
pharmaceuticals

Systematic Review

Pharmacometabolomics by NMR in Oncology: A Systematic
Review

Nuria Gómez-Cebrián 1 , Pedro Vázquez Ferreiro 2, Francisco Javier Carrera Hueso 3, José Luis Poveda Andrés 4,
Leonor Puchades-Carrasco 1,* and Antonio Pineda-Lucena 5,*

����������
�������

Citation: Gómez-Cebrián, N.;

Vázquez Ferreiro, P.; Carrera Hueso,

F.J.; Poveda Andrés, J.L.;

Puchades-Carrasco, L.;

Pineda-Lucena, A.

Pharmacometabolomics by NMR in

Oncology: A Systematic Review.

Pharmaceuticals 2021, 14, 1015.

https://doi.org/10.3390/

ph14101015

Academic Editor: Jean

Jacques Vanden Eynde

Received: 8 September 2021

Accepted: 29 September 2021

Published: 2 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; nuria_gomez@iislafe.es
2 Ophthalmology Department, Hospital Virxen da Xunqueria, 15270 A Coruña, Spain;

pedro.vazquez.ferreiro@sergas.es
3 Pharmacy Department, Hospital Universitario La Plana, 12004 Castellón, Spain; carrera_fra@gva.es
4 Pharmacy Department, Hospital Universitario y Politécnico La Fe, 46026 Valencia, Spain;

poveda_joseand@gva.es
5 Molecular Therapeutics Program, Centro de Investigación Médica Aplicada, 31008 Navarra, Spain
* Correspondence: leonor_puchades@iislafe.es (L.P.-C.); apinedal@unav.es (A.P.-L.);

Tel.: +34-963246713 (L.P.-C.)

Abstract: Pharmacometabolomics (PMx) studies aim to predict individual differences in treatment
response and in the development of adverse effects associated with specific drug treatments. Overall,
these studies inform us about how individuals will respond to a drug treatment based on their
metabolic profiles obtained before, during, or after the therapeutic intervention. In the era of
precision medicine, metabolic profiles hold great potential to guide patient selection and stratification
in clinical trials, with a focus on improving drug efficacy and safety. Metabolomics is closely related
to the phenotype as alterations in metabolism reflect changes in the preceding cascade of genomics,
transcriptomics, and proteomics changes, thus providing a significant advance over other omics
approaches. Nuclear Magnetic Resonance (NMR) is one of the most widely used analytical platforms
in metabolomics studies. In fact, since the introduction of PMx studies in 2006, the number of
NMR-based PMx studies has been continuously growing and has provided novel insights into
the specific metabolic changes associated with different mechanisms of action and/or toxic effects.
This review presents an up-to-date summary of NMR-based PMx studies performed over the last
10 years. Our main objective is to discuss the experimental approaches used for the characterization
of the metabolic changes associated with specific therapeutic interventions, the most relevant results
obtained so far, and some of the remaining challenges in this area.

Keywords: pharmacometabolomics; nuclear magnetic resonance; drug response; personalized
medicine; metabolism

1. Introduction

Precision or personalized medicine aims to select, based on the characteristics of a
patient, the most appropriate drug treatment for a particular disease. The ultimate goal in
this area is to improve treatment efficacy and reduce the number of adverse effects [1,2].
However, this approach is challenging as patient responses to treatment can be very
different [3]. In this context, pharmacogenomics (PGx) emerged as a promising approach
for studying the influence of the specific individual’s genomic background on the response
to drug treatment [4–6]. For certain drugs or drug classes, genetic factors have been
shown to have the most important influence on drug treatment outcomes [7]. In fact, it
has been reported that genetic traits account for 20–40% of the intra-patient differences
associated with drug metabolism and response [8]. However, there exist other factors
influencing drug response, including age, sex, disease, environmental factors, diet, and
drug interactions [9,10]. Thus, although PGx approaches have facilitated the identification
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of many associations between genome alterations and changes in drug metabolism or
response, they are somewhat limited as environmental or other contextual factors (i.e.,
ethnicity, diet, age, weight, gut microbiota, etc.) are not considered [11–13]. In this scenario,
pharmacometabolomics (PMx) could represent a valuable alternative, or complementary,
approach to PGx.

PMx, introduced in 2006 by Clayton et al. [14], focuses on predicting individual re-
sponses to drug treatments (i.e., toxicity and efficacy) based on the characterization of their
metabolic fingerprints before the intervention [14]. The metabolic profile of a biological
sample can be strongly influenced, from a quantitative and qualitative perspective, by a
pathological condition or the presence of a specific drug [15]. The metabolome represents
the final step of the omics cascade and can offer an accurate description of the patho-
physiological status of an individual. Metabolomics provides information on metabolic
changes induced by both environmental and genomic factors, therefore reflecting a more
complete description of the molecular alterations associated with drug response than
genomics [16]. This approach enables the identification of specific alterations in metabo-
lites levels and pathways that characterize particular metabolic phenotypes associated
with the specific patient’s response to a drug treatment [13,17]. PMx studies represent
a promising approach for gaining a deeper insight into the molecular mechanisms that
determine inter-patient variability in drug response [14,18–20]. Using this strategy, it is
possible to identify metabolic biomarkers that could help in predicting individual drug
effects and increasing efficacy in drug treatments. Since its introduction [14], the number
of PMx studies has greatly increased, especially in the last decade. Patient metabolic
profiles are frequently characterized using either the Nuclear Magnetic Resonance (NMR)
or the Mass Spectrometry (MS) techniques, each of them exhibiting their own advantages
and disadvantages. However, the high reproducibility, in addition to the non-destructive
nature of the NMR-based approaches, presents a major advantage in these studies [21].
This review focuses on the analysis of the results derived from the NMR-based PMx studies
performed over the last ten years.

2. Methods
2.1. Search Strategy

A systematic search was conducted on PubMed, Web of Science, and EMBASE
databases for published NMR-based PMx studies, using the following terms: “(Pharma-
cometabolomics OR (Pharmaco OR Drug OR treatment OR response)) AND (Metabolomics)
AND (Nuclear Magnetic Resonance OR NMR)”. In addition, the “Pharmacometabolomics”
term was also introduced in the clinicaltrials.gov database to look for clinical studies using
this experimental approach. Duplicates were removed and only the original articles written
in English and published between January 2011 and June 2021 were selected for further
review.

2.2. Selection Criteria

All selected publications were screened following standard protocols [22] and re-
viewed based on the pre-defined selection criteria. An additional filtering process based
on the presence of the key terms “NMR AND (predict OR response OR effect OR pharma-
cometab) AND (patient OR human OR cell line)” in the title or abstract was also performed.
Then, titles and abstracts of the selected publications were examined to evaluate their
eligibility according to their relevance on the issue of interest in order to determine their
inclusion in the review. Finally, the available full texts of selected articles were thoroughly
reviewed. Additionally, principal investigators responsible for the PMx-related clinical
trials identified in the clinicaltrials.gov database were contacted for further details on the
experimental design of the studies in order to evaluate their potential inclusion in the
review.
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2.3. Data Extraction

The full-text articles of the final selected studies were reviewed in detail and different
informative data were extracted, including disease, treatment, experimental design, sample
type, time points for sample collection, research aim, NMR instrument and pulse sequence,
data preprocessing, statistical analyses, etc.

3. Results

Out of a total of 9208 publications initially identified through the literature search
(Figure 1), 3196 of them were published during the last ten years. After screening based on
the pre-defined terms, 680 articles were considered eligible. A thorough review of the titles
and abstracts of these articles led to a final selection of 46 studies matching the selection
criteria previously described. Finally, the information included in the full-text publications
of these 46 PMx studies was further analyzed for the purpose of this review.
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3.1. Study Characteristics
3.1.1. Sample Collection

Metabolomics analyses can be performed using multiple biological matrices. However,
in the PMx studies included in this review the most frequently used biofluids were blood
(i.e., serum, plasma, and platelets), followed by urine samples. Other biosamples, such
as feces [23,24] or cells [25,26] were used in two studies, whereas saliva [27], culture
medium [28], and tissue [29] were only collected in one of the studies. It should be noted
that even though tissue and patient-derived cells can provide in situ information of the
specific metabolic alterations due to a health condition or an external intervention [30],
the access to these samples is highly dependent on the clinical practice. In metabolomics
studies, it is recommended to follow specific standard operating procedures (SOPs) that
harmonize processes associated with the quality of the biological samples: collection,
processing, and storage [31,32]. Specific details regarding the protocols followed for
sample collection were not included in most of the studies detailed in this review. It is
of critical importance to ensure the quality of the samples used in PMx studies to avoid
the introduction of additional, non-disease-related variations. Samples were stored at
−80ºC until NMR analysis in the vast majority of the reviewed studies. Metabolomics
studies based on the analysis of biofluids such as blood, urine, or saliva present obvious
advantages due to their simple and less invasive collection. In particular, and despite
the high variability in the number of samples, the number of participants included in
the blood- or urine-related PMx studies was always significantly higher than in those
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based on the analysis of feces or tissue samples, most probably reflecting a much easier
access and availability of these biofluids. Furthermore, studies relying on the analysis
of patient-derived samples (i.e., biofluids, tissue, feces, etc.) included a larger number
of samples compared with those focused on the analysis of commercially available cell
lines. Overall, the number of samples included in the different PMx studies ranged from
biological triplicates, in the case of cell cultures [28], to hundreds of patients, in the case of
clinical trials [33].

3.1.2. Study Design

Most of the reviewed PMx studies relied on the characterization of the metabolomics
profiles of the patients, classified as “responders” or “non-responders”, to specific thera-
peutic interventions, using samples collected before treatment. Additionally, in 35 out of
the 46 studies, patient samples were also collected at different timepoints after treatment. A
number of studies also included the analysis of samples from a control group reflecting the
metabolomics profile of healthy individuals. Overall, different experimental strategies are
being explored for the evaluation of metabolic changes associated with drug response. For
example, a very recent study evaluated metabolites produced by bacteria in ex vivo experi-
ments. In particular, human stool samples were incubated in the presence of methotrexate
to evaluate the association between the microbiome-driven metabolism of this drug and
the clinical response to this therapeutic treatment [34].

3.1.3. NMR Sample Preparation

The sample preparation in the different PMx studies followed the standard procedure
used in most NMR-based metabolomics studies [31], consisting in the addition of a deuter-
ated buffer to the blood and urine samples to adjust the pH and provide the necessary
lock signal [31]. The pH adjustment turns especially relevant when samples, such as urine
or saliva, that are particularly sensitive to inter-individual pH changes, are measured. In
the PMx studies included in this review, the pH ranged from 6.8 to 7.4 for urine samples,
whereas 7.4 was used for the saliva samples. The metabolomics profile in the only PMx
study based on tissue samples was carried out using high-resolution magic angle spinning
(HR-MAS) NMR spectroscopy [29]. Although this particular PMx study was performed
using HR-MAS, a non-destructive method only requiring minimal sample preparation,
some other metabolomics studies, such as those based on fecal samples, rely on a previous
extraction of polar metabolites [35–37]. In general, the final percentage of deuterated water
in samples not previously subjected to metabolite extraction (i.e., plasma, serum, saliva,
urine, etc.) was approximately 10%, whereas polar extracts were usually lyophilized and
resuspended in 100% D2O buffer. Furthermore, most of the studies relied on using sodium
trimethylsilyl [2,2,3,3-2H4] propionate (TSP) as an internal standard, whereas 2,2,3,3-d4-3-
(trimethylsilyl) propionic acid (TMSP) or 4,4-dimethyl-4-silapentane-1-sulfonic acid (DSS)
were only used in a few studies. Other chemical compounds, such as tetramethylsilane
(TMS) or calcium formate, were rarely used [38,39].

3.1.4. NMR Spectra Acquisition

Operating frequencies ranging from 400 to 800 MHz were used in the different PMx
studies, although 500 and 600 MHz spectrometers were the most frequently chosen. Further-
more, spectrometers equipped with a cryoprobe [24,26,40–49] were used in over 25% of the
studies, and an automatic sample charger was only used in seven of them [24,26,48,50–53].
Spectrometer selection in the selected PMx studies does not appear to be associated with
the type of sample or any other characteristic of the study. However, the selection of
the NMR pulse sequence was heavily dependent on the sample type, as would be ex-
pected from the different nature of the biological matrices used in the studies. Thus, the
Carr−Purcell−Meiboom−Gill (CPMG) [54] pulse sequence was preferentially used to
acquire spectra from blood and tissue samples, whereas nuclear Overhauser effect spec-
troscopy (NOESY) [55] experiments were primarily selected for urine, fecal extracts, and
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saliva samples. Only one study relied on a different pulse sequence, Solvent-Optimized
Gradient-Gradient Spectroscopy (SOGGY) [56], based on a previous excitation-sculpting
template [57], to improve the water suppression and the solute sensitivity in the charac-
terization of pancreatic cancer cells [26]. The CPMG pulse sequence, which includes a
relaxation filter for larger molecules to facilitate the detection of small metabolites, was
used for the measurement of samples containing lipids and proteins (i.e., serum, plasma,
etc.) [31]. On the other hand, the NOESY experiment, which leads to spectra with improved
baseline and water suppression [58], was the preferred choice for analyzing samples that do
not usually contain large molecules (i.e., urine, polar extracts, cell culture media, etc.). The
number of scans for acquiring the one-dimensional (1D) NMR spectra ranged from 16 to
256, independently of the sample type. The NMR metabolic profiles of biological samples
are usually characterized by a high degree of signals overlap. In this context, the acquisi-
tion of two-dimensional (2D) NMR experiments (1H−13C Heteronuclear Single Quantum
Correlation (HSQC), 1H−1H Total Correlation Spectroscopy (TOCSY), 1H-1H J-resolved
spectroscopy (J-RES) [59], etc.) of representative samples greatly facilitates the assignment
of the metabolites present in the biological samples [21,31]. The 2D NMR experiments
were acquired in approximately 40% of the reviewed publications. Of note, only one of the
reviewed studies included NMR-based stable isotope labelled approaches [26]. In addition,
four of the selected studies integrated NMR and MS data [23,41,44,60], and a combination
of PMx and PGx analyses was performed in one of the reviewed clinical trials [33]. The
integrated analysis of data obtained through different analytical techniques and platforms
offers very valuable information in these studies. In particular, the integration of NMR
and MS data [23,61], as well as the application of multi-omics approaches, has shown a
tremendous potential for the study of changes in metabolism [62,63].

3.1.5. NMR Data Processing

Information on spectra processing was only partially, or not at all, detailed in most
of the studies included in the review. Spectra phase and baseline correction were usually
performed using TopSpin software (Bruker Biospin), although Chenomx (Chenomx) was
chosen in other studies. Data binning was described as the first processing step in more
than 50% of the studies. To this end, different software packages were used, including
Amix (Bruker Biospin), Chenomx (Chenomx), MestreNova (Mestrelab Research S.L.), or
NMRPRocFlow [64]. Blood and urine samples were generally binned into 0.04 ppm wide
rectangular buckets, although smaller bucket widths (i.e., 0.005 or 0.002) were used in some
of the selected PMx studies. An important issue in NMR-based metabolomics studies is
the selection of the best compromise between the bucket size and the number of samples
in the data set [65]. Even though very large bucket widths are not recommended as they
decrease the resolution of the NMR spectra, an extreme reduction in the bucket width
could significantly contribute to data overfitting as a result of the imbalance between the
number of samples and the variables included in the analysis [66]. In general, most NMR-
based metabolomics studies used a bucket width between 0.01 and 0.04 ppm, depending
on the spectra complexity and the signal overlapping, for binning [29,43,67–70]. After
binning, different normalization approaches were followed in most of the PMx studies.
Although normalization details were not specified in all the studies, the normalization
strategy was mainly dependent on the sample type. Overall, serum and plasma NMR data
were preferentially normalized to total area [40,41,46,47,49,51,52,60,67–69,71–76], although
probabilistic quotient normalization [26,48,77] and other normalization procedures, such
as glucose [78] or internal standard normalization [39], were applied in some studies.
For urine normalization, total area [42,67] and creatinine signal were the methods most
frequently used [44,79,80]. Data normalization aims to make the data from all samples di-
rectly comparable and to reduce the effects of differences in sample dilution. Physiological
normalization is especially relevant when analyzing biofluids such as urine where large
differences in excreted volume, and hence in urinary concentrations, are found between
patients. Different normalization approaches have been developed for the normalization
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of NMR-based metabolomics data. The most commonly used methods are normaliza-
tion to total area and the use of endogenous stable metabolites (such as creatinine in
urine) [81]. Additionally, data scaling is another important issue when analyzing NMR-
based metabolomics data. In this context, pareto scaling seems to be the most sensible
choice for NMR data scaling when the aim is data exploration through multivariate sta-
tistical approaches [82]. This particular approach was used in 15 of the 25 PMx studies
including information on the method used for data scaling. In contrast to other scaling
methods, such as unit variance, that often increase noise artefacts from spectral regions,
pareto scaling increases the sensitivity and reduces noise [82]. Therefore, this scaling
approach is often the method of choice for NMR spectra as the influence of small peaks is
increased without amplifying uninformative variables [83].

3.1.6. Metabolite Assignment

The analysis of the metabolomics data in all the PMx studies followed an untargeted
approach. The assignment of metabolites was generally carried out using the information
available through public databases (i.e., Human Metabolome Database (HMDB) [84,85]
and Madison-Qingdao Metabolomics Consortium Database (MMCD) [86]), as well internal
metabolic databases. Chenomx NMR Suite software [87] was used in 19 of the PMx studies
for assignment purposes. The Chenomx NMR Suite is a commercially available software
offering a large database of common biological and drug metabolite 1H-NMR data widely
used for metabolomics analysis [88]. Although these two are probably the most extensive
public metabolomics spectral databases, other open source compound libraries, such as the
Biological Magnetic Resonance Data Bank (BMRB) [89] or InterSpin (RIKEN) [90] were used
in some of the PMx studies. Additionally, there exist several metabolomics data repositories
for submitting metabolomics datasets (i.e., MetaboLights [91], Metabolomic Repository
Bordeaux [92], Metabolonote [93], etc.). Out of the 46 PMx studies selected in this review,
only two of them [26,94] deposited their NMR dataset at the Metabolomics Workbench
database [95], reflecting that the use of these repositories is still not very extensively used.

3.1.7. Statistical Analysis

The most common strategy followed for statistical analysis of the data was multivari-
ate analysis. First, unsupervised methods were used for the identification of inter-group
variations, outliers, or sample clustering. Principal Component Analysis (PCA) [96] was
the method of choice in most of the studies, although hierarchical clustering [97] was
also used in other studies [26]. Then, supervised analysis methods, such as partial least
square discriminant analysis (PLS-DA) [25,41,42,46,48,49,60,67,68,71,73–76,78,79,98,99] or
orthogonal PLS-DA (OPLS-DA) [24,26,29,40,43,50,68,70,72,74–77,98,100–102] were pursued
in the majority of the studies to evaluate the discriminatory potential of the metabolic
profile between the groups of study. Herein, alternative supervised approaches were
also followed, including multilevel Partial Least Square (mPLS) [27], Random Forest
(RF) [45,47,53], K-nearest neighbors (kNN) [27], multivariate logistic regression analy-
sis (MVLR) [78], or the GALGO R package [103], based on a genetic algorithm search
procedure coupled to statistical modeling methods for supervised classification [42]. Fur-
thermore, univariate analyses were performed to confirm the statistical significance of the
metabolic changes identified based on the multivariate models. To that end, the Student T
test or the Mann-Whitney U test were chosen for the mean comparison while Pearson or
Spearman correlation analyses were followed for the evaluation of the potential correla-
tions with continuous variables. Additionally, ROC curves were generated in 13 studies to
internally validate the discriminatory power of their findings for predicting the response
to treatment [24,26,41,44–47,52,70,74,77,78,99]. Nevertheless, none of the reviewed studies
conducted an external validation to evaluate the relevance of their results in an indepen-
dent set of samples. In general, SIMCA (Umetrics AB), SPSS (IBM Corp), Matlab (The
MathWorks), PRISM (Graphpad), R software, and the online tool MetaboAnalyst [104,105]
were the most frequently used software packages to perform the statistical analyses in the
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PMx studies. Two out of the four PMx studies carried out using a combination of two ana-
lytical approaches (i.e., NMR and MS) followed independent analyses for the data derived
from each platform [41,44,60]. One of them performed an enrichment analysis based on
the NMR data that facilitated the focus of the subsequent MS-based targeted analysis on
the most significantly altered pathways [44]. In the other study, MS analyses were used to
confirm the identity of specific metabolites involved in altered metabolic pathways [60].
The other two PMx studies performed an integrated multivariate analysis of both the MS-
and the NMR-derived data. To that end, an additional block-scaling step was included to
mitigate the effect of the difference in variances obtained in each analytical approach. In
both cases, these analyses were performed using Matlab (The MathWorks) [23,41].

3.2. Therapeutic Areas and Treatments

The 46 PMx studies included in this review can be classified into a total of 11 health
categories, based on the Health Research Classification System (HRCS) [106] (Figure 2).
More than one third of the reviewed articles focused on different oncological condi-
tions [23–26,29,41,43,46,48,51,52,76,77,94,101,102]. Cardiovascular diseases, including coro-
nary artery disease [49,70,74], hypertension [44], atrial fibrillation [78], myocardial infarc-
tion [107], and cardiotoxicity [28] were the second most explored health conditions. Five
studies, associated with respiratory diseases, focused on the evaluation of treatments
for chronic obstructive pulmonary disease (COPD) [68,73,98], acute lung injury [39], or
COVID-19 [53]. Four other publications focused on the characterization of the metabolic
profile associated with the treatment response in different infectious diseases, including
septic shock [38], periodontitis [27] and HIV [45,47]. Other PMx studies (e.g., non-alcoholic
fatty liver [80,99], alcohol use disorder [33], and drug-induced liver injury [79] treatments)
were classified within the oral and gastrointestinal therapeutic area. Within the inflam-
matory and immune system area, rheumatoid arthritis was the subject of three different
studies [42,71,72], and two publications focused on different neurological conditions, one
on epilepsy [50,60] and the other on multiple sclerosis [69]. Finally, articles focused on
β-thalassemia [75], vitamin D deficiency [67], nephrotic syndrome [40], and neonatal jaun-
dice [100] were classified into the blood, metabolic and endocrine, renal and urogenital, and
skin categories, respectively. Of note, out of the 46 PMx studies included in this review, only
seven of them were associated with different clinical trials [29,33,38,43,80,94,107]. The most
recent one, NCT03818191 [33], currently in the enrolling phase, pursues the combination
of PGx and PMx strategies to identify biomarkers that could predict the response to the
administration of acamprosate in patients with alcohol-use disorders.
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Chemo- and immune-therapies were the therapeutic strategies most frequently evalu-
ated in the PMx studies, particularly in the cancer category, but also in the cardiovascular,
neurological, and respiratory diseases. For example, different studies evaluated changes
in the metabolic profile of patients with breast cancer (BC) [24,41,94], pancreatic cancer
(PC) [26,76], and head and neck squamous cell carcinoma (HNSCC) [101,102] receiving
chemotherapy, while others focused on the effect of immune therapies in non-small-cell
lung cancer (NSCLC) [23,52], BC [51], COVID-19 [53] and multiple sclerosis [69] patients.
Different studies focused on the characterization of the metabolic profiles associated with
different therapeutic strategies for the treatment of the same pathological condition. Thus,
the effects of aspiring and clopidogrel, two anti-platelet agents, were evaluated in three dif-
ferent PMx studies related to coronary diseases [49,70,74]. Similarly, another study focused
on the identification of biomarkers for predicting resistance to different drugs in epileptic
patients [50]. Furthermore, the effects of bronchodilators [73,98] or antibiotics [68] were
evaluated in PMx studies involving COPD patients. Finally, metabolic changes associated
with two major treatment approaches were evaluated in patients suffering from rheuma-
toid arthritis, namely anti-tumor necrosis factor (TNF) inhibitors, including etanercept
alone [72], or in combination with infliximab [42] and methotrexate [64].

3.3. Clinical Applications in Oncology

Oncology was the main therapeutic area explored in the NMR-based PMx studies
included in this review. Sixteen PMx studies focused on different oncology conditions
(Table 1). Therefore, this section will focus on the discussion of the most relevant results
obtained in this area.

BC was by far the most frequently studied oncological disease [24,41,46,48,51,94].
Other studies analyzed the metabolic profile associated with PC [26,76], HNSCC [101,102],
and NSCLC [23,52], and only one study referred to prostate cancer (PCa) [29], Hodgkin
and non-Hodgkin lymphoma (HL/NHL) [25], hepatocellular carcinoma (HCC) [77], and
multiple myeloma (MM) [43]. Overall, four different biological samples (i.e., serum, feces,
cells, and tumor tissue) were used to evaluate metabolic changes in these studies. Most
of the studies used serum samples, followed by feces [23,24] and cells [25,26], and tumor
tissue, which was the biological matrix used in only one of the PMx studies [29].

3.3.1. Breast Cancer

NMR-based PMx strategies for the evaluation of BC treatments were pursued in six
studies with different objectives. Five of them focused on the identification of biomarkers that
could contribute to the prediction of patient response to a specific treatment [24,41,46,48,51],
and one aimed to characterize the metabolic profile associated with the development of
adverse effects following paclitaxel treatment [94].
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Table 1. Overview of the PMx studies focused on the oncology area.

Disease Treatment Experimental Design Sample Sample Collection Research Aim NMR
Instrument Pulse Sequences Reference

BC GC
chemotherapy

29 (1 CR, 13 PR, 8 SD, 7
PD) Serum Before treatment Prediction of treatment

response 800 MHz
1D: CPMG

2D: COSY, HMBC,
HSQC, J-RES, TOCSY

[46]

BC NAC 28 (8 CR, 14 PR and 6
NR) Serum Before treatment Prediction of treatment

response 500 MHz CPMG [41]

HER2+ BC T/T+E 79 (40 T, 39 T+E) Serum Before, during, and
after treatment

Evaluation of
treatment impact 800 MHz

1D: CPMG, NOESY
2D: HSQC, J-RES,

TOCSY
[51]

BC NAC/
NAC + Bev

118 (58 NAC, 60 NAC
+ Bev)

Tissue and
serum

Before and during
treatment, and 6 weeks

after surgery

Evaluation of
treatment impact

Prediction of patient
prognosis

600 MHz CPMG [48]

BC NAC 8 (6 good, 2
non-responders) Feces

Before and 20 days
after each

chemotherapy cycle

Evaluation of
treatment impact

Prediction of treatment
response

600 MHz
1D: NOESY

2D: COSY, HSQC,
TOCSY

[24]

BC Paclitaxel 48 Blood
Before, during, and

after
treatment

Prediction of treatment
adverse effects 500 MHz 1D-1H-NMR [94]

PC Gemcitabine 10 replicates Cell lines Before and after
treatment

Biomarkers of
treatment resistance

and response
500 MHz 1D-SOGGY

2D: HSQC [26]

PC Gemcitabine/CUS
50 (12 control, 9 PC, 10
CUS-high, 10 CUS-low,

9 gemcitabine)

Serum from
xenografts 33 days after treatment Evaluation of

treatment impact 600 MHz CPMG [76]

HNSCC Radio-/Chemo-therapy 170 Serum
Weekly, from the day

before to the week
after treatment

Prediction of treatment
adverse effects 400 MHz 1D: CPMG, DIFF, NOESY

2D: J-RES [101]

HNSCC Induction chemotherapy 53 Serum Before and after
treatment

Prediction of treatment
response 400 MHz 1D: CPMG, DIFF, NOESY

2D: J-RES [102]

NSCLC Nivolumab/Pembrolizumab 50 (34 nivolumab,
19 pembrolizumab) Serum Before treatment Prediction of treatment

response 600 MHz CPMG, DIFF NOESY [52]

NSCLC Nivolumab 9 (4 EP, 5 LR) Feces After treatment Prediction of treatment
response 400 MHz 2D: HSQC, TOCSY [23]
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Table 1. Cont.

Disease Treatment Experimental Design Sample Sample Collection Research Aim NMR
Instrument Pulse Sequences Reference

PCa Degarelix
13 (10 benign, 7 PCa

untreated, 6 PCa
treated)

Tissue 7 days after treatment Evaluation of
treatment impact 600 MHz CPMG [29]

HL/NHL High dose therapy 12 (6 t-MDS/AML,
6 no t-MDS/AML)

Peripheral blood
stem cells Before aHCT

Evaluation of
metabolic changes

associated to adverse
effects

600 MHz 1D-1H-NMR [25]

HCC RFA 120 (59 viral, 61
Non-viral cirrhosis) Serum Before and after

treatment
Prediction of treatment

response 500 MHz 1D: CPMG, NOESY
2D: J-RES, TOCSY [77]

MM Chemotherapy
81 (31 control, 27

diagnosed, 23
remission)

Serum Before and after
treatment

Evaluation of
treatment impact 600 MHz

1D: CPMG, NOESY
2D: HSQC, J-RES,

TOCSY
[43]

aHCT: autologous hematopoietic cell transplantation; Bev: bevacizumab; BC: breast cancer; COSY: 1H-1H correlation spectroscopy; CPMG: Carr-Purcell-Meiboom-Gill; CR: complete response; CUS: cucurmosin;
DIFF: diffusion edited; E: everolimus; EP: early progressors; GC: gemcitabine-carboplatin; HCC: hepatocellular carcinoma; HER2: Human Epidermal growth factor Receptor type-2; HL: Hodgkin lymphoma;
HMBC: 1H-13C heteronuclear multiple bond correlation spectroscopy; HNSCC: head and neck squamous cell carcinoma; HSQC: 1H-13C heteronuclear single quantum correlation spectroscopy; J-RES:
J-resolved spectroscopy; LR: long responders; MM: Multiple myeloma; NAC: neoadjuvant chemotherapy; NHL: non-Hodgkin lymphoma; NOESY: Nuclear Overhauser effect spectroscopy; NR: no-response;
NSCLC: non-small-cell lung cancer; PC: pancreatic cancer; PCa: prostate cancer; PD: progressive disease; PR: partial response; RAF: radiofrequency ablation; SD: stable disease; SOGGY: Solvent-Optimized
Gradient-Gradient Spectroscopy; T: trastuzumab; t-MDS/AML: therapy-related myelodysplasia syndrome or acute myeloid leukemia; TOCSY: 1H-1H total correlation spectroscopy.
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Jiang et al. [46] analyzed serum samples from 29 metastatic BC patients to character-
ize the pre-treatment metabolomics profile associated with the response to gemcitabine-
carboplatin (GC) chemotherapy. By combining multivariate and univariate analyses,
metabolic differences between clinically-benefited and non-benefited patients were iden-
tified. Furthermore, the relevance of the most altered serum metabolites for predicting
the response to chemotherapy was evaluated using ROC curves. Based on this analysis,
formate and acetate basal levels showed a high sensitivity (>0.8) and specificity (>0.8) for
predicting treatment response. The authors suggested that the decreased formate and
acetate levels observed in the non-responding patients could be reflecting the use of these
metabolites as an alternative nutritional source to fulfill the energetic needs of highly prolif-
erating cancer cells, which are more aggressive or resistant to therapy. Metabolic alterations
capable of predicting the response to different neoadjuvant chemotherapy regimens in BC
patients were also evaluated in a PMx study conducted by Wei et al. [41]. In this other study,
the differences in the serum metabolic profile of 28 BC patients with complete (CR), partial
(PR), or no-response (NR) to neoadjuvant chemotherapy (NAC), using a combination of
NMR and liquid chromatography (LC)-MS metabolomics approaches, were characterized.
A statistical model based on the analysis of the levels of three metabolites detected by the
NMR (threonine, glutamine, and isoleucine) and one by LC-MS (linolenic acid) provided
100% selectivity and 80% sensitivity for the prediction of CR vs. NR patients. Changes
in the serum metabolic profile of HER2-positive BC patients after treatment were also
evaluated by Jobard et al. [51]. Samples from 79 patients receiving either trastazumab
alone (n = 40) or a combination with everolimus (n = 39) were collected before, during,
and after treatment administration. Everolimus is an inhibitor of the mammalian target of
rapamycin (mTOR) and trastuzumab, a monoclonal antibody able to bind HER2, inhibits
the proliferation of cells overexpressing HER2 [108]. Results showed that the combination
(tratuzumab + everolimus) induced significant changes in the metabolism of patients that
were not induced by trastuzumab alone. The BC patients treated with the combination
therapy exhibited increased levels of lipids (the glycerol backbone of phosphoglycerides),
triacylglycerides, lipoproteins (VLDL and LDL), and acetone and decreased levels of ac-
etate, amino acids (alanine, histidine, lysine, phenylalanine, tyrosine, and valine), albumin
lysyl, betaine, creatine, creatinine, acetoacetate, citrate, choline, glucose, glycerophospho-
choline, myo-inositol, and methanol levels. Some of the metabolic changes detected in
the serum metabolics profile of the BC patients were consistent with metabolic changes
previously described in relation to mTOR inhibition [108–115]. Hence, although synergistic
effect could not be completely excluded because the study did not include a subgroup of pa-
tients treated with everolimus alone, the metabolic signature observed for the combination
treatment could most likely be reflecting mTOR inhibition.

The impact of NAC and other therapeutic approaches in the metabolic profile of BC
patients has also been evaluated. Debik et al. [48] evaluated the metabolomics profiles
of 118 primary BC patients (tissue, serum) receiving NAC alone, or a combination with
bevacizumab, to identify potential changes associated with treatment response or patient
prognosis. Results revealed significant alterations in the serum metabolites during treat-
ment, particularly in a significant increase in lipid levels during NAC. Furthermore, specific
metabolic changes, including higher levels of leucine, acetoacetate, and tri-hydroxybutyrate
were observed in patients treated with bevacizumab. Interestingly, in this study tissue
metabolic profiles exhibited a predictive potential for discriminating survivors from non-
survivor patients in this study, while serum metabolite levels reflected the patient response
to treatment. The patient response to NAC was also evaluated by Zidi et al. [24] using
a strategy based on the analysis of metabolic alterations of BC patients before and after
three chemotherapy cycles. Specifically, the fecal metabolomic profiles of six good- and
two non-responder BC patients were characterized with a focus on the identification of
potential candidate biomarkers that could predict the response to NAC. Multivariate su-
pervised analyses showed that the treatment effect started to affect the fecal metabolome
of patients after the second cycle of treatment. Interestingly, the levels of short chain fatty
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acids (SCFA), specific products of the gut microbiota, also exhibited a tendency to increase
after the second cycle. Moreover, the good-responder patients showed specific metabolic
changes after NAC, including higher levels of some amino acids, creatine, phenylacetate,
3-methylhistidine, histamine, ethanol, theophylline, and succinate when compared with
the non-responder patients. These results suggest that changes in the fecal metabolic
profile of BC patients could provide very relevant information on the biochemical changes
associated with NAC.

In addition, a PMx study, carried out in the context of a clinical trial (NCT02338115), fo-
cused on the identification of serum metabolic alterations associated with the development
of paclitaxel-induced peripheral neuropathy (PN) [94]. To this end, serum samples from
48 BC patients were collected before, during, and after treatment with paclitaxel. Using
this strategy, the potential association between changes in the serum metabolic profile
of patients and ∆CIPN8 scores, a parameter measuring primarily sensory neuropathy
caused by paclitaxel, was evaluated. Inverse correlations between the pre-treatment levels
of histidine, phenylalanine and threonine, and the maximum ∆CIPN8 were observed,
suggesting that these amino acids could potentially predict PN severity in these patients.
In fact, as indicated by Sun et al. [94], histidine is involved in the pathogenesis and inflam-
matory process of neuropathic pain [116–118]; phenylalanine precursors are implicated in
the development of neurological conditions [119,120]; and threonine could cause glycine
accumulation in the brain, affecting neurotransmitter balance [121]. This study highlights
the enormous potential of PMx studies in the follow-up of BC patients.

3.3.2. Pancreatic Cancer

PMx studies focused on PC have relied on different in vitro and in vivo models to
characterize the metabolic changes associated with the response or resistance to therapeutic
interventions. Gebregiworgis et al. investigated the potential of PMx to differentiate
PC cells that respond or develop resistance to Gemcitabine treatment [26], information
that could be useful in the clinical setting for monitoring a patient’s therapeutic response.
In particular, the authors compared the metabolomics profile of wild-type (WT) and
Gemcitabine-resistant (GemR) PC cell lines before and after treatment with Gemcitabine.
Analysis of the metabolomics profile after treatment in the two experimental models
(WT and GemR) allowed the identification of unique metabolic changes differentiating
the response, or the acquired resistance, to gemcitabine. Overall, the metabolic profile
associated with gemcitabine-resistance was the major feature discriminating between
the groups of study. Specific alterations in the metabolism of GemR cells were further
evaluated by combining stable-isotope labeling experiments using 13C6-glucose. Based
on these studies, it was concluded that, in GemR cells, glucose is primarily derived for
nucleotide synthesis to compensate gemcitabine activity; whereas in WT cells, glucose is
primarily directed into glycolysis after treatment with Gemcitabine. These findings are in
agreement with previous results reporting that Gemcitabine efficacy is influenced by the
nucleotide cellular pool [122] and that deoxycytidine triphosphate acts as a competitive-
inhibitor of Gemcitabine [123]. A different study, conducted by Wei et al., has also evaluated
the therapeutic effects of Cucurmosin, as an alternative to Gemcitabine for PC treatment,
by examining its impact on serum metabolism [76]. Differences in the serum metabolomics
profile after treatment were evaluated in a subcutaneous xenograft mouse model of PC. The
results showed that whilst the PC mice showed specific metabolic changes when compared
with the control mice, both drugs induced similar metabolic effects in the in vivo PC model.
Additional studies would be required to explore the significance of these changes in disease
progression and the response to treatment.

3.3.3. Head and Neck Squamous Cell Carcinoma

Treatment response and adverse effects, associated with different therapeutic inter-
ventions, have been evaluated in different NMR-based PMx studies focused on HNSCC
patients. A first study pursued the NMR characterization of the serum metabolic profile
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of HNSCC patients following radio- and/or chemotherapy to identify metabolic alter-
ations that could predict weight loss and induced-toxicity risk [101]. Serum samples from
170 patients undergoing radio- and chemotherapy (RT/CHRT) were weekly collected be-
fore, during, and after treatment. The authors identified a group of three ketone bodies
(3-hydroxybutyrate (3HB), acetone and acetoacetate) able to identify patients at high risk of
weight loss. Particularly, 3HB was found to be a sensitive biomarker for the identification
of patients at higher risk of >10% weight loss during RT/CHRT treatment. In a more
recent study, the serum metabolic profile of 53 locally-advanced HNSCC patients was also
analyzed to identify biomarkers able to differentiate responder from non-responder pa-
tients [102]. The analysis of the metabolomics profiles revealed an association between the
response to induction chemotherapy (iCHT) and increased serum lipids, accompanied by a
simultaneous decrease in alanine, glucose, and N-acetyl-glycoprotein (NAG) levels. These
metabolic changes were initially associated with the regression of the primary tumor in
males. However, an in-depth analysis of the data suggested that gender-related metabolic
differences could be explained by elevated pre-treatment levels of glucose and alanine
and/or a higher initial tumor stage found in the male patients enrolled in the study [102].

3.3.4. Non-Small-Cell Lung Cancer

Two PMx studies have evaluated metabolic alterations associated with the immunother-
apy response in NSCLC patients, using serum and feces. Ghini et al. evaluated the serum
metabolomics profile of NSCLC patients before treatment with the immune checkpoint
inhibitors Nivolumab and Pembrolizumab [52]. The classification model derived from
this analysis allowed the prediction of individual outcomes with >80% accuracy, and the
results showed that the serum metabolic fingerprints able to discriminate responder from
non-responder patients were similar for both treatments. Another study carried out by Bot-
ticelli et al. has been able to identify metabolites specifically associated with the Nivolumab
response using a strategy based on the combined analysis (NMR, MS) of the fecal metabolic
profile of nine NSCLC patients after Nivolumab [23]. Higher levels of 2-Pentanone (ketone)
and tridecane (alkane) were significantly associated with early disease progression in this
study, whereas higher levels of SCFAs (i.e., propionate, butyrate), lysine, and nicotinic acid
were significantly associated with a better treatment response. These preliminary data
suggest a potential role of gut microbiota metabolic alternations in regulating the response
to immunotherapy.

3.3.5. Prostate Cancer

So far, only one PMx study, based on HR-MAS NMR spectroscopy, has been carried out
with a focus on PCa patients. In particular, Madhu et al. evaluated the metabolic changes
after treatment with Degarelix, a gonadotrophin-releasing hormone blocker used to treat
advanced PCa by decreasing serum androgen levels, in intact prostate tissue [29]. To this
end, benign and tumor tissue samples were collected from 13 PCa patients participating
in two different clinical trials (NCT01852864 and NCT00967889 for treated and untreated
patients, respectively). The results of the NMR and the statistical data revealed that lactate,
alanine, and choline levels were significantly increased in high-grade PCa tumors compared
with benign samples. Furthermore, the Degarelix treatment resulted in significant decreases
in lactate and choline levels in tumor samples, whereas these changes were not observed
in benign prostate tissues. The results from this study suggest that it could be possible
to monitor the effects of physical or chemical castration in PCa patients based on their
metabolomics profile changes.

3.3.6. Hodgkin and Non-Hodgkin Lymphoma

Peripheral blood stem cells from HL/NHL patients, collected before hematopoietic
cell transplantation (HCT), were metabolically examined by Cano et al. to identify patients
with a higher predisposition for developing therapy-related myelodysplasia syndrome
or acute myeloid leukemia (t-MDS/AML) [25]. Patients were classified based on the
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occurrence of t-MDS or AML within 5 years after autologous hematopoietic cell transplan-
tation (aHCT). Comparison of the metabolite levels between patients developing (n = 6)
and not-developing (n = 6) t-MDS/AML resulted in the identification of alterations in
alanine and aspartate metabolism; glyoxylate and dicarboxylate metabolism; phenylala-
nine metabolism; the citrate acid cycle; and aminoacyl-t-RNA biosynthesis. The authors
suggested that these metabolic dysfunctions would result in a decreased ability of cells to
detoxify reactive oxygen species (ROS) derived from therapy, leading to DNA mutations
that could predispose patients for the development of t-MDS.

3.3.7. Hepatocellular Carcinoma

The serum metabolic profile of 120 HCC patients was analyzed by Goossens et al. to
identify the metabolic changes associated with disease recurrence and the radiofrequency
ablation (RFA) response in these patients [77]. Although no significant findings were
identified for defining a predictive signature of HCC recurrency, the serum metabolic profile
of patients analyzed before treatment showed significant differences depending on whether
the liver disease had a viral or a non-viral etiology. Moreover, several metabolic alterations
were found when comparing serum samples at different time points. Thus, the RFA
response was correlated with higher levels of lactate, glutamine, and 3-phenylpropionate,
as well as lower levels of isoleucine, phosphatidylcholine, and glycerophosphocholine.
Furthermore, some other metabolites, including lipids, aspartate, choline, and glucose
experienced different alterations four months after RFA in viral and non-viral cirrhosis
patients, reflecting different metabolic patterns of evolution after RFA depending on the
etiology of the cirrhosis.

3.3.8. Multiple Myeloma

Serum samples from healthy individuals and MM patients were collected at the time of
diagnosis and after complete remission and metabolically characterized to obtain clinically
relevant information for the management of this oncological condition [43]. This PMx
study relied on the analysis of samples from two different clinical trials (NCT00461747,
NCT00443235). Specific metabolic changes were identified in MM patients at the time of
diagnosis, but also after complete remission of the disease. A comparison of the metabolic
profiles obtained for the different groups of the study resulted in the identification of
metabolic alterations (i.e., glutamine, cholesterol, and lysine) observed at the MM diagnosis
that exhibited an opposite trend in MM patients upon responding to treatment. This
behavior would explain why MM patients after complete remission exhibited a more
similar metabolic profile to that of healthy individuals. Interestingly, it was also found
that some other metabolic alterations associated with the disease (i.e., 3-hydroxybutyrate,
arginine, and acetate) were not reversed after achieving complete remission and could
potentially play a role in MM relapse.

4. Conclusions and Future Perspective

It is becoming increasingly important to accurately select the best therapeutical strat-
egy for a specific health condition in order to maximize the therapeutic benefit of a specific
group of patients. PMx relies on the characterization of patient metabolic profiles to better
understand the molecular mechanisms underlying drug administration, predict patient
drug response, and identify biomarkers associated with drug toxicity. Therefore, PMx
represents a powerful experimental strategy to gather information on drug safety, toxicity,
or metabolism, because it involves the evaluation of a wide variety of factors, including
specific genetic traits and environmental parameters. In this context, PMx studies, based
on the non-invasive evaluation of metabolic changes, could improve the current landscape
of precision medicine by providing more accurate and specific predictions on drug effi-
cacy and safety. This review underlines the tremendous potential of these approaches
for the evaluation and prediction of treatment efficacy and safety in different oncological
conditions.
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However, standardized protocols for optimal sample preparation [124]; the need of
sensitive, specific and reproducible analytical approaches [125]; and the importance of accu-
rate data processing for reliable statistical analysis [126] are still under development in this
research area. Furthermore, other factors, often underestimated, that could have a major im-
pact on metabolomics analyses include sample collection, processing, or storage [127,128].
In fact, different protocols for sample preparation and NMR-data acquisition and pre-
treatment were followed, even for the same sample types in the PMx studies included
in this review. Therefore, the implementation of standard operating procedures (SOPs)
could contribute to ensure reproducibility across research centers and biobanks [129]. This
strategy could also facilitate the development of sufficiently well-powered datasets for
producing accurate and robust findings that could potentially be translated to the clinical
setting. Only a few of the PMx studies relied on using different analytical techniques
(e.g., NMR and MS) or platforms (e.g., metabolomics, genomics, proteomics, etc.). In this
context, the integrated analysis of the data from different experimental approaches to the
characterization of treatment effects in patient samples on future PMx studies could enor-
mously benefit the personalized medicine field and further improve the treatment selection
for patients. Additionally, an in-depth characterization of the metabolic changes, based
on the analysis of different in vivo and in vitro approaches, could also provide a better
understanding of the biological mechanisms underlying metabolic changes. Overcoming
such challenges is essential to discovering sensitive and specific biomarkers that could be
informative on drug metabolism, safety, efficacy, and response.
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102. Boguszewicz, Ł.; Bieleń, A.; Jarczewski, J.D.; Ciszek, M.; Skorupa, A.; Składowski, K.; Sokół, M. Molecular Response to Induction
Chemotherapy and Its Correlation with Treatment Outcome in Head and Neck Cancer Patients by Means of NMR-Based
Metabolomics. BMC Cancer 2021, 21, 410. [CrossRef] [PubMed]

103. Trevino, V.; Falciani, F. GALGO: An R Package for Multivariate Variable Selection Using Genetic Algorithms. Bioinformatics 2006,
22, 1154–1156. [CrossRef]

104. Xia, J.; Sinelnikov, I.V.; Han, B.; Wishart, D.S. MetaboAnalyst 3.0—Making Metabolomics More Meaningful. Nucleic Acids Res.
2015, 43, W251–W257. [CrossRef]

105. Xia, J.; Wishart, D.S. Using MetaboAnalyst 3.0 for Comprehensive Metabolomics Data Analysis. Curr. Protoc. Bioinform. 2016, 55,
1–91. [CrossRef]

106. Health Categories. Available online: https://hrcsonline.net/health-categories/ (accessed on 6 August 2021).
107. Eppinga, R.N.; Kofink, D.; Dullaart, R.P.F.; Dalmeijer, G.W.; Lipsic, E.; van Veldhuisen, D.J.; van der Horst, I.C.C.; Asselbergs,

F.W.; van der Harst, P. Effect of Metformin on Metabolites and Relation with Myocardial Infarct Size and Left Ventricular Ejection
Fraction After Myocardial Infarction. Circ. Cardiovasc. Genet. 2017, 10, e001564. [CrossRef]

http://doi.org/10.1021/ac0519312
http://doi.org/10.1093/nar/gkl923
http://www.ncbi.nlm.nih.gov/pubmed/17202168
http://doi.org/10.1093/nar/gks1065
http://www.ncbi.nlm.nih.gov/pubmed/23161693
http://doi.org/10.1038/nbt0208-162
http://www.ncbi.nlm.nih.gov/pubmed/18259166
http://doi.org/10.1021/ac060209g
http://www.ncbi.nlm.nih.gov/pubmed/16808451
http://doi.org/10.1007/978-3-319-47656-8_8
http://doi.org/10.1093/nar/gkm957
http://doi.org/10.1021/acsomega.8b02714
http://doi.org/10.1093/nar/gkz1019
http://doi.org/10.1186/1471-2229-11-104
http://doi.org/10.3389/fbioe.2015.00038
http://doi.org/10.1007/s10549-018-4862-3
http://doi.org/10.1093/nar/gkv1042
http://doi.org/10.1007/s11095-006-0025-z
http://www.ncbi.nlm.nih.gov/pubmed/16715371
http://doi.org/10.1016/S0003-2670(03)00060-6
http://doi.org/10.1016/j.jpba.2016.09.034
http://www.ncbi.nlm.nih.gov/pubmed/27697570
http://doi.org/10.1038/s41430-018-0386-5
http://doi.org/10.1111/cts.12401
http://www.ncbi.nlm.nih.gov/pubmed/27306191
http://doi.org/10.1007/s11306-019-1576-4
http://www.ncbi.nlm.nih.gov/pubmed/31420744
http://doi.org/10.1186/s12885-021-08137-4
http://www.ncbi.nlm.nih.gov/pubmed/33858370
http://doi.org/10.1093/bioinformatics/btl074
http://doi.org/10.1093/nar/gkv380
http://doi.org/10.1002/cpbi.11
https://hrcsonline.net/health-categories/
http://doi.org/10.1161/CIRCGENETICS.116.001564


Pharmaceuticals 2021, 14, 1015 20 of 20

108. Boekhout, A.H.; Beijnen, J.H.; Schellens, J.H.M. Trastuzumab. Oncologist 2011, 16, 800–810. [CrossRef]
109. Hart, C.D.; Vignoli, A.; Tenori, L.; Uy, G.L.; van To, T.; Adebamowo, C.; Hossain, S.M.; Biganzoli, L.; Risi, E.; Love, R.R.; et al.

Serum Metabolomic Profiles Identify ER-Positive Early Breast Cancer Patients at Increased Risk of Disease Recurrence in a
Multicenter Population. Clin. Cancer Res. 2017, 23, 1422–1431. [CrossRef]

110. Ricoult, S.J.H.; Manning, B.D. The Multifaceted Role of MTORC1 in the Control of Lipid Metabolism. EMBO Rep. 2013, 14,
242–251. [CrossRef]

111. Lamming, D.W.; Sabatini, D.M. A Central Role for MTOR in Lipid Homeostasis. Cell Metab. 2013, 18, 465–469. [CrossRef]
112. Peng, T.; Golub, T.R.; Sabatini, D.M. The Immunosuppressant Rapamycin Mimics a Starvation-like Signal Distinct from Amino

Acid and Glucose Deprivation. Mol. Cell. Biol. 2002, 22, 5575–5584. [CrossRef]
113. Soefje, S.A.; Karnad, A.; Brenner, A.J. Common Toxicities of Mammalian Target of Rapamycin Inhibitors. Target. Oncol. 2011, 6,

125–129. [CrossRef]
114. Kaplan, B.; Qazi, Y.; Wellen, J.R. Strategies for the Management of Adverse Events Associated with MTOR Inhibitors. Transplant.

Rev. 2014, 28, 126–133. [CrossRef]
115. Moschetta, M.; Reale, A.; Marasco, C.; Vacca, A.; Carratù, M.R. Therapeutic Targeting of the MTOR-Signalling Pathway in Cancer:

Benefits and Limitations. Br. J. Pharmacol. 2014, 171, 3801–3813. [CrossRef]
116. Huang, L.; Adachi, N.; Nagaro, T.; Liu, K.; Arai, T. Histaminergic Involvement in Neuropathic Pain Produced by Partial Ligation

of the Sciatic Nerve in Rats. Reg. Anesth. Pain Med. 2007, 32, 124–129. [CrossRef]
117. Yu, J.; Lou, G.-D.; Yue, J.-X.; Tang, Y.-Y.; Hou, W.-W.; Shou, W.-T.; Ohtsu, H.; Zhang, S.-H.; Chen, Z. Effects of Histamine on

Spontaneous Neuropathic Pain Induced by Peripheral Axotomy. Neurosci. Bull. 2013, 29, 261–269. [CrossRef]
118. Farshid, A.A.; Tamaddonfard, E.; Najafi, S. Effects of Histidine and N-Acetylcysteine on Experimental Lesions Induced by

Doxorubicin in Sciatic Nerve of Rats. Drug Chem. Toxicol. 2015, 38, 436–441. [CrossRef]
119. Zhou, G.; Shoji, H.; Yamada, S.; Matsuishi, T. Decreased Beta -Phenylethylamine in CSF in Parkinson’s Disease. J. Neurol.

Neurosurg. Psychiatry 1997, 63, 754–758. [CrossRef]
120. Moyle, J.J.; Fox, A.M.; Arthur, M.; Bynevelt, M.; Burnett, J.R. Meta-Analysis of Neuropsychological Symptoms of Adolescents and

Adults with PKU. Neuropsychol. Rev. 2007, 17, 91–101. [CrossRef]
121. Boehm, G.; Cervantes, H.; Georgi, G.; Jelinek, J.; Sawatzki, G.; Wermuth, B.; Colombo, J.P. Effect of Increasing Dietary Threonine

Intakes on Amino Acid Metabolism of the Central Nervous System and Peripheral Tissues in Growing Rats. Pediatr. Res. 1998, 44,
900–906. [CrossRef]

122. Raykov, Z.; Grekova, S.P.; Bour, G.; Lehn, J.M.; Giese, N.A.; Nicolau, C.; Aprahamian, M. Myo-Inositol Trispyrophosphate-
Mediated Hypoxia Reversion Controls Pancreatic Cancer in Rodents and Enhances Gemcitabine Efficacy. Int. J. Cancer 2014, 134,
2572–2582. [CrossRef]

123. Shukla, S.K.; Purohit, V.; Mehla, K.; Gunda, V.; Chaika, N.V.; Vernucci, E.; King, R.J.; Abrego, J.; Goode, G.D.; Dasgupta, A.; et al.
MUC1 and HIF-1alpha Signaling Crosstalk Induces Anabolic Glucose Metabolism to Impart Gemcitabine Resistance to Pancreatic
Cancer. Cancer Cell 2017, 32, 71–87. [CrossRef]

124. Vuckovic, D. Current Trends and Challenges in Sample Preparation for Global Metabolomics Using Liquid Chromatography–Mass
Spectrometry. Anal. Bioanal. Chem. 2012, 403, 1523–1548. [CrossRef]

125. Lu, W.; Su, X.; Klein, M.S.; Lewis, I.A.; Fiehn, O.; Rabinowitz, J.D. Metabolite Measurement: Pitfalls to Avoid and Practices to
Follow. Annu. Rev. Biochem. 2017, 86, 277–304. [CrossRef]

126. Hendriks, M.M.W.B.; van Eeuwijk, F.A.; Jellema, R.H.; Westerhuis, J.A.; Reijmers, T.H.; Hoefsloot, H.C.J.; Smilde, A.K. Data-
Processing Strategies for Metabolomics Studies. Trends Anal. Chem. 2011, 30, 1685–1698. [CrossRef]

127. Yin, P.; Lehmann, R.; Xu, G. Effects of Pre-Analytical Processes on Blood Samples Used in Metabolomics Studies. Anal. Bioanal.
Chem. 2015, 407, 4879–4892. [CrossRef]

128. Delanghe, J.R.; Speeckaert, M.M. Preanalytics in Urinalysis. Clin. Biochem. 2016, 49, 1346–1350. [CrossRef]
129. Kirwan, J.A.; Brennan, L.; Broadhurst, D.; Fiehn, O.; Cascante, M.; Dunn, W.B.; Schmidt, M.A.; Velagapudi, V. Preanalytical

Processing and Biobanking Procedures of Biological Samples for Metabolomics Research: A White Paper, Community Perspective
(for “Precision Medicine and Pharmacometabolomics Task Group”-The Metabolomics Society Initiative). Clin. Chem. 2018, 64,
1158–1182. [CrossRef]

http://doi.org/10.1634/theoncologist.2010-0035
http://doi.org/10.1158/1078-0432.CCR-16-1153
http://doi.org/10.1038/embor.2013.5
http://doi.org/10.1016/j.cmet.2013.08.002
http://doi.org/10.1128/MCB.22.15.5575-5584.2002
http://doi.org/10.1007/s11523-011-0174-9
http://doi.org/10.1016/j.trre.2014.03.002
http://doi.org/10.1111/bph.12749
http://doi.org/10.1016/j.rapm.2006.11.009
http://doi.org/10.1007/s12264-013-1316-0
http://doi.org/10.3109/01480545.2014.981753
http://doi.org/10.1136/jnnp.63.6.754
http://doi.org/10.1007/s11065-007-9021-2
http://doi.org/10.1203/00006450-199812000-00013
http://doi.org/10.1002/ijc.28597
http://doi.org/10.1016/j.ccell.2017.06.004
http://doi.org/10.1007/s00216-012-6039-y
http://doi.org/10.1146/annurev-biochem-061516-044952
http://doi.org/10.1016/j.trac.2011.04.019
http://doi.org/10.1007/s00216-015-8565-x
http://doi.org/10.1016/j.clinbiochem.2016.10.016
http://doi.org/10.1373/clinchem.2018.287045

	Introduction 
	Methods 
	Search Strategy 
	Selection Criteria 
	Data Extraction 

	Results 
	Study Characteristics 
	Sample Collection 
	Study Design 
	NMR Sample Preparation 
	NMR Spectra Acquisition 
	NMR Data Processing 
	Metabolite Assignment 
	Statistical Analysis 

	Therapeutic Areas and Treatments 
	Clinical Applications in Oncology 
	Breast Cancer 
	Pancreatic Cancer 
	Head and Neck Squamous Cell Carcinoma 
	Non-Small-Cell Lung Cancer 
	Prostate Cancer 
	Hodgkin and Non-Hodgkin Lymphoma 
	Hepatocellular Carcinoma 
	Multiple Myeloma 


	Conclusions and Future Perspective 
	References

