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Many clinical decisions are taken based on the results of continuous diagnos-
tic tests. Usually, only the results of one single test is taken into consideration,
the interpretation of which requires a reference range for the healthy popula-
tion. However, the use of two different tests, can be necessary in the diagnosis of
certain diseases. This obliges a bivariate reference region be available for their
interpretation. It should also be remembered that reference regions may depend
on patient variables (eg, age and sex) independent of the suspected disease. How-
ever, few proposals have been made regarding the statistical modeling of such
reference regions, and those put forward have always assumed a Gaussian dis-
tribution, which can be rather restrictive. The present work describes a new
statistical method that allows such reference regions to be estimated with no
insistence on the results being normally distributed. The proposed method is
based on a bivariate location-scale model that provides probabilistic regions cov-
ering a specific percentage of the bivariate data, dependent on certain covariates.
The reference region is estimated nonparametrically and the nonlinear effects
of continuous covariates via polynomial kernel smoothers in additive models.
The bivariate model is estimated using a backfitting algorithm, and the optimal
smoothing parameters of the kernel smoothers selected by cross-validation. The
model performed satisfactorily in simulation studies under the assumption of
non-Gaussian conditions. Finally, the proposed methodology was found to be
useful in estimating a reference region for two continuous diagnostic tests for
diabetes (fasting plasma glucose and glycated hemoglobin), taking into account
the age of the patient.
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1 INTRODUCTION

The diagnosis and treatment of disease commonly rests on the results of measureable biomarker-based clinical laboratory
tests. Indeed, some 70% of the decisions made in clinical practice are taken based on such results.1 For every test result,
the clinical laboratory provides comparator values to help the clinician understand in context the information provided.
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These comparator values are often referred to as the reference interval,2 they usually reflect the range of values within
which 95% of the results of the normal healthy population falls.

When a single biomarker is examined, the reference interval is classically obtained using quantile estimation
techniques,3 or by conditional quantile regression if any variable modifies the distribution of the response variable (ie,
the reference curve).4,5 However, there is often more than one test for diagnosing a disease. For instance, the diagnosis
of diabetes may be based on plasma glucose criteria, such as fasting plasma glucose (FPG) or the 2-hour plasma glucose
value obtained during a 75-g oral glucose tolerance test, or the glycated hemoglobin (HbA1c) test.6 The same tests may
be used to screen for, diagnose and monitor the effects of treatment for diabetes. However, measuring glycemic control
is not foolproof; its clinical usefulness is affected by a number of biological and analytical factors. Disagreement between
glycemic control measurements are common, and clinicians need to know what might explain them.7

Following the guidelines of the American Diabetes Association, the diagnosis of diabetes is defined as FPG levels of
≥126 mg/dL, and of HbA1c ≥ 6.5%. The same cut-offs are used for children, adolescents, and adults. FPG and HbA1c
levels are reported to be strongly correlated,8 both in members of the general population and in patients with diabetes.9,10

If two tests are indifferently used for the diagnosis of a disease, the correlation between them should be strong. Therefore,
when diagnosing a disease using two markers, it might be reasonable to estimate their combined multivariate reference
region instead of the reference interval for each test. The idea of combining reference regions for two or more laboratory
tests has been discussed in the biomedical,11-13 and statistical literature.14 However, the proposals made have required
responses that follow a multivariate Gaussian distribution, condition that are not fulfilled by many markers used in the
clinical setting. For instance, FPG and HbA1c concentrations both show a skewed distribution. Hence, a more general
method for estimating multivariate reference regions is needed. Moreover, since HbA1c increases with age even after
adjusting for glucose levels,15-17 this variable should be taken into account when establishing cut-offs or reference values.

The literature reports but a few attempts to define reference regions for non-Gaussian multivariate responses. Non-
parametric reference regions for multivariate responses can be estimated using multivariate quantiles. However, there is
no single definition of what a multivariate quantile is.18 Most current definitions are based on a center-outward ordering
of the data points,19,20 defining a convex hull in which a proportion of the more central data points falls. Halfspace depth
bivariate quantiles based on directional projections have recently been extended to the regression setting for estimating
bivariate contours conditioned by covariates.21 These conditional bivariate quantile models have been used in the study
of anthropometric characteristics affected by age.22 However, the clinical interpretation of the results is not clear. Eas-
ily interpretable conditional bivariate quantile contours can be estimated using the Wei model,23 which is based on the
estimation of i) the marginal stratified conditional quantile regression for each response, and ii) bivariate quantiles using
simulated data points from the above marginal stratified conditional quantile regression. The main drawback of this pro-
posal is the influence of the univariate quantile regression outcome on the performance of the final bivariate quantile
contour. Another nonparametric conditional method for detecting extreme combinations of two variables has also been
proposed.24 This does not define a reference region, but four bivariate reference curves for detecting four possible atypical
combinations of two variables. However, this alternative returns a higher false discovery rate for the reference region.

Non-Gaussian bivariate regions for detecting joint outliers may be estimated using conditional copula regression
models.25 This procedure was recently applied to identify children with abnormal vision.26 Copula regression models
allow a bivariate distribution to be constructed from a modular perspective, combining two univariate parametric distri-
butions and the parametric copula joining them.27 Finally, the response parameters are made dependent on the covariates
using flexible additive models.28 Given copula regression model structure, and the effect of the estimated covariate on
the means, variances and correlation of the responses, a conditional bivariate region for exploring the atypical combina-
tions of two measurements can be estimated. The parametric representation of these models means several choices have
to be made in the model building process, which complicates the use of this methodology when dealing with real data
problems.

The present work proposes a new regression model for estimating conditional bivariate reference regions. The ref-
erence region is defined as the density function contour level which contains the bivariate data points with a given
probability depending on the covariates. Unlike existing methods, cited above, our statistical model places no parametric
restrictions on the response, and the nonlinear effects of continuous covariates may be estimated using local polyno-
mial regression smoothers. Our proposal is an extension to bivariate data of a previous work,29 where the authors used a
location-scale model to estimate univariate percentile curves. The final performance of our conditional reference regions
depends heavily on a bivariate kernel density estimator. It is well known, that nonparametric density estimators are largely
influenced by kernel bandwidth matrix choice. Therefore, in this work, we also propose a new kernel bandwidth estima-
tion method in order to obtain a reference region with a coverage of the bivariate data points close to the nominal level.
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The proposed statistical methodology was tested with simulated data, and applied to estimate an age dependent reference
region for two glycemic markers (FPG and HbA1c), in a cohort of nominally normoglycemic persons.

The remainder of this article is organized as follows. Section 2 introduces the model structure and its estimation
details. Section 3 evaluates the conditional reference region estimation, contemplating scenarios in which the model could
be partially miss-specified. Section 4 makes use of the model for estimating an age-specific bivariate reference region for
the diabetes markers FPG and HbA1c. Finally, Section 5 discusses the limitations and applicability of the proposed model,
highlighting possible extensions.

2 CONDITIONAL BIVARIATE REFERENCE REGION MODEL

This section presents a regression model for estimating a bivariate reference region conditioned by a set of covariates.
The proposed model has no parametric restriction, and is based on the estimate of a location-scale regression, taking into
account the effect of the covariate on the correlation between the response variables.

2.1 Model formulation

Let X = (X1, … ,Xp) be a vector of p covariates, and let Y = (Y1,Y2) be a continuous bivariate response of interest. In this
context, the aim is to obtain a bivariate region 𝜏 of Y conditioned by the covariates X denoted as R𝜏(X), and containing
the 100𝜏% of the bivariate data points. The following structure is assumed:

Y =

(
𝜇1(X)
𝜇2(X)

)
+ 𝚺1∕2(X)

(
𝜀1

𝜀2

)
, (1)

where 𝜇1 and 𝜇2 represent the response means, and the variance-covariance matrix is given by:

𝚺(X) =

(
𝜎2

1 (X) 𝜎12(X)
𝜎12(X) 𝜎2

2(X)

)

The bivariate residuals (𝜀1, 𝜀2) are assumed to be independent of the covariates and to have a mean of zero, zero unit
variance, zero correlation, and an unknown density function f (𝜀1, 𝜀2). Note that, Σ1∕2(X) represents the Cholesky decom-
position of the variance-covariance matrix Σ(X) so that, Σ1∕2(X)(Σ1∕2(X))T = Σ(X). Thus, for any given X the bivariate
region for (Y1,Y2) is given by:

R𝜏(X) =

(
𝜇1(X)
𝜇2(X)

)
+ 𝚺1∕2(X)R𝜏 for 𝜏 ∈ [0, 1], (2)

where the R𝜏 is the unconditional bivariate region containing the 100𝜏% of the model residuals (𝜀1, 𝜀2) defined as:

R𝜏 = {(u, v) ∈ R
2|f (u, v) ≤ k} for 𝜏 ∈ [0, 1],

where k value is chosen so that P ((𝜀1, 𝜀2) ∈ R𝜏) = 𝜏 for 𝜏 ∈ [0, 1].
In Equation (1), the response parameters (𝜇1, 𝜇2, 𝜎

2
1 , 𝜎

2
2 , 𝜎12) are related to the covariates vector X via additive predictors

and known link functions G, which ensure that the restrictions on the parameter spaces are maintained. The following
additive predictors are considered:

𝜇r(X) = 𝛼r +
p∑

j=1
fjr(Xj) and 𝜎2

r (X) = G𝜎

(
𝛽r +

p∑
j=1

gjr(Xj)

)
for r = 1, 2, (3)

where fjr and gjr are smooth unknown functions, 𝛼r and 𝛽r are intercept coefficients and the link function G𝜎 = exp(⋅) to
ensure that 𝜎2

r (X) ≥ 0. Finally, the following additive structure is assumed for the responses’ association with one another,
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expressed as a linear correlation coefficient (𝜌):

𝜌(X) = G𝜌

(
𝛾 +

p∑
j=1

mj(Xj)

)
, (4)

where mj are smooth unknown functions, 𝛾 is an intercept coefficient, and in this case the link function G𝜌 = tanh(⋅) to
ensure that 𝜌̂(X) ∈ [−1, 1]. For the sake of mathematical notational simplicity, only a nonlinear effect of the continuous
covariates is contemplated in Equations (3) and (4), but they could easily be adapted to incorporate factor effects. For
instance, if the first p1 covariates define categories, the expression of 𝜇r(X) in (3) can be replaced by the following semi-
parametric structure 𝜇r(X) = 𝛼r +

∑p1
j=1𝛼jrXj +

∑p
j=p1+1fjr(Xj). The variances and correlation structures can be similarly

treated.

2.2 Estimation algorithm

This section discusses the procedure for estimating the conditional bivariate region presented in Equation (2). The
methodology is based on the estimate of the covariate effects on the means of the responses via the use of a flexible addi-
tive predictor, and then on the variance-covariance matrix using the squared residuals of the conditional means estimates.
Finally, the bivariate region 𝜏 is obtained using a bivariate kernel estimate of the standardized bivariate residuals density.
Specifically, given a sample of {(Yi1,Yi2),Xi}n

i=1, where Xi = (Xi1, … ,Xip), the proposed estimation algorithm is as follows:

Step 1: For r = 1, 2 additive predictor is fitted to the original sample {Yir,Xi}n
i=1 to obtain the estimates:

𝜇̂r(Xi) = 𝛼̂r +
p∑

j=1
f̂ jr(Xij) for i = 1, … ,n. (5)

Step 2: For r = 1, 2 the squared residuals of the previous models 𝜇̂r(Xi) are obtained and additive predictor fitted to the
sample {(Yir − 𝜇r(Xi))2,Xi}n

i=1 and obtain the estimates:

𝜎̂
2
r (Xi) = G𝜎

(
𝛽r +

p∑
j=1

ĝjr
(

Xij
))

for i = 1, … ,n. (6)

Step 3: For i = 1, … ,n the standardized residuals are computed:

r̂i =
(Yi1 − 𝜇̂1(Xi)) (Yi2 − 𝜇̂2(Xi))

𝜎̂1(Xi)𝜎̂2(Xi)

and the correlation model 𝜌(X) using the sample {r̂i,Xi}n
i=1 is fitted as:

𝜌̂(Xi) = G𝜌

(
𝛾̂ +

p∑
j=1

m̂j(Xij)

)
. (7)

Step 4: For i = 1, … ,n the estimated standardized bivariate residuals are then obtained:

⎛⎜⎜⎜⎝
𝜀̂i1

𝜀̂i2

⎞⎟⎟⎟⎠ = Σ̂−1∕2(X)

(
Yi1 − 𝜇̂1(Xi)
Yi2 − 𝜇̂2(Xi)

)
,

where Σ̂−1∕2(X) is the inverse of the Cholesky decomposition of Σ(X). Using the sample {(𝜀̂i1, 𝜀̂i2)}n
i=1 the kernel esti-

mation of the bivariate density f̂ (𝜀1, 𝜀2) is obtained. Then, the bivariate region on the residual scale (R𝜏) can be
obtained as
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R̂𝜏 = {(u, v) ∈ R
2|f̂ (u, v) ≤ k̂}, (8)

where k̂ is the quantile 𝜏 of f̂ (𝜀̂1, 𝜀̂2).
Step 5: Finally, the conditional bivariate region for each Xi value is given by:

R̂𝜏(Xi) =

(
𝜇̂1(Xi)
𝜇̂2(Xi)

)
+ 𝚺̂−1∕2

(Xi)R̂𝜏 .

Full details about nonlinear functions (f̂ jr, ĝjr, m̂j) estimation can be found in Appendixes A and B. Moreover, in
Appendix D, we explain how to obtain confidence intervals for the additive predictors covariates effects through bootstrap.

In addition to the R𝜏(X) estimate, the proposed algorithm can be used to obtain the univariate conditional reference
curves for each response variable, applying the following expression:

Q̂𝜏r(X) = 𝜇̂r(X) + 𝜎̂r(X)𝜀̂𝜏r for r = 1, 2, (9)

where 𝜀̂𝜏r is the empirical 𝜏-quantile of the univariate errors 𝜀1r, … , 𝜀nr.

2.3 Bivariate kernel estimation: Bandwidth selection problem

The covariate dependent bivariate reference region R𝜏(Xi) requires the estimation of a region containing the standardized
bivariate residuals with a given probability 𝜏 derived from the bivariate residuals’ density (see Equations (11) and (12)).
Given the sample {(𝜀̂i1, 𝜀̂i2)}n

i=1, the f density estimator at a given point (u, v) is given by:

f̂ ((u, v),H) = 1
n

n∑
i=1

KH

(
u − 𝜀̂i1

v − 𝜀̂i2

)
,

where K(⋅) represents the kernel (a bivariate symmetric probability density function, usually the standard bivariate Gaus-
sian distribution), and H a diagonal matrix defining the kernel bandwidth, the selection of which is crucial for obtaining
good estimate of R𝜏 and hence the final region R𝜏(Xi).

For the selection of the bandwidth H, a plug-in30 or cross-validation31 estimator can be used, as in any density estima-
tion problem. However, the optimal bandwidth for density estimation might not be optimal for the coverage properties
of the conditional bivariate region R̂𝜏(Xi) (see Figure 1 and Appendix C). Thus, a bandwidth needs to be chosen such that
it minimizes the difference between the estimated and nominal coverage of R̂𝜏(Xi). This is achieved here by basing the
selection on the expression Ĥ = ĥ𝜆, where ĥ is the former bandwidth estimate obtained using the plug-in estimator, and
𝜆 is a parameter modulating the final shape of the estimated region. This parameter is estimated as

𝜆̂ = arg min
𝜆

||||||
(

n−1
n∑

i=1
I{(Yi1,Yi2) ∈ R(−i)(Xi)}

)
− 𝜏

|||||| , (10)

where 𝜏 is the desired coverage and R̂(−i)
𝜏 (Xi) is the estimated bivariate region without the ith observation. Given the

high-computational cost of (10), a k-fold cross-validation scheme could be used instead.

3 SIMULATION STUDY

In this section, the estimated conditional bivariate regions R̂𝜏(X) are evaluated in terms of the data point coverage and
its proximity to the theoretical R𝜏(X). This coverage is estimated using an out-sample design, using one dataset in the
estimation and the other in the evaluation. The comparison between the estimated and theoretical bivariate regions was
performed using the root mean square error (RMSE) distance. Taking into account that both the theoretical and the esti-
mated bivariate reference regions are defined by a set of bivariate points, R𝜏(Xi) = {(ui

k, v
i
k)}

B
k=1, and R̂𝜏(Xi) = {(ûi

j, v̂
i
j)}b

j=1,
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F I G U R E 1 Example estimating the R𝜏 (Xi) for 𝜏 = 0.10, 0.50 and 0.90, using the plug-in bandwidth estimator (left) and following the
method proposed in Equation (10) (right). The theoretical bivariate regions were obtained using the parametric density function of the
response variable, and 100 000 simulated data points [Colour figure can be viewed at wileyonlinelibrary.com]

the RMSE distance was defined as follows:

RMSE
(

R̂𝜏(Xi),R𝜏(Xi)
)
= b−1

b∑
j=1

min
1≤k≤B

√
(ûi

j − ui
k)

2 + (v̂i
j − vi

k)
2. (11)

In practical applications, the bivariate kernel contour lines are used to estimate (ûi
j, v̂

i
j).

3.1 Scenario 1: Response with Gaussian error

In the first simulation scenario, the datasets were generated according to Equation (1). The means, the variances, and
correlation structures of the responses were made dependent on a continuous and a binary regressor. Given a continuous
X1 ∈ U[0, 1], and a binary covariate X2, the following predictor structure was considered:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜇1(X) = 1 + X2 + f1(X1)
𝜎2

1 (X) = 1 + X2

𝜇2(X) = 1 + 0.5X2 + f2(X1)
𝜎2

2 (X) = 1 + 0.5X2

𝜌(X) = 0.3 + 0.2X1 + 0.3X2

, (12)

where f1(X1) = X1 sin(3X1) and f2(X1) = sin(2𝜋X1) represent nonlinear effects. Finally the error term (𝜀1, 𝜀2)was simulated
from a standard bivariate Gaussian distribution. The sample size were set to n = 500, 1000, 2000, and the evaluation was
done using 1000 replicates.

In Figure 2, the R0.95 bivariate region estimates are depicted along with the theoretical estimates for X1 = 0.5 and
X2 = 0. The estimated bivariate region shows a similar shape to the theoretical situation, becoming even closer to it and
showing smaller variability as the sample size increases. In Figure 3, the RMSE for R̂0.95 is presented for a sequence of con-
tinuous predictor values with the binary covariate fixed at zero, for varying sample sizes. As expected, the median RMSE
value and variability decreased with increasing sample size. Moreover, the RMSE was higher for the X1 values located at
the covariate range boundaries (0 and 1); this is justified by the frontier effect associated with nonlinear regression models.

http://wileyonlinelibrary.com
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F I G U R E 2 Estimated bivariate regions for 𝜏 = 0.95, X1 = 0.5 and X2 = 0 along with the theoretical ones (red), for every sample size
considered (500, 1000, and 2000) and three simulation scenarios [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 3 Root mean square error of the estimated bivariate regions for 𝜏 = 0.95, for different sample sizes (500, 1000, and 2000), and
with X2 = 0 and X1 = (0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0) for the three simulation scenarios [Colour figure can be viewed at
wileyonlinelibrary.com]
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Table 1 shows the percentage of bivariate data points contained within the estimated bivariate region to be similar to
that seen for the theoretical situation, whether for different nominal levels (𝜏 = 0.05, 0.50, 0.90, 0.95), continuous predic-
tor variable values, or sample sizes. As for the RMSE, the coverage probability approaches the nominal level as the sample
size increases, and becomes worse for values of X1 located at the covariate range boundaries (0 and 1).

3.2 Scenarios 2 and 3: Non-Gaussian dependencies

In the previous simulation, the proposed model obtained good estimates of the conditional bivariate region. However,
one possible problem lies in that, besides the lack of parametric assumptions, the correlation estimate is based on the lin-
ear correlation coefficient which is not optimal under some circumstances (non-Gaussian margins and/or nonelliptical
structures of dependence). The model was therefore used in two more scenarios contemplating nonstandard bivariate
distributions generated from a parametric copula representation. This representation allows complex bivariate distribu-
tions to be simulated since the different parametric copula functions proposed in the literature allow for different types
of dependence structure between the responses, and each variable may follow any parametric distribution. Given two
continuous variables (Y1,Y2), their joint distribution function F1,2 conditioned on X may be represented in terms of their
univariate distributions functions (F1, F2) and a copula C joining both, as

F1,2 (Y1,Y2|X) = C (F1 (Y2|𝜇1(X), 𝜎2(X)) ,F2 (Y2|𝜇1(X), 𝜎2(X)) ; 𝜃(X)) , (13)

where F1,F2 are two univariate parametric marginal distributions, defined by a location (𝜇) and the scale (𝜎) parameter
and C represents a parametric copula function defined by an association parameter 𝜃 measuring the correlation between
both responses. In the present case, the following bivariate response structures were contemplated:

• Scenario 2: F1 and F2 were considered to be two Gaussian distributions and C a Gumbel copula, defining a nonelliptical
structure of dependence (upper-tail dependence).

• Scenario 3: F1 was simulated from reverse Gumbel distribution and F2 from a logistic one.32 As in the former scenario,
both are joined by a Gumbel copula.

The predictor structures for the bivariate distribution parameters were the same as presented in Equation (12), but
the association was expressed in terms of Kendall’s correlation coefficient. The datasets of both scenarios were generated
using the gamlss33 and copula34 packages in R.

Figure 3 shows the RMSE of the estimated bivariate reference region for both scenarios to decrease with increasing
sample size. However, the estimate error is clearly higher than in the first scenario. Nonetheless, the proposed model
provides a good approximation to the shape of the theoretical region (see Figure 2), and the percentage of bivariate data
points contained within the estimated region is close to the nominal level in both scenarios, becoming better as the sam-
ple size increases (see Table 1). These results suggest that the proposed model is quite robust in the face of possible
miss-specifications.

4 AGE-SPECIFIC BIVARIATE REFERENCE REGION FOR THE GLYCEMIC
TESTS

4.1 Motivating database

The A-Estrada Glycation and Inflammation Study (AEGIS) is a cross-sectional, population-based study that was per-
formed in the municipality of A Estrada (Galicia, NW Spain). The study objective was to investigate the association
between glycation, inflammation status, lifestyle, and common diseases, and to investigate any discordance between
glycemic marker results.35 An age-stratified random sample of the population aged ≥18 years was drawn from Spain’s
National Health System Registry. From November 2012 until March 2015, all subjects were successively convened for
one day at the A Estrada Primary Care Centre for an evaluation which comprised fasting venous blood sampling, ques-
tionnaire interviews, and the description of subjects’ lifestyles. FPG was determined in subjects’ plasma samples using
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T A B L E 1 Percentage coverage of the estimated conditional bivariate region for different sample sizes (500, 1000, and 2000), and
nominal levels (5%, 50%, 90% and, 95%) in the three simulation scenarios

X1

Sample size Nominal Global 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Scenario 1 n = 500 5 4.6 4.4 4.8 4.7 4.7 4.8 4.7 4.6 4.6 4.7 4.7 4.3

50 47.9 46.7 48.5 48.3 48.3 48.6 48.6 48.4 48.4 48.2 48.0 45.3

90 88.3 87.3 88.8 88.6 88.7 88.8 88.8 88.7 88.7 88.4 88.2 86.0

95 93.6 92.9 93.9 93.9 94.0 93.9 94.0 93.9 93.9 93.7 93.5 91.9

n = 1000 5 4.7 4.7 4.8 4.8 4.7 4.7 4.6 4.7 4.6 4.6 4.7 4.3

50 48.8 49.1 49.3 49.4 49.1 49.0 49.0 48.8 48.7 48.5 48.6 46.9

90 88.9 89.2 89.2 89.2 89.1 89.1 89.2 88.9 89.0 88.8 88.6 87.6

95 94.1 94.4 94.3 94.4 94.3 94.3 94.3 94.1 94.1 94.0 93.9 93.2

n = 2000 5 4.7 4.7 4.8 4.8 4.7 4.8 4.7 4.7 4.7 4.7 4.8 4.6

50 49.2 48.9 49.7 49.4 49.3 49.4 49.5 49.3 49.3 49.1 49.1 48.0

90 89.2 89.1 89.3 89.5 89.3 89.4 89.5 89.3 89.2 89.4 89.1 88.4

95 94.3 94.3 94.3 94.6 94.5 94.4 94.5 94.4 94.4 94.4 94.2 93.7

Scenario 2 n = 500 5 4.6 4.3 4.6 4.6 4.7 4.7 4.8 4.7 4.6 4.7 4.6 4.0

50 47.6 45.4 47.9 48.3 48.6 48.8 48.7 48.4 48.1 48.0 47.9 43.7

90 88.7 87.0 88.8 89.1 89.6 89.6 89.7 89.5 89.3 89.0 88.7 85.7

95 94.1 92.9 94.2 94.4 94.7 94.7 94.8 94.7 94.6 94.4 94.0 92.0

n = 1000 5 4.5 4.4 4.6 4.5 4.6 4.6 4.5 4.6 4.5 4.5 4.4 4.3

50 47.0 46.1 46.9 47.1 47.3 47.7 47.4 47.3 47.5 47.3 47.0 45.9

90 88.5 87.3 88.1 88.4 88.7 88.9 88.8 89.0 88.9 88.8 88.8 88.3

95 94.0 93.0 93.6 93.8 94.1 94.2 94.2 94.4 94.3 94.3 94.2 93.9

n = 2000 5 4.6 4.4 4.7 4.6 4.6 4.6 4.6 4.6 4.6 4.6 4.7 4.2

50 48.3 47.0 48.2 48.6 48.8 49.0 49.0 48.6 48.7 48.7 48.8 46.0

90 89.3 88.2 89.2 89.6 89.6 89.8 89.8 89.7 89.6 89.5 89.3 87.7

95 94.5 93.7 94.4 94.7 94.7 94.9 94.9 94.9 94.7 94.6 94.6 93.5

Scenario 3 n = 500 5 4.6 4.4 4.7 4.7 4.8 4.7 4.7 4.7 4.6 4.6 4.5 3.9

50 47.0 44.9 47.2 47.7 48.2 48.4 48.2 47.9 47.7 47.5 46.9 42.3

90 88.3 86.1 87.9 88.7 89.2 89.4 89.4 89.3 89.1 88.7 88.3 85.6

95 93.8 92.1 93.4 94.0 94.4 94.5 94.5 94.5 94.4 94.1 93.8 92.1

n = 1000 5 4.5 4.4 4.6 4.5 4.6 4.6 4.5 4.6 4.5 4.5 4.4 4.3

50 47.0 46.1 46.9 47.1 47.3 47.7 47.4 47.3 47.5 47.3 47.0 45.9

90 88.5 87.3 88.1 88.4 88.7 88.9 88.8 89.0 88.9 88.8 88.8 88.3

95 94.0 93.0 93.6 93.8 94.1 94.2 94.2 94.4 94.3 94.3 94.2 93.9

n = 2000 5 4.9 4.4 4.6 4.5 4.6 4.6 4.5 4.6 4.5 4.5 4.4 4.3

50 49.5 46.1 46.9 47.1 47.3 47.7 47.4 47.3 47.5 47.3 47.0 45.9

90 89.6 87.3 88.1 88.4 88.6 88.9 88.8 89.0 88.9 88.8 88.8 88.3

95 94.6 93.0 93.6 93.8 94.1 94.2 94.2 94.2 94.3 94.3 94.2 93.9
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F I G U R E 4 In the left plot an scatter plot and univariate density estimations of the glycemic test results for subjects not previously
diagnosed with diabetes is given, the black lines represent the current diagnostic criteria. In the right plot a comparison of the test results
between the younger (20 years) and older patients (80 years) is depicted [Colour figure can be viewed at wileyonlinelibrary.com]

the glucose oxidase-peroxidase method. HbA1c was determined by high performance liquid chromatography using a
Menarini Diagnosticcs HA-8160 analyzer; all HbA1c values were converted to DCCT-aligned values.36

A total of 1516 subjects (55% female) agreed to participate in the study; their mean age was 52 years, (range 18 to 91).
Among them, 187 (12%) had been diagnosed with diabetes, and among these 66.8% took oral antidiabetics, 3.7% took
insulin alone, and 13.3% took insulin and oral drugs. The remaining 16.2% took none of these medications.

Figure 4 shows the glycemic marker concentrations for the subjects along with the current diagnosis cut-off points.
As can be seen, according to the criteria in current use, a physician may encounter discordant FPG and HbA1c results,
that is, i) an FPG value outside its reference interval but the HbA1c concentration within the normal range, ii) an HbA1c
value outside its reference interval but the FPG level inside the normal range, or iii) both values inside their reference
intervals but representing an unlikely combination. To the best of our knowledge, there is no criterion for interpreting
such results. Moreover, the use of the same diagnosis cut-off points for the younger and older patients seem unreasonable
since the mean values, the variability in the results, and the correlation between the glycemic markers, increased in older,
diabetes-free subjects.

4.2 Conditional bivariate reference region estimation

This section examines the 1329 AEGIS subjects with no diagnosis of diabetes. The age-specific bivariate region containing
95% of these subjects was estimated using the formula below:(

FPG
HbA1c

)
=

(
𝜇1(age)
𝜇2(age)

)
+

(
𝜎2

1 (age) 𝜎12(age)
𝜎12(age) 𝜎2

2 (age)

)(
𝜀1

𝜀2

)
, (14)

where the effect of age on expectations, the variance, and the correlation between the markers was estimated using poly-
nomial kernel smoothers to account for possible nonlinear trends. As shown in Figure 5, the mean HbA1c and FPG levels,
and their variability, increase with age, while the strength of their correlation appears not to change.

Figure 6 shows the bivariate reference region displayed in the standardized residuals scale, after adjusting for age,
including approximately 95% of the disease-free subjects. From a clinical point of view, these subjects would have “nor-
mal” values for both glycemic tests taking into account their age. The other 5% of the participants might be classified
in four different groups: (I) first quadrant, individuals with high values for both tests; (II) second quadrant, discordant
individuals with high HbA1c concentrations and low/medium FPG; (III) third quadrant, individuals with low values for

http://wileyonlinelibrary.com
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F I G U R E 5 Estimated effect of age (black) and the corresponding 95% confidence interval (gray) on the mean (E) and standard
deviation (SD) of both glycemic markers and the correlation between them [Colour figure can be viewed at wileyonlinelibrary.com]

both tests; and (IV) fourth quadrant, individuals with low/medium HbA1c concentrations and high FPG values. These
results may have clinical implications, especially for subjects with both markers showing high values, but also for those
with discordant results. Subjects returning high values for both (first quadrant) very likely have undiagnosed diabetes.
Individuals who fall outside of the reference region in the second quadrant could be labeled as high glycators, that is, peo-
ple with normal glucose values but who are at higher risk of cardiovascular disease37,38 because of their glycation rate. In
contrast, individuals in the fourth quadrant, who show high glucose levels but normal glycated hemoglobin levels, could
be labeled as low glycators.

In Figure 7 the bivariate reference region is depicted for several ages. These regions shift toward the upper right
corner and expand as age increase. This agrees with the nonlinear effects of age on the expected means and variability of
both markers (Figure 5). This may also have clinical implications. For instance, a subject older than 40 years of age with
FPG = 100 mg/dL and HbA1c = 6.0% should be considered diabetes-free, while a younger subject with the same levels of
both markers should be considered to have glycemic dysregulation.

The performance of the proposed reference region was evaluated in terms of coverage for different 𝜏 using a
leave-one-out cross-validation scheme and three age groups. Table 2 shows the estimated region to have a coverage close
to the nominal level for every 𝜏 and age group considered.

http://wileyonlinelibrary.com
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5 DISCUSSION

This work proposes a new means of estimating reference regions under the assumption of nonparametric conditions,
that can be used to help diagnose and treat patients with diseases for which the results of two different tests are con-
sidered. The proposed method overcomes the problem of the Gaussian distribution restriction of previously introduced
multivariate reference regions. Moreover, it can estimate nonlinear effects of continuous covariates using polynomial ker-
nel smoothers. In simulation studies, it was shown that the procedure for estimating the conditional bivariate reference
region was efficient, even for datasets with complex bivariate response distributions.

The use of the proposed model revealed that the two biomarkers routinely used in diabetes screening and control (FPG
and HbA1c) are better interpreted jointly. Patient age should be taken into account in all interpretations. Disagreements
between the measured concentrations of different biomarkers can hinder decision-making when they are so-examined,
but they may also provide insight into the future progress of the disease.39-42

Multiple test diagnosis accuracy might be investigated under ROC curves perspective, pondering both their joint
specificity and sensitivity.43 However, in our diabetes research application, reference region diagnosis sensitivity was not

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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T A B L E 2 Percentage of test results contained within the estimated bivariate
reference regions for different nominal levels

Cross-validation evaluation

Nominal Apparent Global (18, 40] (40, 60] (60, 91]

5 4.9 4.9 5.7 5.1 4.0

50 50.0 49.7 50.9 49.6 48.5

90 90.0 89.7 91.6 87.5 90.2

95 95.0 94.1 95.0 93.1 94.3

97 97.1 96.7 97.1 96.2 96.9

98 97.8 97.6 97.6 97.7 97.6

99 99.0 98.2 98.1 98.1 98.5

Note: Cross-validation evaluation refers to a leave-one-out cross validation evaluation. Coverage
probability is presented for the entire dataset (Global) and for three age groups.

formally evaluated. Preliminary results, with AEGIS’s patients previously diagnosed with diabetes, indicates a 92% diag-
nosis accuracy, with an estimated sensitivity equal to 72% (data not shown). However, discussing these results are beyond
the scope of this article. In addition, we cannot provide a clear interpretation of the estimated sensitivity, because most
patients suffering from diabetes receive antidiabetic treatments. Indeed, future research from a purely clinical point of
view must be conducted in order to answer questions arising from our novelty interpretation of the (FPG, HbA1c) val-
ues. Some of these open questions are i) how many patients will be classified as healthy, based on the FPG and HbA1c
independent interpretation, but diseased based on their bivariate distribution? ii) which diabetes complications are more
likely among patients with FPG and HbA1c disagreements? iii) are the terms “low glycator” and “high glycator” applica-
ble after our proposal? or iv) which exogenous glycemic control measures maintain FPG and HbA1c in balance, and at
the same time close to healthy patients’ results?

Screening for, and the control of, diabetes mellitus is based largely on the results for two biomarkers, but in other
diseases three or more biomarkers may be taken into consideration. For example, thyroid dysfunction is assessed by
measuring blood concentrations of thyroid stimulating hormone, tri-iodothyronine (T3) and tetraiodothyronine (T4). Cur-
rently, the results for each test are compared with their respective univariate reference intervals. Bivariate and trivariate
reference regions for a thyroid-healthy control group and for a sample of patients was previously reported,44 comparing
their diagnostic efficiency with the standard assessment method. However, these authors applied the current definition
of reference regions that required multivariate Gaussianity, and the variation of thyroid hormone concentrations caused
by a number of biological factors45 was not taken into account. Other clinical studies have estimated trivariate reference
regions based on the Gaussian distribution for cancer46 and cardiovascular disease.47 Given the need for reference regions
for more than two tests, it would be of interest to extend the proposed model beyond the bivariate case. The lack of para-
metric restrictions in the proposed model, and the possibility of estimating the nonlinear effects of the predictor variables
would be advantageous in the clinical setting.

The proposed model suffers the limitation that the correlation between the response variables is measured using a
linear correlation coefficient. This is not optimal for non-Gaussian margins and nonelliptical dependence structures.
Although in the simulation studies the proposed model was shown to be quite robust for this type of misspecification, a
slightly increased error in estimates might be expected. More general correlation measures, such as those derived from
copula functions,48,49 might help overcome this problem.
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APPENDIX A. FLEXIBLE ADDITIVE MODELS ESTIMATION

In order to obtain the estimated additive models in Equations (5), (6), and (7), we have used a backfitting algorithm based
on local polynomial kernel smoothers. For mathematical notation simplicity, we denote in this section Y as our response
variable, and X = (X1, … ,Xp) the p vector of covariates. In this regression framework, we consider the transformed
additive model:

E[Y |X] = G

(
𝛼 +

p∑
j=1

fj(Xj)

)
,
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where G(⋅) is a known link function, 𝛼 is a constant, and fj unknown functions representing the effects of continuous
covariates. Given a sample {(Yi,Xi)}n

i=1, this model can be estimated using the following iterative process based on a
Newton Raphson procedure which extends the ACE (Alternating Conditional Expectation) algorithm.50

Initialize: compute the initial estimates, 𝛼̂ = G−1(Y ) with Y = n−1∑n
i=1Yi, f̂

0
1, … , f̂

0
p = 0.

Step 1: for i = 1, … ,n construct the linearized response Ỹ and the weights W so that:

Ỹ i = 𝜂̂
0
i +

Yi − G(𝜂̂0
i )

G′(𝜂̂0
i )

and Wi =
G′(𝜂̂0

i )2

𝜎̂
2
i

,

where 𝜂̂0
i = 𝛼̂ +

∑p
j=1 f̂

0
j (Xj), G′(𝜂) = 𝛿G

𝛿𝜂
, and 𝜎̂2

i is an estimation of the variance 𝜎2(Yi|G(𝜂̂0
i )). The estimated 𝜎̂2

i can be
obtained fitting an additive model to (Yi − G(𝜂̂0

i ))2.
Step 2: fit an additive model to Ỹ weighted by W and compute the updates 𝛼̂ and f̂ j for j = 1, … , p. At this step we

have used an inner backfitting algorithm based on a local polynomial kernel smoother:

Step 2.0: update the constant 𝛼̂ =
(∑n

i=1Wi
)−1∑n

i=1WiỸ
Step 2.1: for j = 1, … , p calculate the partial residuals

Rj
i = Ỹ i − 𝛼̂ −

j−1∑
k=1

f̂ k (Xik) −
p∑

k=j+1
f̂

0
k(Xik)

and for i = 1, … ,n, compute the polynomial kernel estimator updates:

f̂ j(Xij) = 𝜓̂

(
Xij,

{
(Xlj,Rj

l,Wi)
}n

l=1
, hf

j

)
being hf

j the smoothing bandwidth associated with the estimation of fj.

Step 2.2: Repeat Step 2.1 replacing f̂
0
j (Xij) by f̂ j(Xij) for j = 1, … , p and i = 1, … ,n, until the convergence criterion

∑n
i=1

(
f̂ j(Xij) − f̂

0
j (Xij)

)2

∑n
i=1

(
f̂

0
j (Xij)

)2
+ 0.001

≤ 𝜀 for all j = 1, … , p

is reached.

Step 3: repeat the Steps 1 and 2 with 𝜂̂0
i being replaced by 𝜂̂i = 𝛼̂ +

∑p
j=1 f̂ j

(
Xij

)
for i = 1, … ,n until:

|MSE(𝜂̂,Y ) − MSE(𝜂̂0,Y )|
MSE(𝜂̂0,Y )

≤ 𝜖,

where 𝜖 is a small and the mean squared error MSE(𝜂̂,Y ) is defined as MSE(𝜂̂,Y ) = n−1∑n
i=1Wi(Yi − G(𝜂̂i))2

The proposed algorithm use two loops: (i) an external loop, for adjusting the transformed response models (Steps 1 and
3), (ii) an internal loop which estimates the nonlinear effect of continuous covariates using a backfitting method (Step 2).
This algorithm was used to estimate the additive models for means (Equation (5)) with identity link , the additive models
for variances (Equation (6)) with exponential link and the correlation additive model (Equation (7)) with tanh(⋅) link.
Note that in the first case the algorithm is reduced to the internal loop. Finally, the polynomial kernel smoother used in
Step 2 may be replaced by an alternative estimator (eg, penalized splines).51

APPENDIX B. LOCAL POLYNOMIAL KERNEL SMOOTHERS

Given a sample {(Xi,Yi)}n
i=1 with a vector of weights {Wi}n

i=1 the local linear kernel smoother at a location x, 𝜓̂(x) =
𝜓̂
(

x, {(Xi,Yi,Wi)}n
l=1, h

)
is defined as 𝜓̂(x) = 𝜷̂, where 𝜷̂ = (𝛽0, … , 𝛽q) is a vector which minimizes:
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n∑
i=1

Wi

[
Yi −

q∑
j=0
𝛽j(Xi − x)j

]2

K
(

Xi − x
h

)
,

where K(⋅) denotes a kernel function (a symmetric density), q is the polynomial degree, and h > 0 is the smoothing
parameter, chosen using:

CV = 1
n

n∑
i=1

Wi
(

Yi − 𝜓̂ (−i)(Xi)
)2
,

where 𝜓̂ (−i)(Xi) indicates the fit at Xi leaving out the ith data vector.

APPENDIX C. BIVARIATE KERNEL BANDWIDTH SELECTION

In this section, the bivariate kernel bandwidth estimator proposed in Equation (10) is evaluated and compared with the
well-known plug-in, and least-square cross-validation estimators, and an arbitrary large bandwidth (5H). The influence
of the kernel bandwidth on the shape of the final conditional reference region is determined by examining the RMSEs
(see Equation (11)), and the region perimeter with respect to the theoretical regions. Moreover, the coverage properties
of the estimated region is assessed using an out-sample design. This evaluation was performed under two scenarios:

• Scenario 1: involving a bivariate response simulated from the model structure (Equation (1)). The bivariate error (𝜀1, 𝜀2)
was drawn from a bivariate standard Gaussian distribution.

• Scenario 2: involving a bivariate response simulated from a parametric copula representation (see Equation (13)),
considering a reverse Gumbel and logistic distribution joined by a Gumbel copula.

In both scenarios the bivariate response parameters were made dependent on a continuous (X1 ∈ U[0, 1]) and a binary
regressor (X2), specifically:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜇1(X) = 1 + X2 + f1(X1)
𝜎2

1 (X) = 1 + X2

𝜇2(X) = 1 + 0.5X2 + f2(X1)
𝜎2

2 (X) = 1 + 0.5X2

𝜌(X) = 0.3 + 0.2X1 + 0.3X2

,

where f1(X1) = X1 sin(3X1) and f2(X1) = sin(2𝜋X1) represent nonlinear effects. The sample size were set to n = 500, 1000,
and 2000 and the evaluation performed using 1000 replicates.

Figure C1 shows the main results for both simulation scenarios. With Gaussian data (scenario 1), the RMSE of the
estimated bivariate reference region (𝜏 = 0.95) is higher for the plug-in, and cross-validation methods for every sample
size, and continuous covariate value. Moreover, estimated regions’ perimeters were higher than the real one for classical
bandwidth estimators. Accordingly, a kernel bandwidth wider than plug-in would obtain a better estimate of the bivariate
region. Given that the bivariate error is represented using a standard bivariate Gaussian distribution, which is also used as
a kernel function in the density estimator, this result is not surprising. This also explains the good coverages obtained for
a large kernel bandwidth (see Table C1). Hence, if the standardized bivariate residuals are Gaussian-distributed, a para-
metric expression would be better used in the estimation of R𝜏 . For non-Gaussian data (scenario 2), our proposed method
obtains a smaller estimation error than that returned by the plug-in, and cross-validation estimators. Moreover, the use
of a large bandwidth returns a worse estimation error. In addition, theoretical region perimeters are better approximated
by our kernel bandwidth estimator. Figure C2 shows the estimated bivariate reference region for every kernel band-
width. Plug-in, and cross-validation estimators returned greater variabilities in their estimates, while the large bandwidth
ignored the true shape of the region. Moreover, the best coverages were obtained using the bandwidth selector described
in Section 2.3 (see Table C1). Specifically, the plug-in, and cross-validation methods seems to overfit the training dataset,
resulting in a coverage below 95% for the estimated reference region, while the large bandwidth (5H) offer a coverage of
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Scenario 2: non−Gaussian data

F I G U R E C1 Bivariate reference region performance depending on kernel bandwidth estimator for different X1 predictor variable
values, with X2 fixed at zero, sample sizes (500, 1000, and 2000), for Gaussian and non-Gaussian data. Red line represents the theoretical
region’s perimeter. Best-Coverage represents kernel bandwidth estimator proposed in Equation (10), CV is the least-square cross-validation
method, and 5H an arbitrary large bandwidth [Colour figure can be viewed at wileyonlinelibrary.com]

over 95%. Hence, when dealing with nonstandard responses, the density estimator plays a key role in the performance
of the bivariate reference region. The present method shows better performance than the plug-in, and cross-validation
estimators, but the bandwidth selection problem requires further work.

APPENDIX D. BOOTSTRAP INFERENCE

In this section we present a bootstrap procedure to obtain punctual confidence intervals, given a specific vector of covari-
ates X0, for the components (mean, deviation and correlation components ) of the model presented in Equation (1). The
steps for construction of the bootstrap confidence intervals are:

Step 1. From the sample data {(Yi1,Yi2),Xi}n
i=1 obtain the estimates 𝜇̂r(X0), 𝜎̂r(X0) (r = 1, 2) and 𝜌̂(X0).

http://wileyonlinelibrary.com
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Best Coverage Plug−in

Cross−validation 5H

F I G U R E C2 Estimation of the bivariate reference region for 50 replicates (gray) along with the theoretical region (red), for n = 1000,
X1 = 0.5 and X2 = 0, and the bivariate kernel bandwidths used in the estimation of the model’s residual density function. Best coverage
represents our Equation (10) proposal, and 5H an arbitrary large bandwidth [Colour figure can be viewed at wileyonlinelibrary.com]

Step 2. For b = 1, … ,B generate bootstrap samples {(Y•
i1,Y

•
i2),Xi}n

i=1 with(
Y•

i1

Y•
i2

)
=

(
𝜇̂1(Xi)
𝜇̂2(Xi)

)
+ 𝜮̂

1∕2(Xi)

(
𝜀̂
•
i1

𝜀̂
•
i2

)
,

where
{
(𝜀̂•i1, 𝜀̂

•
i2)
}n

i=1 is a sample of size n from the residuals {(𝜀̂i1, 𝜀̂i2)}n
i=1 with replacement, and compute 𝜇̂•b

r (X0), 𝜎̂•b
r (X0)

and 𝜌̂•b(X0) as in Step 1.
The limits for the 100(1 − 𝛼)% confidence intervals of the true components 𝜇r(X0), 𝜎r(X0), and 𝜌(X0) are given

respectively by
(
𝜇̂
𝛼∕2
r (X0), 𝜇̂1−𝛼∕2

r (X0)
)

,
(
𝜎̂
𝛼∕2
r (X0), 𝜎̂1−𝛼∕2

r (X0)
)

, and
(
𝜌̂
𝛼∕2(X0), 𝜌̂1−𝛼∕2(X0)

)
, where 𝜇̂p

r (X0) represents the
p-percentile of 𝜇̂•1

r (X0), … , 𝜇̂
•B
r (X0), 𝜎̂p

r (X0) represents the p-percentile of 𝜎̂•1
r (X0), … , 𝜎̂

•B
r (X0), and 𝜌̂

p(X0) is the
p-percentile of 𝜌̂•1(X0), … , 𝜌̂

•B(X0).

APPENDIX E. R CODE AND DATA ANALYSIS

The statistical methods developed in this article, and the AEGIS dataset, are available in the R package refreg.52 In the
following we present the R code necessary to replicate Section 4.2 results.
install.packages("refreg")
library(refreg)

#-- AEGIS dataset
?aegis
head(aegis)
summary(aegis)

dm_no = subset(aegis, aegis$dm=="no") # healthy patients sample

#-- Fitting bivariate location-scale model
mu1 = fpg ∼ s(age)

http://wileyonlinelibrary.com
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T A B L E C1 Coverage probability of bivariate data points for different sample sizes (500, 1000, and 2000), covariate X1

values, with X2 fixed at zero, and bivariate kernel bandwidths estimators

X1

Sample size Bandwidth 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Scenario 1 n = 500 Best coverage 93.0 93.9 93.9 94.0 94.0 94.0 93.8 93.7 93.6 93.4 91.7

Plug-in 91.5 92.5 92.6 92.6 92.7 92.6 92.5 92.3 92.3 92.1 90.1

CV 87.2 88.4 88.5 88.5 88.6 88.5 88.4 88.2 88.1 87.9 85.6

5H 93.6 94.4 94.4 94.5 94.5 94.5 94.3 94.2 94.2 94.0 92.3

n = 1000 Best coverage 93.8 94.3 94.3 94.3 94.3 94.3 94.2 94.1 94.1 94.0 93.2

Plug-in 93.1 93.6 93.6 93.6 93.6 93.6 93.5 93.4 93.4 93.3 92.4

CV 89.8 90.5 90.5 90.5 90.5 90.5 90.4 90.3 90.3 90.2 89.0

5H 94.3 94.7 94.7 94.7 94.7 94.7 94.6 94.6 94.5 94.4 93.7

n = 2000 Best coverage 94.2 94.5 94.5 94.5 94.5 94.4 94.4 94.4 94.3 94.3 93.8

Plug-in 93.8 94.1 94.1 94.1 94.1 94.1 94.0 94.0 93.9 93.9 93.4

CV 91.6 91.9 91.9 91.9 91.9 91.9 91.8 91.8 91.7 91.7 91.1

5H 94.5 94.8 94.8 94.8 94.8 94.8 94.7 94.7 94.7 94.6 94.2

Scenario 2 n = 500 Best coverage 92.5 93.6 94.0 94.3 94.3 94.2 94.0 94.2 93.6 93.4 91.7

Plug-in 89.9 91.1 91.8 92.0 92.2 92.2 92.0 92.1 91.5 91.1 88.4

CV 86.1 87.5 88.3 88.6 88.8 89.0 88.7 88.7 88.2 87.6 84.2

5H 94.0 94.8 95.2 95.4 95.3 95.2 94.9 95.1 94.5 94.4 93.5

n = 1000 Best coverage 92.7 93.5 93.9 94.0 94.0 94.0 94.1 94.4 94.0 94.1 93.5

Plug-in 91.2 92.1 92.5 92.7 92.9 92.9 93.0 93.4 92.9 92.9 91.6

CV 87.4 88.5 89.1 89.3 89.5 89.6 89.7 89.9 89.6 89.5 87.6

5H 94.2 95.0 95.2 95.2 95.1 95.0 95.0 95.4 95.0 95.1 95.3

n = 2000 Best coverage 93.1 93.6 93.9 94.1 94.1 94.1 94.2 94.6 94.1 94.1 93.7

Plug-in 92.2 92.7 93.0 93.3 93.3 93.5 93.5 93.9 93.4 93.4 92.8

CV 90.0 90.5 91.0 91.2 91.3 91.5 91.5 91.9 91.4 91.4 90.6

5H 94.4 94.9 95.1 95.2 95.1 95.1 95.0 95.4 94.9 95.0 95.1

Note: Best coverage represents our Equation (10) proposal, CV is the least-square cross-validation method, and 5H an arbitrary large
bandwidth.

mu2 = hba1c ∼ s(age)
var1 = ∼ s(age)
var2 = ∼ s(age)
rho = ∼ s(age)
formula = list(mu1,mu2,var1,var2,rho)

fit = bivRegr(formula,data=dm_no)
s_b = summary_boot(fit,B=250,parallel = T) # bootstrap 95% CI

plot(s_b,eq=1)
plot(s_b,eq=2)
plot(s_b,eq=3)
plot(s_b,eq=4)
plot(s_b,eq=5,select=1)+ggplot2::geom_hline(yintercept=0,color = "red")
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#-- Bivariate reference region
region0 = bivRegion(fit,H_choice = "plug.in",tau=c(0.50,0.90,0.95))
plot(region0,tau=0.95,col="gray",reg.lwd=2) # overfitted region

set.seed(719)
region1 = bivRegion(fit,H_choice = "Hcov",tau=0.95,k=50) # best coverage region
plot(region1,tau=0.95,col="gray",reg.lwd=2.75, legend=T,xlab="Fasting Plasma
Glucose, mg/dL",
ylab="Glycated hemoglobin, %" # standarized region)
summary(region1) # identify outside patients

#-- Depict conditional region
plot(region1,cond=T,newdata=data.frame(age=c(20,30,40,50,60,70,80)),col=NA,
reg.lwd=2)


