorded by CGM to draw more reliable conclusions
about glucose homeostasis rather than the cursory summary measures such as fasting plasma glucose (FPG) or
glycated hemoglobin (A1c).2
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Since 2010, the American Diabetes Association (ADA) has included measurement of A1c levels to both diag-

nosis and diabetes control.3 A1c levels reflect underlying glucose levels over the preceding threemonths, testing is

convenient because blood samples can be obtained at any time of day, overnight fasting is not required, and A1c

within patient reproducibility is superior to that of fasting plasma glucose and oral glucose tolerance tests

(OGTTs).4 However, recent articles have provided evidence for the need to go beyond A1c and use new measures

for glycemic control,5,6 in order to capture more diverse aspects of the temporally evolving glucose levels beyond

the average, for example, glucose variability and time in range metrics. The time in range metric measures the

proportion of time an individual’s glucose levels are maintained in different target zones. In the case of diabetes,

these can include ranges corresponding to hypoglycemia and hyperglycemia. An innovative article7 validated the

time in range metric, showing that it is a good predictor of long-term microvascular complications despite just

measuring glucose values seven times per day. Lu et al.8 reached similar conclusions but using CGM technology

only for 24 h in each patient. At the same time, it is well known that two patients may have the same glycosylated

hemoglobin and a completely different glycemic profile.9 These new approaches and findings have led clinical

specialists to consider that continuous glucose measurement during long monitoring periods can lead to more

accurate research and clinical practice results than standard methods.10 In fact, since 2012, the European

Medicine Agency11 recommends the use of CGM to validate the effect of drugs for treatment or prevention of

diabetes mellitus.
Traditionally, CGM was designed for risk management in real-time for type 1 diabetes, and control of glucose

values with insulin pumps.12–14 Notwithstanding, more recent applications of CGM have been more general. For

example, they involve screening patients, optimizing diet, epidemiological studies, assessing patient prognosis,

supporting treatment prescriptions, and have even been used in healthy populations.15–17 In addition to the

increasing utility of CGM data, the technology is gradually becoming cheaper, and new devices capable of

measuring glucose in a non-invasive way are quickly emerging.18 All of these advances are facilitating the adop-

tion of CGM in standard clinical practice.
In 2012, a panel of experts discussed how to represent CGM data in an “easy to view format”.19 They also

analyzed the convenience of using glycemic variability measures and other summary measures such as time in

range to extract the CGM’s recorded information. In 2019,20 ADA launched an updated consensus guide for

promoting the correct and standardized use of time in range metrics in standard clinical practice, defining several

practitioners’ target zones. A more recent review about the CGM metric establishes time in range as a gold

standard measure.21

Motivated by the problem of analyzing data gathered via CGM more precisely while still leveraging the

advantages possessed by time in range metrics, we propose an approach based on the construction of a functional

profile of glucose values for each subject. Conceptually, the approach is a natural extension of time in range

metrics in which the intervals simultaneously shrink in size and increase in number so that the new profile

effectively measures the proportion of time each patient spends at each specific glucose concentration rather

than a coarsely defined range. As a result, the new functional profile, which we refer to as a glucodensity,

automatically and simultaneously captures all parameters arising from individual glucose distributions. To illus-

trate our new glucose representation graphically, Figure 1 shows a set of constructed glucodensities that represent

the data objects for which we will propose using a tailored set of statistical methods. The glucose profile patterns

are clearly heterogeneous between individuals, both in mean, variability, or any other distributional character-

istics including the hypo and hyperglycemia range, where glucodensities have different support depending on

patient condition. For example, in normoglycemic patients, glucose generally oscillates between 75 and 150mg/

dL, while in some patients with diabetes, glucose can reach concentrations of 400mg/dL in the range of severe

hyperglycemia. Moreover, the shape of the glucodensities is entirely different, with existing variability patterns

along all glucose concentrations between normoglycemic and diabetes patients.
Mathematically, glucodensities constitute functional-distributional data since each glucodensity represents a

distribution of glucose concentrations. As such, these complex and constrained curves cannot be directly

analyzed with the usual techniques. To overcome this, we introduce a framework for the analysis of gluco-

densities by compiling suitable methods based on the calculation of distances between them. We also reveal

our representation’s superior clinical capacity compared to classical measures of diabetes control and diag-

nostics. Finally, we demonstrate that our representation has a higher sensitivity than the standard time in

range metric to explain the glycemic differences between patients in various settings, including regression

analysis. A new shiny interface to use the methods outlined in this paper is available at https://tec.citius.

usc.es/diabetes.
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1.1 Outline

The structure of this paper is as follows. First, we briefly describe the AEGIS study. We then formally introduce

the concept of glucodensity, the estimation methods, and some essential statistical background to understand the

statistical procedures introduced in the paper. Subsequently, we explain the regression models used in the vali-

dation of the representation. Afterward, we show the results that demonstrate the superiority of glucodensity over

glucose representations that are currently in use. Then, we illustrate the use with real data of the glucodensities

methodology in two-sample testing and cluster analysis. Finally, we discuss the clinical implications of these

results, their limitations, and new perspectives of the glucodensities method in medicine and device technology.

2 Sample and procedures

2.1 Study design

A subset of the subjects in the A Estrada Glycation and Inflammation Study (AEGIS; trial NCT01796184 at

www.clinicaltrials.gov) provided the sample for the present work. In the latter cross-sectional study, an age-

stratified random sample of the population (aged �18) was drawn from Spain’s National Health System

Registry. A detailed description has been published elsewhere.22 For a one-year period beginning in March,

subjects were periodically examined at their primary care center where they (i) completed an interviewer-

administered structured questionnaire; (ii) provided a lifestyle description; (iii) were subjected to biochemical

measurements, and (iv) were prepared for CGM (lasting six days). The subjects who made up the present

sample were the 581 (361 women, 220 men) who completed at least two days of monitoring, out of an original

622 persons who consented to undergo a six-day period of CGM. Another 41 original subjects were withdrawn
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Figure 1. Glucodensities are estimated from a random sample of the AEGIS study including normoglycemic and patients with
diabetes. For each patient, our glucose representation estimates the proportion of time spent at each glucose concentration over a
continuum, representing a more sophisticated approach to assess glucose metabolism. Currently, the time in range metrics that are
the gold standard CGM data representation in diabetes only quantify glycemic distributional differences along the previously pre-
defined target zones that correspond to coarsely defined intervals, resulting in information loss.
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from the study due to non-compliance with protocol demands (n¼ 4) or difficulties in handling the device

(n¼ 37). The characteristics of the participants are shown in the Table 1.

2.2 Ethical approval and informed consent

The present study was reviewed and approved by the Clinical Research Ethics Committee from Galicia, Spain

(CEIC2012-025). Written informed consent was obtained from each participant in the study, which conformed to

the current Helsinki Declaration.

2.3 Laboratory determinations

Glucose was determined in plasma samples from fasting participants by the glucose oxidase peroxidase method.

A1c was determined by high-performance liquid chromatography in a Menarini Diagnostics HA-8160 analyzer;

all A1c values were converted to DCCT-aligned values.23 Insulin resistance was estimated using the homeostasis

model assessment method (HOMA-IR) as the fasting concentration of plasma insulin (l units/mL)� plasma

glucose (mg/dL)/405.24

2.4 Glycemic variability

Glycaemic variability was measured in terms of continuous overall net glycemic action (CONGA),25 the mean

amplitude of glycemic excursions (MAGE),26 and the mean of the daily differences (MODD)27 in glucose

concentration.

2.5 CGM procedures

At the start of each monitoring period, a research nurse inserted a sensor (EnliteTM, Medtronic, Inc., Northridge,

CA, USA) subcutaneously into the subject’s abdomen and instructed him/her in the use of the iProTM CGM

device (Medtronic, Inc., Northridge, CA, USA). The sensor continuously measures the interstitial glucose level

40–400 (range mg/dL) of the subcutaneous tissue, recording values every 5min. Participants were also provided

with a conventional OneTouchR VerioR Pro glucometer (LifeScan, Milpitas, CA, USA) as well as compatible

lancets and test strips for calibrating the CGM. All subjects were asked to make at least three capillary blood

glucose measurements (usually before the main meals). These readings were taken without checking the current

CGM reading. The sensor was removed on the seventh day, and the data downloaded and stored for further

analysis. If the number of data-acquisition “skips” per day totaled more than 2 h, the entire day’s data were

discarded.

2.6 Time-in-range metric

The time in range metric was calculated with two different methods. In the first, through the CGM records of the

AEGIS study, we estimate the deciles of CGM records with normoglycemic patients and use these deciles as cut-

offs that define the relevant ranges (Table 2). In the second, we use cut-off points established by the ADA in the

2019 Medical guideline20 (Table 3).

Table 1. Characteristics of AEGIS study participants by sex. Mean and standard deviation are shown.

Men (n¼ 220) Women (n¼ 361)

Age, years 47.8� 14.8 48.2� 14.5

A1c, % 5.6� 0.9 5.5� 0.7

FPG mg/dL 97� 23 91� 21

HOMA-IR mg/dL.mUI/m 3.97� 5.56 2.74� 2.47

BMI kg/m2 28.9� 4.7 27.7� 5.3

CONGA mg/dL 0.88� 0.40 0.86� 0.36

MAGE mg/dL 33.6� 22.3 31.2� 14.6

MODD 0.84� 0.58 0.77� 0.33

BMI: body mass index; FPG: fasting plasma glucose; A1c: glycated hemoglobin; HOMA: IR: homeostasis model assess-

ment-insulin resistance; CONGA: glycemic variability in terms of continuous overall net glycemic action; MODD: mean

of daily differences; MAGE: mean amplitude of glycemic excursions.
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3 Definition and estimation of the glucodensity

For patient i, denote the gathered glucose monitoring data by pairs ðtij;XijÞ; j ¼ 1; . . . ;mi; where the tij represent
recording times that are typically equally spaced across the observation interval, and Xij is the glucose level at time

tij 2 ½0;Ti�: Note that the number of records mi, the spacing between them, and the overall observation length Ti

can vary by patient. One can think of these data as discrete observations of a continuous latent processes YiðtÞ;
with Xij ¼ YiðtijÞ: The glucodensity for this patient is defined in terms of this latent process as fiðxÞ ¼ Fi

0ðxÞ; where

FiðxÞ ¼ 1

Ti

Z Ti

0

1 YiðtÞ � xð Þdt (1)

for inf
t2½0;Ti�

YiðtÞ � x � sup
t2½0;Ti�

YiðtÞ (2)

is the proportion of the observation interval in which the glucose levels remain below x. Since Fi are increasing

from 0 to 1, the data to be modeled are a set of probability density functions fi; i ¼ 1; . . . ; n:
Of course, neither Fi nor the glucodensity fi is observed in practice, but one can construct an approximation

through a density estimate ~fið�Þ obtained from the observed sample. In this case of CGM data, the glucodensities

may have different support and shape. Therefore, we suggest using a non-parametric approach to estimate each

density function. For example, using a kernel-type estimator, we have

~fiðxÞ ¼
1

mi

Xmi

j¼1

Khiðx� XijÞ;

where hi> 0 is the smoothing parameter and KhiðsÞ ¼ 1
hi
Kð s

hi
Þ. The choice of K does not have a big impact on the

efficiency of the estimator, but the value of hi is crucial.
28

In the standard setting of independent random samples, a vast number of approaches for selecting the smooth-

ing parameter are available in the literature. Common strategies include cross-validation, minimizing the esti-

mated mean integrated squared error (MISE), or a “rule of thumb” derived from the assumption that the density

is Gaussian. In this last case, the choice can be explicitly written as ~hi ¼ 1:06~rim
�1=5
i , where ~ri is the sample

standard deviation of the Xij.
29

Nevertheless, in our particular setup, we are estimating the density function of a stochastic process/time series,

which is more difficult in theory. However, in a seminal work in this area, Hall et al.30 showed that the rule of

Table 2. Cut-offs for metric time in range using own estimations
through normoglycemic individuals of AEGIS study.

Range 1 <85

Range 2 85–90

Range 3 91–94

Range 4 95–98

Range 5 99–101

Range 6 102–105

Range 7 106–109

Range 8 110–115

Range 9 116–124

Range 10 >125

Table 3. Cut-offs for metric time in range following ADA guidelines20.

Range 1 <54

Range 2 54–69

Range 3 70–180

Range 4 181–250

Range 5 >250
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thumb and other traditional smoothing parameter selection strategies behave well. Additionally, the number of
density function estimators that exist are considerable, and we can also employ other approaches as the use of
orthogonal expansions (e.g. Fourier or Wavelet basis), splines, and histograms. For further details, the reader is
referred to the relevant literature.28,31,32

3.1 Distance-based descriptive statistics

Let ½a; b� be an interval of the real line, which may be unbounded, and suppose that each glucodensity fi has
support contained in ½a; b�. From a statistical point of view, the sample f1; . . . ; fn may be modeled and analyzed
using methods of functional data analysis.33,34 However, since the fi must be positive and satisfy

R b

a fiðxÞdx ¼ 1;
classical methods have in recent years been adapted to account for the nonlinear, distributional structure of
density samples.35,36 The general approach is to define a metric or distance between densities that, in turn,
leads to descriptive statistics that respect the unique density properties. For example, define the data space of
glucodensities as A :¼ ff : ½a; b� ! Rþ :

R b

a fðxÞdx ¼ 1 and
R b

a x2fðxÞdx < 1g. Given two arbitrary glucoden-
sities f; g 2 A, the 2-Wasserstein distance37 between f and g is

dW2ðf; gÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ 1

0

ðF�1ðxÞ � G�1ðxÞÞ2
s

dx (3)

where F and G are the cumulative distribution functions (cdfs) of the density functions f and g.
The 2-Wasserstein distance is a natural distance to measure the similarity between density functions through its

representation in the space of the quantile (inverse cdf) functions, and it has already been successfully applied in
biological problems. Furthermore, it has computational and modeling advantages compared to the usual L2½a; b�
metric when glucodensities have different support within ½a; b�. Finally, it has a physical interpretation in the
theory of optimal transport.

As glucodensities are distributional data, the subsequent application of the usual techniques for functional
data, such as estimation of mean, covariance, and regression models, may lead to misleading results. Hence, we
have chosen to use models based on the 2-Wasserstein distance, although other choices are possible. As a starting
point, based on the notion of distance, we can generalise the mean and variance of a random variable that takes
values in an abstract space with metric structure.38 As we will see, similar adaptations can be developed for
regression, hypothesis testing, or to perform cluster analysis. Given a distance d : A� A ! Rþ between density
functions, of which dW2 is one example, and a random variable f defined on A, the Fr�echet mean of f is

lf ¼ argmin
g2A

Eðd2ðf; gÞÞ:

The Fr�echet variance of f is then

r2f ¼ Eðd2ðf; lfÞÞ:

If the choice of distance is the Wasserstein metric dW2 ; these are given the names of Wasserstein mean and
variance, respectively. In this particular case, equation (3) implies that lf is the density whose quantile function is
the pointwise mean of the random quantile function F�1. Moreover, r2f is interpreted as the integral of the
pointwise variance of F�1. In general, calculation of the Fr�echet mean is not easy, and we must resort to com-
putational approximations.39

In the following subsections, we will extend these concepts of Fr�echet to statistical methodologies of regression,
clustering, and hypothesis testing based on the notion of distance.

4 Regression models with glucodensities

4.1 Non-parametric regression model with glucodensity as the predictor

Let f be a functional random variable taking values in ðA; dW2Þ and Y a random variable that takes values in the
real line. We assume the following regression relationship between f and Y, which represent the predictor and
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response variables, respectively:

Y ¼ gðfÞ þ � (4)

where g : A ! R is an unknown smooth function, and the random error � satisfies Eð�Þ ¼ 0.
Given a sample fðfi;YiÞ 2 A�Rgni¼1, most non-parametric estimators ~gð�Þ have the form of a weighted average

of the responses,

~gðxÞ ¼
Xn
i¼1

wniðxÞYi: (5)

In general, the weights wniðxÞ depend on the distance selected to measure the similarities between the density

functions fi and x, with larger distances receiving lower weights, and satisfy
Xn
i¼1

wniðxÞ ¼ 1.40 A typical choice

would be the Nadaraya-Watson weights

wniðxÞ ¼
Kðdðx;fiÞh ÞXn

i¼1
K

dðx;fjÞ
h

(6)

where h is a smoothing parameter and K : R ! R is a known univariate probability density function called the

kernel. For more details about this procedure, see Ferraty and Vieu.40 As an alternative for the above method, we

can use the kernel methods in Reproductive Kernel Hilbert Spaces (RKHS).41,42

4.2 Regression model with glucodensity as the response

In the case of regression models with a density function as response, the literature is not very extensive to the

current date.43–47 In this article, we use the model proposed in Petersen and Müller45 which allows us to incor-

porate the desired metric dW2 and is a direct generalization of classical linear regression. The primary rationale for

the use of this model is that, unlike the other approaches cited above, there is a methodology developed to

perform inferential procedures such as confidence bands and hypothesis testing in order to establish the signif-

icance of the input variables in the model.48

Let f be a random variable (e.g. a glucodensity) that take values in the space of ðA; dW2Þ defined above.

Consider a random vector U 	 Rd that contains the set of predictors. Our interest is in the Fr�echet regression

function, or function of conditional Fr�echet means,

�fðuÞ :¼ argmin
g2A

Eðd2W2ðf; gÞjU ¼ uÞ; u 2 Rd: (7)

Petersen and Müller45 impose a particular model for �f that, in direct analogy to classical linear regression, takes

the form of a weighted Fr�echet mean

�fðuÞ ¼ argmin
g2A

EðsðU; uÞd2W2ðf; gÞÞ; u 2 Rd: (8)

Here, the weight function is

sðU; uÞ ¼ 1þ ðU� lÞTR�1ðu� lÞ; l ¼ EðUÞ;R ¼ CovðUÞ (9)

and R is assumed to be positive definite.
Given a sample ðUi; fiÞ; i ¼ 1; . . . ; n; of independent pairs each distributed as ðU; fÞ; one can proceed to estimate

�fðuÞ for any desired input u. Due to the intimate connection between the Wasserstein metric and quantile

functions as in equation (3), for most inferential procedures it is sufficient to estimate the conditional

Wasserstein mean quantile function �QðuÞ corresponding to �fðuÞ: Let D be the set of quantile functions, Qi the
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quantile function corresponding to the random density fi; and define empirical weights sinðuÞ ¼ 1þ
ðUi � �UÞTR̂�1ðu� �UÞ; where �U and R̂ are the sample mean and variance of the Ui; respectively. The natural

estimator under dW2
is the weighted empirical mean quantile function

~�QðuÞ ¼ argmin
Q2D

Xn
i¼1

sinðxÞkQ�Qik2 (10)

where k � k denotes the L2½0; 1� norm on D.
A straightforward algorithm for computing ~�QðuÞ is shown in Supplementary Material of the original refer-

ence.48 In addition, two algorithms are given to estimate the confidence bands at a given significance level a for

both the quantile functional parameter �QðuÞ and the density parameter �fðuÞ.

4.3 Outline tuning parameters in statistical analysis and software details

The density function of each individual was estimated with a non-parametric Nadaraya-Watson procedure. For

this purpose, we used a Gaussian kernel and rule of thumb as a smoothing parameter. As some computations

involving the 2-Wasserstein metric only require a quantile function as input, these were estimated using the

empirical quantile function of the observations.
Concerning prediction, the two regression models previously described were used in glucodensity validation: (i)

the non-parametric kernel functional regression model with the 2-Wasserstein distance having the glucodensity as

predictor40 and (ii) a global 2-Wasserstein regression model where the glucodensity is the response.45 In addition,

with standard vector-valued time in range metrics, k-nearest neighbor algorithms were employed with k¼ 10

neighbors. These time in range metrics we first transformed using the isometric log-ratio (ilr) transformation for

compositional data prior to fitting the model.49 In order to avoid problems associated with zero values in any of

these predefined ranges, a fixed positive constant was added to each range, which were then normalized to add to 1.
All analyses were carried out using R software. Functional data analysis was performed using the fda.usc

package,50 which is freely available at https://cran.r-project.org/, and our own implementations of the ANOVA

test of Dubey and Müller51 or Fr�echet regression in Petersen and Müller45 using the 2-Wasserstein distance. The

glucodensities and their quantile representation were estimated using the R basis functions.

5 Clinical validation of the glucodensity

To validate the glucodensity representation, we use the database from the AEGIS study.22 The database contains

the continuous glucose monitoring data between two and six days of 581 patients from a general population’s

random sample. To develop the validation task, we use two different regression models: (i) a non-parametric

regression model where the unique predictor is glucodensity and (ii) a linear regression model where the response

is a glucodensity. The first model was used to predict glycated hemoglobin (A1c),52 homeostatic model assessment

(HOMA-IR),53 and the following measures of glycemic variability22,54,55: continuous overall net glycemic action

(CONGA), mean amplitude of glycemic excursions (MAGE) and mean of daily differences (MODD), through

glucodensity representation. In contrast, the second was used to predict the glucodensity with the five variables

above. Figure 1 gives a visualization of the sample of glucodensities used in these models. Biological significance

in variables under consideration is described in Table 4.

Table 4. Clinical importance of biomarkers used in the statistical analysis.

Biomarker Clinical significance

A1c Gold standard marker in diabetes diagnosis and control

HOMA-IR Measurements to quantify insulin resistance and b-cell function
CONGA

MODD Summary indices of glucose variability

MAGE
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5.1 Prediction of biomarkers using the glucodensity

The aim of the first set of regression analyses is to demonstrate that the glucodensity is sufficiently rich in its
information content to recover the biomarkers mentioned above with high precision. To quantify this precision,
we estimated the R2 after fitting a non-parametric model for each biomarker as the outcome variable, using the
glucodensity as the sole predictor (i.e. independent variable). The R2 estimates for A1c, HOMA-IR, MAGE,
MODD, CONGA were 0.79, 0.79, 0.92, 0.86, and 0.92, respectively. To supplement the results, Figure 2 shows the
predicted values against the observed values, where the outstanding predictive capacity of the glucodensity can be
seen independently of high or low response values.

5.2 Prediction of the glucodensity using biomarkers

In the second regression analysis with the glucodensity as the outcome variable, we aim to show that the previous
measurements commonly used in the clinical practice cannot capture the glucodensity with high accuracy. This
fact is not completely surprising because, as noted by some authors,2 the information provided by a CGM is more
precise than that contained in summary measures. To accomplish this, we computed a suitable version of R2 for
this task after fitting a regression model where the response is a glucodensity, and the previous variables are the
predictors. In this case, the R2 estimate was 0.74. As predicted, compared to the previous section’s results, we
could not accurately capture the complex nature of glucodensities, even while using the combined predictive
power of several commonly used summary measures. Moreover, in some cases, the prediction differences can
be significant (see Figure 3).
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Figure 2. Real values vs. estimated values when glucodensity is predictor.
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5.3 Comparison of time in range metrics with glucodensities

To illustrate the higher clinical sensitivity of glucodensities compared to time in range metrics, we compared each

representation’s ability to predict A1c, HOMA-IR, and glycemic variability metrics MODD, MAGE, and

CONGA, using the data from the AEGIS study. The predictive capacity of the glucodensity representation

was illustrated above, and this section gives the corresponding results for time in range metrics, where these

were calculated according to two sets of cut-offs. In the first, the normoglycemic individuals’ deciles from the

AEGIS study were used, while those proposed by the ADA were used in the second. Tables 2 and 3 show the exact

cut-off values for both cases. Since the time in range metrics constitute a sample of compositional data,49 the

isometric log-ratio (ilr) transformation was employed in combination with a k-nearest neighbor algorithm as a

regression model for predicting the scalar variables.

5.4 Prediction of A1c, HOMA-IR, and glycemic variability measures using time in

range metrics

Figure 4 compares the real and estimated values of the previous five variables under the two time in range metrics

under consideration with. Table 5 provides the estimates of R2 for each variable and metric.
The predictive capacity is significantly worse than that attained by the glucodensity methodology. The supe-

riority of the glucodensity is particularly noteworthy in the case of the HOMA-IR variable, where the association

is relatively weak for time in range metrics. Even for the other variables where the values of R2 are moderate, the

larger residuals seen in patients with diabetes with more severe alterations of glucose metabolism indicate that

time in range metrics are particularly poorly suited for such patients. Interestingly, we do not observe substantial

or consistent differences between the two time in range metrics used, as deciles perform better than ADA criteria

for two of the variables, while the ordering was reversed in other instances.

6 Hypothesis testing and clustering analysis with glucodensities

6.1 Analysis of variance with glucodensities

As a special case of regression, suppose we have a sample f1, . . . fn of glucodensities defined on ðA; dWÞ belonging
to k different groups G1;G2; � � � ;Gk that partition f1; . . . ; ng and are of size nj ðj ¼ 1; � � � ; kÞ, so that

Pk
j¼1 nj ¼ n.

If the goal is to simply test whether the Wasserstein means are equal for each group, Petersen et al.48 developed

testing procedures based on model (8) for this purpose. An advantage of this model is its flexibility, which allows

for multiple factor layouts as well as tests for interactions. However, the theoretical properties of these tests

require a type of equal variance assumption that may be restrictive for some data sets.
More generally, one may wish to test the null hypothesis that the population distributions of the k groups share

common Wasserstein means and variances, against the alternative that at least one of the groups has a different

population distribution compared to the others in terms of either its Wasserstein mean or variance. In this

scenario, Dubey and Müller51 investigated a test statistic based on the group proportions kj;n ¼ njn
�1, the
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Figure 3. Residuals in quantile space when predicting glucodensities.
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groupwise sample Wasserstein means ~lj ¼ argming2A
X

i2Gj
d2W2ðfi; gÞ and variances ~Vj ¼ n�1

j

X
i2Gj

d2W2ðfi; ~ljÞ; the
pooled Wasserstein mean l̂p ¼ argming2A

Xk
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X
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as estimates of the variance of V̂j: Then, with
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Figure 4. Real values vs. estimated values when time in range metric is the predictor. Blue, time in range metric with cut-offs
calculated with normoglycemics from the AEGIS database. Red, time in range metric using of cut-offs suggested by ADA.

Table 5. R2 estimated with time in range metrics under consideration and glucodensity.

A1c HOMA-IR CONGA MAGE MODD

Normoglycemic cut-off 0.63 0.22 0.68 0.65 0.65

ADA cut-off 0.61 0.08 0.73 0.69 0.60

Glucodensity 0.79 0.79 0.92 0.92 0.86
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the proposed test statistic is

Tn ¼ nRnXk

j¼1
kj;n~r�2

j

þ nF2
nXk

j¼1
kj;n~r2

j

: (11)

Dubey and Müller51 demonstrated that the corresponding test is distribution-free, in that the limiting distri-

bution of Tn does not depend on the underlying distribution under some assumptions. In practice, it was also

demonstrated that it could be useful to calibrate the test under the null hypothesis via a simple empirical bootstrap

over the preceding statistics. For more details, we refer the reader to the supplementary material of the original

reference.

6.2 Energy distance methods with glucodensities

The energy distance is a statistical distance between two distribution functions proposed in 1984 by Gábor J.

Sz�ekely.56 This distance is inspired by the concept of gravitational energy between two bodies and has experienced

a rise in appeal for modern statistical applications due to its applicability to data of a complex nature such as

functions, graphs, or objects that live in negative type space.57

Consider independent random variables Y;Y0 
F and Z;Z0 
G that are defined on a (semi)metric space ðX; qÞ
of negative type, where q : V� V ! R is the semi-metric. Although the notation in this section is quite general, in

particular, we have in mind the case ðX; qÞ ¼ ðA; dW2Þ corresponding to glucodensities. The energy distance

associated with q between the distribution F and G is

�qðF;GÞ ¼ 2EðqðY;ZÞÞ � EðqðY;Y0ÞÞ � EðqðZ;Z0ÞÞ:

Given random samples Y1; . . . ;Yn
iidF and Z1; . . . ;Zm
iidG, the sample energy distance is

~�qðF;GÞ ¼ 2
1

nm

Xn
i¼1

Xm
j¼1

qðYi;ZjÞ � 1

n2

Xn
i¼1

Xn
i¼1

qðYi;YjÞ � 1

m2

Xm
i¼1

Xm
i¼1

qðZi;ZjÞ:

The asymptotic distribution of the above statistic for a null hypothesis ðH0 : F ¼ GÞ as well as for the alter-

native ðHa : F 6¼ GÞ is dependent on the chosen semi-metric q. Besides, its expression is difficult to calculate and to

implement in practice. Hence, when using the energy distance based methods, the distribution under the null

hypothesis is usually calibrated with a permutation method. Alternatives to calibrate the distribution under the

null hypothesis include the wild or a weighted bootstrap, as described in literature.58,59 The energy distance can

also be extended to handle samples from more than two populations. Given k independent samples

Yj1; . . . ;Yjnj
iidFj; j ¼ 1; . . . ; k; the energy distance statistic is

~�qðF1; . . . ;FkÞ
X

1�j< l�k

njnl
2n

½2gjl � gjj � gll�;

gjl ¼ 1

njnl

Xnj
i¼1

Xnl
i0¼1

qðYji;Yli0 Þ;

where n ¼ n1 þ � � � þ nk:
We now explain how this statistic can be adapted to perform clustering. Consider random pairs ðYi; IiÞ; i ¼

1; . . . ; n; where Yi is observed and takes values in ðX; qÞ; while Ii 2 f1; . . . ; kg is an unobserved label of cluster

membership. The task is to recover the true clusters C�
j ¼ fi : Ii ¼ jg; j ¼ 1; . . . ; k: Let C1; . . . ;Ck be a generic

partition of f1; . . . ; ng, and denote the size of each cluster by jCjj. Then, a clustering may be chosen by optimizing

the statistic
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SqðC1; . . . ;CkÞ ¼
X

1�j< l�k

njnl
2n

½2~gjl � ~gjj � ~gll�; (12)

~gjl ¼
1

jCjjjClj
X

ði;i0Þ2Cj�Cl

qðYi;Yi
0Þ (13)

over all possible clusters Cj: At first view, this seems computationally intractable due to the appearance of

distances between the elements of each cluster. However, defining

WqðC1; . . . ;CkÞ ¼
Xk
j¼1

jCjj
2

~gjj; (14)

it can be proven that Sq þWq is constant. This implies that maximizing Sq is equivalent to minimizing Wq.
In Franca et al.,60 the authors show the equivalence between the previous optimization problem with the

clustering procedure kernel k-means. The latter relationship allows the solving of kernel k-group clustering pro-

cedure through the popular heuristics algorithms as Hartigan and Lloyd allow finding the optimal solution with

the k-means algorithm.

6.3 Example of hypothesis testing and clustering analysis with glucodensity

methodology

Below, we illustrate the methodology of glucodensities in hypothesis testing and cluster analysis with the 2-

Wasserstein distance. We use the ANOVA test51 and the k-groups algorithm.60

6.4 Hypothesis testing

An interesting question to address in an epidemiological study is whether there are differences between men and

women in the glycemic profile. The ANOVA test is an important instrument to establish whether there are

statistically significant differences in mean and variance with glucodensities, where there are two or more patient

groups. After applying this method with AEGIS data, the test yields a p-value equal to 0.10. Therefore, there is no

statistically significant difference between men and women at the significance level of 5 percent.
Figure 5 shows the glucodensity samples for each gender using their quantile representations. The pointwise

means of these quantile functions constitute the quantile function of the sample Wasserstein mean glucodensities.

These, together with pointwise standard deviation curves, are also shown in Figure 5. On average, the groups are

quite similar. However, certain discrepancies are observed between both groups in terms of their variance,

although not large enough for the test to show statistically significant differences.

6.5 Clustering analysis

Cluster analysis is an essential tool for identifying subgroups of patients with similar characteristics. As an

example, with the diabetes patients’ data from the AEGIS study, we perform a cluster analysis using three

clusters. To establish when a patient has diabetes, we use the doctor’s previous diagnostic criteria, or if individuals

currently have their glucose values measured with A1c and FPG in the ADA ranges to be classified in that

category.
Figure 6 contains the results of applying the cluster analysis in diabetes patients. The algorithm has identified

three differentiated groups of patients. The first group is patients with normal glucose values, probably because

they are on medication, and the diagnosis of diabetes was made in the past. The second group is patients with

severely altered glucose values, and as can be seen in the glucodensities, their glucose is continuously fluctuating.

Finally, the last group is patients with slightly altered diabetes metabolism. The two-dimensional graphical rep-

resentation of the density function of A1c and FPG helps to validate these findings.
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7 Discussion

The primary contribution of this article is to propose a new representation of CGM data called glucodensity. We

have validated this representation from a clinical point of view, proving that it is more accurate than time in range

metrics.

7.1 Diabetes etiology and biological components to capture in a mathematical

representation

Diabetes encompasses a heterogeneous group of impaired glucose metabolism, such as the frequent presence of

hyperglycemias or hypoglycemias.3 Anomalous glucose fluctuations are another essential trait of dysglycemic

regulation.55,61 The use of glycemic control measures that go beyond the average glucose values such as A1c and

also capture (i) the impact of time spent at each glucose concentration on the glucose deregulation process, (ii) the

oscillations of glucose associated with cellular damage,61 is crucial in the management of patients with diabetes as

in the assessment of glucose metabolism with a high degree of precision.

7.2 Clinical validation of glucodensity

Our proposal accurately captures the components of diabetes mentioned above. Using clinical data, we evaluated

the clinical sensitivity against established biomarkers in diabetes. We found a high association between A1c,

HOMA-IR, CONGA, MODD, MAGE, and glucodensity. In the case of the HOMA-IR variable, the predictive

ability does not seem excellent, although, to the best of our knowledge, no known marker shows a predictive

ability against that variable. However, our model can provide consistent values in moderate and large HOMA-IR

values. While the fit for the variable A1c was not perfect, we must consider that the time scale for the A1c and the

glucodensities were quite different. A1c is a measure that reflects the average glucose over 2–3 months while

monitoring patients for less than oneweek to compute the glucodensity. Our R2 of 0.79 is better than the average
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glucose recorded by the monitoring period (R2 ¼ 0:61), which indicates that an individual’s glucose distributional

values may give extra information to the long-term glucose averages.
In the prediction of glucodensity from A1c, HOMA-IR, and glycemic variability measures, the estimated R2

shows a moderate relationship between those variables. However, we are introducing the essential variables of the

glucose deregulation process. A possible explanation of this is that the use of the summary measures commonly

used in diabetes can hardly capture an individual’s glycemic profile.
Glucose metabolism is very complex and highly dependent on the patient’s conditions. For example, the

cellular mechanism between patients with diabetes type I and type II are significantly different. Diabetes type

II is characterized primarily by insulin resistance, while diabetes type I is caused by the selective autoimmune

destruction of pancreatic b-cells and consequent non-insulin production.62 In this context, the introduction of the

concept of glucodensity provides greater clinical accuracy to the possible decisions derived from such represen-

tation compared to traditional methods because we utilize the entire distribution of glucose concentrations of an

individual over time.

7.3 Time in range metrics vs. glucodensity

While time in range metrics may also achieve the previous aim, they do so to a clearly lesser extent than the

glucodensity. Our proposal can capture the differences between individuals in each glucose concentration. In
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contrast, time in range only measures glucose differences along intervals, with a subsequent loss of information.

Also, time in range metrics are substantially limited since the target zones must be defined previously, and these

may also depend on the study population or the aim of the analysis.
Empirical results demonstrate the advantages of our proposal apart from the theoretical framework. The

ability of glucodensity to predict A1c, HOMA-IR, and the CONGA, MAGE, and MODD variability measures

is surprisingly high, much higher than that achieved with the range metric despite using two different target zones:

the deciles of normoglycemic patients glucose values and the target zones prescribed by the ADA.
The estimated R2 between glucodensities and A1c is similar to that reported by other authors between A1c and

average glucose values.63 However, in this study, patients are monitored only for two to six days and not for

weeks. Two possible factors must be considered in the analysis of the results. First, there are people with and

without diabetes, and, second, the glucodensity captures A1c better because it represents the entire distribution of

glucose concentration values, while glycation rates are known to increase with glucose concentrations.64 In par-

ticular, the estimated R2 between A1c and the mean glucose in our database is only 0.61.

7.4 Statistical considerations

From a statistical standpoint, glucodensities are a special constrained type of functional data known as distribu-

tional data; therefore, we cannot use the usual statistical techniques directly. To alleviate this limitation, this paper

proposes a framework for the analysis of these distributional data based on distances with existing techniques for

hypothesis testing, cluster analysis, and regression models. However, it is important to point out that alternative

approaches are available, including functional transformations35,65 that embed the densities in an unconstrained

Hilbert Space, after which standard functional analysis techniques can be applied. Nevertheless, these particular

transformations cannot be applied directly in our setting due to differences in the supports of the glucodensities.

Moreover, these functional transformations have the significant disadvantage that methodology for standard

inferential tasks, such as building a theoretically justified confidence band, is lacking. However, utilizing the

regression model based on the 2-Wasserstein geometry, asymptotic results and resampling techniques can be

used in an intuitive way to build confidence bands.48 Additionally, the application of these transformations

can be difficult to interpret. For example, the functional mean in the transformed space lacks a clear meaning,

so that the results of an functional ANOVA test, say, may not yield a completely incisive analysis. Finally,

distributional data analysis is an exciting research area where new methodological contributions to address dif-

ferent real problems are needed. Examples of such problems include a mixed models or causal inference methods.

7.5 Limitations

A potential limitation of our representation is that it ignores the order of events. Instead, it analyzes only the

distribution of glucose values. Nevertheless, following different animal models in diabetes, the event sequence may

not be a critical component in diabetes modeling. The main factor of microvascular and macrovascular compli-

cations is chronic hyperglycemia,66,67 and this is captured with high accuracy by our models. Moreover, an

essential aspect of managing diabetes patients is hypoglycemia control, and our proposal also captures this.

Finally, the third component of dysglycemia,55 glucose variability, can be accurately predicted by our represen-

tations, at least through metrics CONGA, MAGE, and MODD.
From another point of view, for other authors as Zaccardi and Khunti,2 it is expected that different glucose

fluctuations on different time scales may provide extra information on glucose homeostasis. Two extensions of

our models could potentially take into account this variability. The first one is to utilize functional multilevel

models68,69 applied to transformed glucodensities, using the distributional transformations discussed above. A

second approach would be to build similar densities of glucose speed and acceleration values, both marginally and

as multivariate functions in the statistical models.
The sample size used may also be a limitation from a statistical point of view. Nevertheless, in the field of

diabetes, the AEGIS study is one the world’s largest databases and, unlike other studies, is composed of randomly

selected individuals from a general population.70 Finally, for study validation, perhaps the most reliable way of

validating the new representation is in terms of the patients’ long-term prognosis. However, to the best of our

knowledge, no study with a reasonable sample size has this information from CGM technology’s intensive use.

Moreover, the clinical validation was based on performance with variables associated with the biological and

molecular mechanisms of diabetes development, diabetes status, and future diabetes patients’ prognosis, as we can

see in the literature.
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7.6 Potential applications

Adopting the concept of glucodensity in clinical practice and biomedical research could be very promising in the

following ways.

• To have a simple and more accurate representation of the glycemic profile of an individual. This representation

is especially useful in managing diabetic patients and assessing the effects of an intervention.
• To establish if there are statistically significant differences between patients subjected to different interventions,

for example, in a clinical trial.
• To identify different subtypes of patients based on their glycemic condition and other variables. Cluster anal-

ysis of glucodensities can create new patient subtypes based on the risk of diabetes or other complications.

Furthermore, it allows us to better describe the disease’s etiology by creating groups of subjects whose glucose

profiles and other clinical characteristics are similar.
• To establish the prognosis or risk of a patient or analyze the relationship of an individual’s glycemic profile

with different clinical variables in epidemiological studies.
• To predict changes in the glycemic profile based on the individuals’ characteristics and the intervention

performed. For example: how does the glucodensity vary according to the diet?
• To recommend the most advantageous treatments for a patient. Following the previous idea, a causal inference

model could be fitted where the response is glucodensity, for example, to establish which diet is the most

beneficial for the individual to achieve suitable glucose levels.

7.7 Future work

We introduce glucodensity methodology with CGM data. However, our methodology is also valid for data from

other biosensors such as accelerometers to measure physical activity levels. In this domain, the time in range

metric is one of the most used representations, and perhaps the adoption of our approach can lead to better

results.71,72 The adoption of new methodology with other biosensors may be an essential research issue to be

addressed in the future.
From a statistical point of view, and with biosensor data in different domains, it would be exciting to do an

extensive comparison to establish differences in performance between distributional transformations,35,65 perhaps

with less complex functional models than some we have considered. In general, the statistical models employed in

this paper are non-parametric, and a considerable sample size is necessary, a requirement that is always not

satisfied in many studies. In such cases, with a proper transformation, it may be possible to utilize simpler models,

for example functional linear regression, for some analytic tasks.
In the diabetes field, two different directions of future work are essential. First, from a more clinical point of

view, it will be necessary to evaluate the predictive capacity of the glucodensity in the long-term prognosis of

patients. In addition, it would be interesting to assess, in more extended monitoring periods, the reproducibility

between days and weeks with the representation constructed. One way to accomplish this is to compute the

intraclass correlation coefficient (ICC) using, for example, the methodology proposed recently in Xu et al.73

and based on distances between functions. Second, we need to explore the possibility of incorporating more

information about glucose fluctuations with multidimensional glucodensities or multilevel models, although this

increases model complexity and hence demands higher volumes of data.
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