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Progress in genetic research has delivered important highlights in the last year. One of the widest impact
is the publication of the Encyclopedia of DNA Elements (ENCODE) project showing the impressive
complexity of the human genome and providing information useful for all areas of genetics. More
specific of osteoarthritis (OA) has been the incorporation of DOT1-like, histone H3 methyltransferase
(DOT1L) to the list of 11 OA loci with genome-wide significant association, the demonstration of sig-
nificant overlap between OA genetics and height or body mass index (BMI) genetics, and the tentative
prioritization of HMG-box transcription factor 1 (HBP1) in the 7q22 locus based on functional analysis. In
addition, the first large scale analysis of DNA methylation has found modest differences between OA and
normal cartilage, but has identified a subgroup of OA patients with a very differentiated phenotype. The
role of DNA methylation in regulation of NOS2, SOX9, MMP13 and IL1B has been further clarified.
MicroRNA expression studies in turn have shown some replication of differences between OA and control
cartilage from previous profiling studies and have identified potential regulators of TGFb signaling and of
IL1b effects. In addition, non-coding RNAs showed promising results as serum biomarkers of cartilage
damage. Gene expression microarray studies have found important differences between studies of hip or
knee OA that reinforce the idea of joint specificity in OA. Expression differences between articular
cartilage and other types of cartilage highlighted the WNT pathway whose regulation is proposed as
critical for maintaining the articular cartilage phenotype. Many of these results need confirmation but
they signal the exciting progress that is taking place in all areas of OA genetics, indicate questions
requiring more study and augur further interesting discoveries.

� 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
I have covered in this annual review the fields of genetics, epi-
genetics and functional genomics of human OA. I only considered
studies done in human OA samples and I did not intend to be
exhaustive. Specifically, I have done searches only in PubMed and
no work reported in abstracts is covered. The previous review of
this series1 is taken as baseline and published work is covered until
the first weeks of April 2013.

Genetics of complex diseases today

Genetic research of OA has followed the common disease-com-
mon variant hypothesis that was behind the impetus leading to the
Genome Wide Association Studies (GWAS)2. These studies have
been very successful, leading to the identification of hundreds of loci
associated with complex diseases3 and of 11 loci associated with OA
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(Table I). However, GWAS have also made evident that the common
disease-common variant hypothesis does not satisfactorily account
for most complex diseases4e7. It had predicted that most of the risk
to complex diseases will be attributable to a modest number of
common variants2. In contrast, the effect sizes (the risk afforded by
each susceptibility factor) of most loci are too small. Therefore, they
are able to explain only a small fraction of the heritability of most
diseases. Ongoing efforts to identify other sources of heritability
have not yet been successful. In particular, rare variants withmodest
to large effect sizes have resulted very difficult to demonstrate in
spite of the extraordinary development of sequencing technolo-
gies8. In addition, it seems increasingly likely that a substantial
fraction of the unexplained heritability is due to a large number of
loci of similar or even smaller effect sizes than the already known.
This scenario of polygenic inheritance is consistent with GWAS data
for many diseases including OA and it is likely to include as many as
a few thousand loci for each complex disease9e11.

The inadequacy of the common disease-common variant hy-
pothesis was suspected by few researchers before the GWAS12,13.
This led to the widespread expectation of loci allowing prediction
of disease risks, prognostic assessment and tailoring of
ublished by Elsevier Ltd. All rights reserved.
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Table I
OA associated loci at the genome-wide significance level

Gene* Jointy Gender Populationz
GDF5 Knee All EUR and Asian
HBP1 (7q22) Knee All EUR
MCF2L Knee þ hip All EUR
DVWA Knee All Asian; no EUR
HLA class II/III e BTNL2 Knee All Asian; no EUR
GNL3/GLT8D1 Knee þ hip TJR All EUR
ASTN2 Hip TJR Women EUR
FILIP1/SENP6 Hip All EUR
KLHDC5/PTHLH Hip All EUR
CHST11 Hip TJR All EUR
DOT1L Hip Men EUR

* BTNL2 ¼ butyrophilin-like 2, GNL3 ¼ guanine nucleotide binding protein-like 3
(nucleolar), GLT8D1 ¼ glycosyltransferase 8 domain containing 1,
ASTN2 ¼ astrotactin 2, FILIP1 ¼ filamin A interacting protein 1, SENP6 ¼ SUMO1/
sentrin specific peptidase 6, KLHDC5 ¼ kelch domain containing 5,
CHST11 ¼ carbohydrate (chondroitin 4) sulfotransferase 11.

y Joint or combination of joints in which genome-wide association was reported.
Often association of lower strength was found in other joints.

z Most OA loci have not been studied in Asians or in other ethnic groups beyond
EUR.
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treatments14. Today, this view seems too optimistic for many dis-
eases. It has become clear that the prediction potential of genetics
in complex diseases will be much harder to obtain and that it is
even doubtful if it will be of utility in a wide range of diseases5,15,16.
However, some situations in which the genetic prediction is clini-
cally useful have already been identified and have led to the
development of clinical tests17e19, but none in OA. Besides predic-
tion, the susceptibility loci are expected to lead to new therapeutic
targets. This expectation is as valid and strong today as it was
before5. There are many loci that have opened or reinforced new
areas of research.When the loci are understood, even incompletely,
they become the experiments of nature that signal critically sen-
sitive steps in the disease process. A limiting step in the path to
tangible benefits has been the slow progress from association to
mechanism, but powerful help has arrived in the form of large
Fig. 1. Example of genome track with functional data from the ENCODE Project. The rs6976
available tracks is shownwith information of, from top to bottom, position, genes, RNA-seq re
CTCF binding.
projects including the 1000 Genomes Project20 and the Encyclo-
pedia of DNA Elements (ENCODE) project21.

The 1000 genomes and the ENCODE projects

The 1000 Genomes Project aims to identify rare polymorphisms
and other variants like deletions and insertions through sequencing
the genomes of more than 1000 individuals of up to 14 pop-
ulations20. In this way, it is facilitating the study of rare variants by
providing a catalog and a null expectation of the number of variants
of each type in randomly selected individuals. This is very impor-
tant, because it has shown that each individual bears a significant
number of potentially functional variants, even in categories that
seem damaging as loss of function variants. In addition, the 1000
Genomes Project is helping analysis of existing GWAS data by
imputation of non-genotyped polymorphisms that allows fine
mapping of associated loci or discovery of new signals. The first
type of application, fine mapping of the locus around an isolated
associated SNP identified by genotyping, was of utility for obtaining
confidence in MCF2L as an OA susceptibility locus22.

The ENCODE project aims to systematically uncover the function
of the genome21. This is a monumental task that is still ongoing but
that has already provided a huge amount of high quality informa-
tion. Now it is possible to know how a sequence of interest behaves
in up to 147 different cell types and in a wide array of experiments
(Fig. 1). This information includes whether this sequence is tran-
scribed or not and the kind of transcript it is producing. This has led
to the unexpected discovery of wide (more than 60 % of the
genome) and complex transcription including many alternative
transcripts for the same sequence, genes that are co-transcribed,
anti-sense transcripts and overlapping transcripts. Among these
transcripts more than 8000 correspond to small RNAs, more than
9000 to long non-coding RNAs and near 1000 to pseudogenes.
Thanks to ENCODE is also possible to know if a sequence of interest
contains any of more than a dozen different chromatin marks
including DNA methylation, histone modifications and its DNase
sensitivity. These epigenetic marks are associated with stable
OA associated SNP is highlighted in the bottom track. A very small fraction of all the
adings. DNA hypersensitivy, CpG methylation, selected transcription factor binding and
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functionality in ways that permit to predict, for example, if a pro-
moter is active in a cell type or if the sequence is likely to be an
enhancer. In addition, binding of more than one hundred tran-
scription factors has been analyzed leading to a simplification of the
analysis of regulatory elements at each site of interest. All this in-
formation, adding to 1640 genome data sets, is useful at multiple
levels. One of them is to help identify the causal variant in a locus
and its mechanism of action. Unfortunately, none of the cell lines
that have been prioritized for study in ENCODE is from joint tissues.
However, there are cartilage, bone, bone marrow stroma and
muscle cell lines as well asmesenchymal stem cells in the, so called,
tier 3 of the project. Some of these cells have already been studied
for a few traits. More specific information will only become pro-
gressively available. Therefore, it will be necessary to extrapolate
from other tissues in most situations. This approach will be espe-
cially useful in sites that show similar functionality in multiple cell
types or in other mesoderm lineage cells. The first applications for
the study of complex diseases have already started to appear23,24.

The arcOGEN study

The arcOGEN study is the largest GWAS of OA to date25. It is also
the most successful leading to the discovery of five loci with
genome-wide significant association and of three near this level
(Table I). Publication was preceded by presentation of its main
findings in the last two OARSI meetings and they were already
commented in last year review1. It is remarkable that most asso-
ciations were specific of particular subgroups of patients, stratified
either by joint, gender or severity. The heterogeneity of OA across
these strata has also been found in studies reported this year.

The relationships between OA genetics and the genetics of
overweight measured as BMI and adult height were analyzed in a
new arcOGEN publication26. Motivation behind this analysis is the
increased OA risk associatedwith high BMI and the dual association
of the risk allele of rs143383 in growth differentiation factor 5
(GDF5) with OA and low height. Lack of height or BMI information
for the arcOGEN subjects made necessary to compare association
signals between studies, arcOGEN for OA and the GIANT Con-
sortium for height and BMI. A significant overlap was found with
both height and BMI. For height, excess overlap was observed with
more than 3500 independent SNPs that showed P < 0.1 with OA
and with height. For BMI, excess overlap was detected with 20
independent SNPs that showed P < 0.005 with OA and BMI. The
level of association of the individual overlapping SNPs was too low
to identify them with any confidence. However, some loci can be
signaled thanks to information from other studies (Table II)25. The
overlap does not appear as strong as to be a significant confounding
factor for most SNPs in statistical analysis. This was already shown
for BMI in the arcOGEN GWAS25, and is shown in this new study for
BMI and height26. Only association of fat mass and obesity associ-
ated (FTO) among 19 selected loci was significantly affected by
adjusting them in a set of samples with complete information on
OA, BMI and height. These results suggest pleiotropy of the loci,
with different mechanisms behind association with each
Table II
Loci showing sound association with OA and with either height or BMI. No genome-
wide significant association was requested for inclusion in this table

Gene Joint Gender Height BMI

GDF5 Knee All þ
PTHLH Hip All þ
DOT1L Hip Men þ
FTO Knee þ hip Women þ
COL11A1 Hip All þ
phenotype, but only elucidation of thesemechanismswill solve this
question.

In addition, the arcOGEN study has been used to explore asso-
ciation of mitochondrial haplogroups with OA but none was
found27 questioning the previously reported findings28,29.

Genetic association studies

No new OA GWAS has been reported in this period but there
have been some interesting association studies. One of them has
brought DOT1-like, histone H3 methyltransferase (DOT1L), encod-
ing a H3K79 methyltransferase with a role in chondrogenic differ-
entiation and adult articular cartilage including interaction with
TCF and WNT signaling30, to genome-wide significant association
with hip OA in men31. DOT1L was already associated at that level
with minimal joint space width and at a lower level (10�4) with hip
OA in a previous study30. The inclusion of new sample collections,
largely thanks to the Treat-OA consortium and the arcOGEN proj-
ect, led to its strengthened association with hip OA and to discover
that this association is specific of men, a gender specificity that was
not observed in the association with minimal joint space width.
This is one of the OA loci that are also associated with lower height
(Table II)32,33.

Other study analyzed the SNP in double vonWillebrand factor A
domains (DVWA) that is associated with knee OA in combined
Japanese and Chinese patients34 but not in European subjects35,36.
The new study did not show association in a population cohort of
Koreans (725 with radiographic knee OA and 1737 without OA)37,
further strengthening the evidence of ethnic heterogeneity of
DVWA association. A bone morphogenetic protein 5 (BMP5) func-
tional microsatellite previously associated with hip OA in women38

was also associated with knee OA in a new study39. Association
with the same alleles and showing also women specificity in the
1003 knee OA European patients (requiring total joint replacement
(TJR)) and 1543 controls could indicate that it has escaped GWAS
detection for lack of linkage disequilibrium (LD) with SNPs. Other
association studies suggest new associations with GREM1, SREBP-2
or OPN, but they require more evidence or replication40e42. Asso-
ciations of purinergic receptor P2X, ligand-gated ion channel, 7
(P2RX7) and PCKS6 with pain in OA43,44 were already commented
last year1. They together with the association of transient receptor
potential cation channel, subfamily V, member 1 (TRPV1) are the
first steps in an area of great interest and that needs to be further
developed45. All previous association studies bring us to the
following list of OA loci.

Lists of OA associated loci

Three OA loci with genome-wide level association in Europeans
(EUR)22,46,47and two exclusive of East Asians34,48 were known
before publication of the arcOGEN study (Table I). The arcOGEN
GWAS brought the number to 1025. DOT1L has been discovered
since then31. This makes to a total of 11 loci in this first class. It is
remarkable that many of these loci do not contain obvious OA
candidate genes. This may make progress more difficult but will
clarify new aspects of the pathogenesis of OA.

A second group of loci is more loosely defined and the list will
vary depending on criteria (Table III). It contains those near the
genome-wide level or found in large and sound studies. A signifi-
cant fraction of these loci will eventually pass to the genome-wide
significant category. Lack of genome-wide significance at this time
could be consequence of insufficient power or of heterogeneity in
OA. It is important to remark that the gene names we use to refer to
these loci are in many cases only educated guesses because avail-
able evidence does not allow excluding alternative genes in the



Table III
Loci that have been associatedwith OAwithout genome-wide significance. Themost
clearly associated are near the top of the list. Uncertainty increases towards the
bottom. Order is only approximate

Gene* Joint Gender Populationy
TP63 Knee TJR Women EUR
FTO Knee þ hip Women EUR
SUPT3H/CDC5L Knee þ hip Men EUR
PTGS2 Knee All EUR
MICAL3 Knee þ hip All EUR
COL11A1 Hip All EUR
PCSK6 Pain knee All EUR
C6ORF130 Knee All EUR
MATN3 Hand All EUR and Asian
SMAD3 Knee All EUR and Asian
ASPN Knee All EUR and Asian
TRPV1 Pain knee All EUR
RBFOX1 Hand All EUR
DIO2 Hip Women EUR
P2RX7 Pain knee All EUR
BMP5 Hip þ knee Women EUR
CALM1 Hip All Asian; no EUR
FRZB Hip Women EUR

* TP63 ¼ tumor protein p63, , SUPT3H ¼ suppressor of Ty 3 homolog,
CDC5L ¼ CDC5 cell division cycle 5-like, PTGS2 ¼ prostaglandin-endoperoxide
synthase 2, MICAL3 ¼ microtubule associated monoxygenase, calponin and LIM
domain containing 3, , PCSK6 ¼ proprotein convertase subtilisin/kexin type 6, also
known as PACE4, C6ORF130 ¼ chromosome 6 open reading frame 130,
MATN3 ¼ matrilin 3, ASPN ¼ aspirin, , RBFOX1 ¼ RNA binding protein, fox-1 ho-
molog, also known as A2BP1, , CALM1 ¼ calmodulin 1.

y Populations that have been studied with, at least, a positive study.
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same loci. Other studies, including functional studies, will be
necessary to solve the ambiguities.

Functional studies of OA loci

A clear example of functional studies helping to discern be-
tween genes in a locus has been reported this year. The 7q22 OA
locus is characterized by strong LD that prevents distinguishing
between six genes. Functional studies in humans, mice and zebra
fish had been done to differentiate between them without suc-
cess47,49. Initial emphasis was put in GPR22, because this G protein-
coupled receptor shows a cis-QTL in lymphoblastoid cells49. How-
ever, this year’s study discards GRP22 after showing that it is not
expressed in any of the seven joint tissues analyzed50. The other
five genes were expressed in all joint tissues and at lower levels in
OA than in control hip cartilage. Low expression of three of them
was correlated with the OA associated SNPs showing the difficulty
of distinguishing between them also by expression analysis.
Fortunately, allele expression imbalance analysis (AEI) identified
only one of them, HMG-box transcription factor 1 (HBP1), as the
gene to prioritize for further study without definitively excluding
any of the other genes in this locus. HBP1, coding for HMG-box
transcription factor 1, has been implicated in suppression of WNT
signaling, a pathway of great interest in OA and prominent in
multiple genetic studies of this year.

New studies have added interesting information about GDF5,
which has become the best understood OA locus, and about other
loci of less well established status. A new regulatory element in the
GDF5 promoter has been identified51. The site is affected by a
variant so rare that only 1 was found among >1900 sequenced
Europeans52. However, it led to a more complete understanding of
GDF5 regulation reinforcing the context specificity of the risk alleles
effect. The variant modifies binding of the transcription factor YY1.
Overexpression of YY1 stimulates GDF5 expression and is able to
compensate for the OA predisposing alleles. In a different
sequencing study, signals of positive selection in East Asians have
been found in the promoter and first exon of GDF553. The OA/low
height risk alleles are absent in Africans, very frequent out of Africa,
and positive selected in East Asians. This study proposes that these
alleles have selective advantages. To end with GDF5, the risk allele
was associated with the severity of tibiofemoral OA (but not of
patellofemoral OA) in a study analyzing more than 3400 knee OA
cases with K/L scores �254. No significant association was found
with other two OA loci, 7q22 and MCF2L. Given the cross-sectional
design of the study, this result can be due to a role in progression of
OA or in its early onset.

Several studies have addressed deiodinase, iodothyronine, type
II (DIO2). One of them has found that DIO2 risk allele is associated
with increased expression in AEI probably indicating that this
nsSNP is in LD with a cis-acting polymorphism55. Overexpression of
DIO2, which has been repeatedly shown in OA cartilage55e57, is
assumed to be damaging and it accelerates OA in a rat destabili-
zation model57. However, a study suppressing DIO2 in human
chondrocytes showed an anti-inflammatory role of this enzyme,
likely mediated by LRXa58. New studies will be needed to see if
these apparent contradictory results fit in a consistent model. An
analysis of collagen, type XI, alpha 1 (COL11A1) has found puzzling
results: the OA associated SNP does not correlate with AEI in
cartilage, whereas an SNP associated with lumbar disc herniation in
the Japanese correlates with AEI but is not associated with OA59.
Finally, two nsSNPs in frizzled-related protein (FRZB) that have
been studied for association with hip OA60 are now reported as
associated with proximal femur shape61. This is an OA endophe-
notype of great interest that has already been shown to be genet-
ically influenced62.

DNA methylation

DNA methylation is the most studied epigenetic mark in the OA
field1,63. Previous studies have been centered in the promoters of
selected genes. Now, the first DNA methylation profiling studies in
OA have been published64,65. They used the Illumina array inter-
rogating more than 27,000 CpG sites predominantly placed in CpG
islands of proximal promoters. As a general rule, hypermethylation
of these sites signals stable repression of the gene downstream.
One of the studies with the 27 K array compared full thickness
cartilage of the central tibial plateau from OA patients with normal
controls65. Modest differences, with only 91 differentially methyl-
ated sites, were observed. Gene enrichment analysis showed in-
flammatory response and positive regulation of transcriptional
activity as significantly hypomethylated. The hypermethylated sites
were enriched in regulation of phosphorylation and mitogen-
activated protein kinase activity. The most hypomethylated site
was in RUNX1, a transcription factor involved in chondrogenesis.
The most hypermethylated site was in MSX1, a transcriptional
repressor involved in development. Unfortunately the study did not
include validation of methylation or analysis of expression of the
differentially methylated genes in the same samples. An additional
result of this study is the identification of a cluster of OA patients
showing marked methylation differences with the rest of OA pa-
tients. Hypomethylation in this group was enriched in promoters of
genes involved in inflammation, in particular chemokine and
cytokine activities, and hypermethylation in genes of structural
components of the extracellular matrix. Confirmation of the dif-
ferences between patients will be necessary because the subdivi-
sion of OA patients could be of great relevance for OA research.

The second study profiling DNA methylation addressed differ-
ences between OA and osteoporosis (OP) in trabecular bone from
the femoral head of women64. Differential methylation sites were
enriched in functional groups fit for bone: development of the
appendicular skeleton, limb morphogenesis and osteoblast
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differentiation. Focusing on the 45 more differentially methylated
sites, 43 were more methylated in OA bone than in OP bone,
possibly reflecting the more prominent role of bone in OP than in
OA. These 43 genes were from a wide array of functional groups,
including eight homeobox genes. The two sites more methylated in
OP bone than in OA were related with the immune system, lym-
photoxin a (LTA) and LY9 that could indicate differential involve-
ment of bone marrow cells. These are very suggestive results but
further experiments will be required to appreciate their meaning.

The promoters of four genes have been specifically analyzed
during this year. Two CpG promoter sites were identified by anal-
ysis of their sequences as possible binding sites for the cartilage
catabolic transcription factor HIF-2a: the �110 site in the MMP13
promoter that is hypomethylated in OA cartilage66, and the �299
site in the IL1B promoter that is hypomethylated in chondrocytes
after repeated stimulation in culture67. Now, the MMP13 site has
been demonstrated as amethylationmodulated HIF-2a binding site
whereas the IL1B site is not68. However, the IL1B site has been
shown to be hypomethylated in OA chondrocytes and to regulate
IL1B expression68. Also the inducible NO synthase gene, NOS2, is
regulated by DNA methylation in OA cartilage69. This is the first
example of methylation changes in an enhancer, not in the pro-
moter. Two CpG sites more than 5 Kb upstream of the gene were
hypomethylated in OA chondrocytes. These two sites are in the
neighborhood of an NF-kB binding site and their methylation
repressed transcription induced by the p65 subunit of NF-kB
demonstrating their functionality. In contrast, the anabolic tran-
scription factor SOX9 has shown the opposite change in hip OA
cartilage, promoter hypermethylation70. The widespread hyper-
methylation at this promoter inhibits binding of two transcription
factors, NFYA and CREB, and correlates with decreased mRNA and
protein levels of SOX9. In addition, this study addressed histone
modifications in SOX9. The histone marks were characteristic of a
repressed promoter: increased H3K9me3 and H3K27me3 and
decreased H3K9ac.

These studies provide the first direct evidence of epigenetic
regulation of IL1B, SOX9 and NOS2 in OA cartilage extending the
reach of this type of epigenetic modification in OA. These stable
changes are potential targets for manipulation as are the miRNAs
regulating cartilage expression.

miRNA and other non-coding RNA studies

The study of miRNA is a burgeoning field that has produced
many interesting findings. However, it is still early to understand
their significance due to the diversity of miRNAs, the multiplicity of
their targets and a certain lack of consistence between studies.
Several excellent reviews have been published that give an intro-
duction to the field and information on previous studies63,71.

TwomiRNA profiling studies in OA cartilagewere publishedmore
than 2 years ago72,73. They identified several up- and down-
regulated miRNA but none was coincident and one was found as
upregulated in one study and down-regulated in the other. A new
study analyzing RNA extracted from pellets of cultured chondrocytes
has brought the first replications this year74. The single miRNA
upregulated in OA according to this new study,miR-483, was also the
most upregulated in one of the previous studies72. In addition, one of
the 6 down-regulated miRNAs,miR-149, was also down-regulated in
the other previous study73. More profiling studies are clearly
required to establish the catalog of miRNA with consistent changes.
Lack of reproducibility of results until now can be ascribed to dif-
ferences inmethodology, the small number of samples analyzed and
confounding. This last possibility is supported by the strong corre-
lations between BMI and five of the miRNAs associated with OA72,
and by changes of miRNA expression in cartilage with age75.
miR-140 has been singled out as a critical miRNA in OA because
of its specific expression in cartilage, its important role in cartilage
development, the lower levels observed in OA and the accelerated
OA in mice lacking miR-14063,71. However, a new study found
increased miR-140 in OA cartilage in contrast with previous re-
ports76. The difference is unexplained but it is intriguing that this
study used femoral heads, whereas previous studies included
knees72,77,78. The same study has identified other miRNA, miR-455,
that was also overexpressed in OA cartilage and that suppresses
SMAD2 expression76. This finding together with miR-140 suppres-
sion of SMAD familymember 3 (SMAD3), led the authors to propose
that these two miRNAs play a synergistic role in OA favoring a
catabolic phenotype76. The two are induced by TGFb signaling and
suppress the SMAD2/3 TGFb pathway, which is anabolic and pre-
vents terminal differentiation. In addition, by suppressing SMAD2/3
the twomiRNAs allow TGFb signals follow the SMAD1/5/8 pathway
without competition, with the subsequent differentiation of
chondrocytes to a catabolic phenotype.

Other authors have addressed the specific regulation by miRNA
of important genes after IL1b stimulation of chondrocytes. A very
complete study has identified two miRNAs, miR-199a and miR-
101.3, regulating the COX2 gene79. The pathway that was analyzed
involves IL1b stimulation of p38-MAPK activation followed by
downregulation of miR-199a and miR-101.3 and subsequent up-
regulation of COX2. miR-199a, but not miR-101.3, was found at
lower levels in OA cartilage than in normal cartilage. A similar study
identifiedmiR-101 as regulating SOX980. SOX9 is a target ofmiR-145
in chondrocyte differentiation63,81, but expression of miR-145 was
not altered by IL1b excluding its involvement in the chondrocyte
changes80. This study also showed that overexpression of miR-101
is able to abrogate ECM degradation induced by IL1b indicating its
wide cartilage protection effects. It is interesting that the two
studies have identifiedmiR-101 as a critical miRNA in chondrocytes
cultured with IL1b79,80.

There is some evidence indicating that miRNAs and other non-
coding RNAs can be useful as OA biomarkers. A report described
four miRNAs overexpressed in PBMCs of patients with OA82. This
result is reminiscent of a previous study showing increased levels of
a different miRNA in plasma of OA patients83. However, these two
studies are small and need replication. Better powered than them is
a third that did not address OA but a situation that can lead to OA,
cartilage damage 1 year after anterior cruciate ligament injury. No
change in miRNAs was found but serum levels of two small
nucleolar RNAs, U48 and U38, were associated with the injury
antecedent and levels of U38 correlated with the extent of cartilage
damage84. The validity of these potential biomarkers in OA will
surely be further explored.

Functional genomics

As reviewed last year1, the microarray technology used for
functional genomics is nowaccompanied by RNA sequencing (RNA-
seq). RNA-seq has advantages over microarrays but it has not yet
been used in the OA field. Therefore, all this year’s studies
addressing specific OA questions were done with microarrays.

The first whole genome microarray study comparing cartilage
from hip OA patients with femoral neck fracture patients was re-
ported85. It showed low concordance with a similar study previ-
ously done for knee OA56. Only 229 genes were associated with OA
in the two studies among the 998 differently expressed in the hip
and 1423 in the knee. In addition, 71 of the 229 common genes
showed opposed changes in the two joints, therefore commonality
was even smaller. Common between the two studies were ECM
associated genes especially collagens. They were upregulated in
what is interpreted as an attempt of cartilage repair. Opposed
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changes were found in metalloproteinases, with ADAMTS5,
ADAMTS1 and MMP1 increased in knee OA and decreased in hip
OA. These results strengthen the concept of specificity of joint in the
OA process that has been alluded above. In addition, this work has
identified hub genes (showing �5 interactions with other genes)
that are upregulated or down-regulated in hip OA. Collagen genes
are predominant in the upregulated group, whereas signaling
molecules are abundant among the down-regulated hub genes. In
this latter group, the authors highlight two kinases, AKT3 and
MAPK1, and two transcription factors, MYC and ATF3.

A paper has found a surprising pattern of expression of OA
synoviocytes86. It compared OA with RA and with healthy synovial
cells. The most differentiated expression was found in OA FLS, with
more changes between OA and healthy controls than between RA
and healthy controls. These results show that synovial cells are
involved in the OA disease process and that they cannot be
considered as equivalent to healthy synoviocytes. The authors
indicate that no proinflammatory phenotype or increased expres-
sion of ECM proteases was observed in OA synoviocytes. However,
they observed a decreased expression of growth factors of the he-
patocyte, bone morphogenetic protein and fibroblast families, as
well as, dysregulation of cell adhesion and motility factors and
increased expression of neurotransmitter receptors and signaling
molecules. The authors interpret that these changes are suggestive
of a widespread change in mesenchymal cell expression that could
be common to chondrocytes, osteoblasts and bone marrow stromal
cells. The advanced status of OA and RA in this study that obtained
synovial tissue from knee replacement surgery should be
considered.

Also of interest are two studies profiling expression differences
between two types of cartilage. A first study compared articular and
osteophytic cartilage from the same OA knee87. The two tissues
were clearly different with a bias to higher expression in osteo-
phytic cartilage (515 genes) over articular cartilage (85 genes). 34
transcripts were more than 20 fold different. Osteophytic cartilage
was enriched in factors involved in terminal chondrocyte differ-
entiation, endochondral ossification and in ECM enzymes. Articular
cartilage showed increased levels in growth factor signaling genes.
These changes are interpreted as showing the process of terminal
differentiation in the osteophytic cartilage and the prevention of
hypertrophy and terminal differentiation in articular cartilage. This
prevention was observed in spite of severe OA and it involves in-
hibition of the BMP andWNT pathways by GREM1,WISP3 and FRZB,
and at other levels by STC2, SOX9 and parathyroid hormone-like
hormone (PTHLH), all of them genes upregulated in articular
cartilage. A second study compared articular cartilage with growth
plate cartilage from adolescents to identify mechanisms involved in
hypertrophic differentiation42. Overexpression in the growth plate
cartilage of cell cycle-related genes and of the WNT signaling
pathwaywas highlighted by the authors. Articular cartilage showed
higher expression of TLE2, a transcriptional inhibitor of the WNT
pathway and three WNT antagonists GREM1, FRZB and DKK1. The
three WNT antagonists were the most differentially expressed
genes in this study. The results of these two studies support an
active maintenance of the articular cartilage by downregulation of
the WNT pathway. Based on this interpretation, the authors pro-
pose that potential regenerative approaches for OA should consider
inhibitors of terminal differentiation in addition to anabolic
factors87.

Summary

We are nowmore conscious of the limitations and potential that
genetics can provide. The limitations have not undermined
excitement in the field caused by the discovery of eleven OA
susceptibility loci at the genome-wide significance level and by
quick and interesting progress in technology, genomic information
resources, functional studies, epigenetics and functional genomics.
New areas of research have been opened by new OA loci as DOT1L
or the prioritization of HBP1 for further confirmation in the 7q22
locus, by the first large genetic study of OA severity, the identifi-
cation of a subgroup of OA patients with differentiated cartilage
DNAmethylation, the potential biomarker role of non-coding RNAs,
the uncovering of multiple differences between OA in the hip and
knee joints, and by the active downregulation of the WNT pathway
in articular cartilage among other many findings. They are the
starting points of as many interesting stories, many still require
confirmation, but some will become useful for our understanding
and management of this complex disease.
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