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SUMMARY

Hypothalamic endoplasmic reticulum (ER) stress is
a key mechanism leading to obesity. Here, we
demonstrate that ceramides induce lipotoxicity and
hypothalamic ER stress, leading to sympathetic
inhibition, reduced brown adipose tissue (BAT)
thermogenesis, and weight gain. Genetic overex-
pression of the chaperone GRP78/BiP (glucose-
regulated protein 78 kDa/binding immunoglobulin
protein) in the ventromedial nucleus of the hypothal-
amus (VMH) abolishes ceramide action by reducing
hypothalamic ER stress and increasing BAT thermo-
genesis, which leads to weight loss and improved
glucose homeostasis. The pathophysiological rele-
vance of this mechanism is demonstrated in obese
Zucker rats, which show increased hypothalamic
ceramide levels and ER stress. Overexpression of
GRP78 in the VMH of these animals reduced body
weight by increasing BAT thermogenesis as well as
decreasing leptin and insulin resistance and hepatic
steatosis. Overall, these data identify a triangulated
signaling network involving central ceramides, hypo-
thalamic lipotoxicity/ER stress, and BAT thermogen-
esis as a pathophysiological mechanism of obesity.

INTRODUCTION

Obesity and its related metabolic disorders are increasing at a

rate that is considered of epidemic proportions in Western and
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developing countries. The increasing prevalence of obesity is

likely due to a combination of genetic predisposition as well as

evolutionary, social, and environmental factors (Gregor and Ho-

tamisligil, 2011; Ramachandrappa and Farooqi, 2011; Speak-

man and O’Rahilly, 2012). Data gleaned over the last few years

have uncovered the interaction between peripheral signals and

brain targets provided by different neuropeptides and neuro-

transmitters (Lam et al., 2005; Luquet and Magnan, 2009; Yeo

and Heisler, 2012). However, despite initial hope, this knowledge

failed to provide a much-needed antiobesity drug (Finan et al.,

2012; Dietrich and Horvath, 2012; Malik et al., 2013). It is gener-

ally recognized that to progress in this area it is crucial to

discover the basic molecular mechanisms regulating energy ho-

meostasis. Taking into account that almost all signaling proteins

used by cells to communicate with its environment are assem-

bled in the endoplasmic reticulum (ER) (Schröder and Kaufman,

2005; Ron and Walter, 2007; Gregor and Hotamisligil, 2011; Fu

et al., 2012), studies addressing the molecular mechanisms

involved in ER stress functions have started to reveal the molec-

ular mechanisms involved in complex diseases.

The ER is a sophisticated luminal network in which pro-

tein synthesis, maturation, folding, and transport take place

(Schröder and Kaufman, 2005; Marciniak and Ron, 2006; Ron

and Walter, 2007; Gregor and Hotamisligil, 2011; Fu et al.,

2012). The term ER stress refers to the alterations of the pro-

tein-folding functionality of the ER, which activates a complex

signaling network termed the unfolded protein response (UPR),

leading to coordinated transcriptional events promoting attenu-

ation of protein synthesis, upregulation of ER-folding machinery

(a type of proteins called chaperones), and degradation of

irreversibly misfolded proteins (Schröder and Kaufman, 2005;

Marciniak and Ron, 2006; Ron and Walter, 2007; Martı́nez de
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Morentin and López, 2010; Fu et al., 2012). Previous studies have

demonstrated that ER stress and activation of UPR pathways

play a major role promoting obesity-induced insulin resistance

in peripheral tissues. For example, inflammation, free lipid accu-

mulation, and hyperglycemia in pancreatic b cells and liver elicit

activation of the UPR, leading to decreased insulin expression

and inhibition of insulin signaling (Ozcan et al., 2004, 2006; Lip-

son et al., 2006; Kammoun et al., 2009; Fu et al., 2012). Current

evidence also indicates that obesity and overnutrition-induced

inflammation causes ER stress in the hypothalamus, inducing in-

sulin and leptin resistance and, ultimately, weight gain (Zhang

et al., 2008; Hosoi et al., 2008; Ozcan et al., 2009; Won et al.,

2009; Ropelle et al., 2010; Schneeberger et al., 2013). Notably,

these studies also demonstrate that pharmacological interven-

tions that improve protein folding (i.e., chemical chaperones)

recover leptin and insulin signaling, normalizing body weight

(Zhang et al., 2008; Hosoi et al., 2008; Ozcan et al., 2009; Won

et al., 2009; Schneeberger et al., 2013).

A current idea gaining credibility is that adipose stores in

some obese individuals become saturated and lipotoxic fat me-

tabolites spill over into tissues not suited for lipid storage (Virtue

and Vidal-Puig, 2010; Martı́nez de Morentin et al., 2010). Thus,

accumulation of reactive lipid species, such as diacylglycerol,

free fatty acids, free cholesterol, and ceramides, is a patho-

genic mechanism of insulin resistance, type 2 diabetes, and

liver and cardiovascular disease. In peripheral tissues, such

as b cells, skeletal muscle, liver, and heart, this process, known

as lipotoxicity, occurs through inflammation and ER stress (Un-

ger, 2002; Virtue and Vidal-Puig, 2008; Symons and Abel,

2013). However, despite this evidence, whether (1) lipotoxocity

may happen in the hypothalamus and, more specifically,

whether (2) ceramide-induced lipotoxicity may induce hypotha-

lamic ER stress or (3) this mechanism is of relevance for obesity

is currently unknown. Therefore, the aims of this study were

first to determine whether central ceramides elicit ER stress

in the hypothalamus, and second to investigate whether that

action accounts for the changes in energy balance associated

with obesity.

RESULTS

Central Ceramide Treatment Induced Hypothalamic ER
Stress and Body Weight Gain through Sympathetic
Inhibition of BAT
Central treatment of C6 ceramide, a cell-penetrating ceramide

that is partially converted to long-chain ceramides inside the

cell (Mitoma et al., 1998; Gao et al., 2011; Ramı́rez et al.,

2013), increased the concentration of C16 ceramide in the

mediobasal hypothalamus (MBH), confirming the efficiency of

the treatment (Figure 1A). This effect was associated with

increased ER stress, as demonstrated by the increased protein

concentration of the UPR, such as GRP78/BiP (glucose-regu-

lated protein 78 kDa/binding immunoglobulin protein), pIRE1

(phosphorylated inositol requiring enzyme 1), pPERK (phos-

phorylated PKR-like ER kinase), peIF2a (phosphorylated eu-

karyotic initiation factor 2a), ATF6a (activating transcription

factor 6 alpha), and CHOP (C/EBP homologous protein)

(Schröder and Kaufman, 2005; Marciniak and Ron, 2006; Ron
and Walter, 2007; Martı́nez de Morentin and López, 2010; Fu

et al., 2012) in the MBH (Figure 1B). Of note, central administra-

tion of ceramide induced a marked feeding-independent

weight gain (Figure 1C), which was associated with decreased

mRNA levels of thermogenic markers in BAT, such as uncou-

pling proteins 1 and 3 (UCP1 and UCP3), peroxisome-prolifera-

tor-activated receptor-gamma coactivator 1 alpha (PGC1a, but

not PGC1b), and fatty acid-binding protein 3 (FABP3) (Fig-

ure 1D). This was confirmed at the protein level as indicated

by the reduced UCP1 protein concentration in BAT (Figure 1E).

In keeping with the decreased expression of thermogenic

markers, central ceramide-treated rats displayed lower body

temperature (Figure 1F). Moreover, central administration of

ceramide reduced BAT sympathetic nerve traffic recorded

directly by microneurography (Figures 1G–1H).

GRP78 in the Ventromedial Nucleus of the
Hypothalamus Reversed the Central Ceramide Effect on
Body Weight and BAT Thermogenesis
To assess the role of ER stress on ceramide-induced actions on

energy balance, we targeted GRP78, an ER chaperone that fa-

cilitates the proper protein folding acting upstream of the UPR

(Schröder and Kaufman, 2005; Marciniak and Ron, 2006; Ron

and Walter, 2007; Martı́nez de Morentin and López, 2010; Fu

et al., 2012; Cnop et al., 2012). Thus, an adenovirus encoding

GRP78 wild-type (GRP78 WT) together with GFP or control

adenovirus expressing GFP alone was injected first into the

ventromedial nucleus of the hypothalamus (VMH), a key site

modulating BAT (López et al., 2010; Martı́nez de Morentin

et al., 2012, 2014; Whittle et al., 2012; Beiroa et al., 2014). Infec-

tion efficiency in the VMH was assessed by expression of GFP

(Figure 2A) and an increased concentration of GRP78 in the

VMH (Figure 2B). The specificity of the VMH dissections was

92.08% (p < 0.001) when using pro-opiomelanocortin (POMC)

as a marker of ‘‘contamination’’ from the neighboring arcuate

nucleus of the hypothalamus (ARC). GRP78 adenovirus elicited

a marked decrease in four out the five proteins of the UPR

tested in the VMH (Figure 2B), without changes in ceramide

levels (Figure 2C), indicating that GRP78 was acting down-

stream of ceramides. Of note, central ceramide treatment

increased the expression of inflammatory markers in the hypo-

thalamus such as interleukin 6 (IL6, but not IL1b), phospho-

IKKa/b (pIKKa/b), and tumor necrosis factor alpha (TNFa),

which is indicative of lipotoxicity (Figure S1A). Remarkably,

these effects of ceramide were not affected by GRP78 adeno-

virus (Figure S1A), confirming previous evidence that inflamma-

tion is upstream to ER stress in the hypothalamus (Zhang et al.,

2008). Moreover, we found that administration of GRP78 adeno-

virus into the VMH reversed ceramide-induced weight gain

without any change in food intake (Figure 2D). GRP78 WT

adenovirus did not affect body weight or feeding in vehicle-

treated rats (Figures S1B and S1C). Central ceramide promoted

an increase in the weight of gonadal and inguinal white adi-

pose tissue pads (gWAT and iWAT, respectively), an effect

that was reversed by GRP78 adenovirus into the VMH (Fig-

ure 2E). In association with the increased adiposity, ceramide-

treated rats showed a tendency for higher circulating leptin

and triacylglyceride (TAG) levels that was partially reversed by
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Figure 1. Effect of Central Administration of Ceramide on Energy Balance

Ceramide levels in the mediobasal hypothalamus (MBH) (A), representative western blot autoradiographic images (B, left; spliced bands loaded in the same gel)

and hypothalamic protein levels of UPR (B, right), body weight change (C, left) and daily food intake (C, right), mRNA expression in the BAT (D), representative

western blot autoradiographic images (E, left; spliced bands loaded in the same gel) and protein levels of BAT UCP1 (E, right), rectal temperature (F), BAT

sympathetic nervous activity (SNA) tracings (G), and change in BAT SNA of rats centrally treated with vehicle or ceramide 6 (H). Error bars represent SEM; n = 5–7

(SNA recordings) or n = 7–26 animals per experimental group. *p < 0.05, **p < 0.01, and ***p < 0.001 versus vehicle, #p < 0.05 ceramide 0.2 mg ICV versus

ceramide 0.1 mg ICV.
GRP78 WT adenovirus (Table S1). The central ceramide-medi-

ated decrease in UCP1 protein levels in the BAT (Figure 2F),

BAT temperature (Figure 2G), and body temperature (Fig-

ure 2H) were also blunted by administration of GRP78 adeno-

virus in the VMH. Overall, these changes indicated that the

central ceramide-induced ER stress effectively modulated

BAT thermogenesis.

Next, GRP78 WT adenoviruses were injected within the ARC

(Figure S1D), where they promoted an increase of the concentra-

tion of GRP78, which was concomitant to decreased levels of ER

stress markers (Figure S1E). The specificity of the ARC dissec-

tions was 83.48% (p < 0.001), when using steroidogenic fac-

tor-1 (SF1) as a marker of contamination from the adjacent

VMH. When given into the ARC, GRP78 WT adenovirus did not

affect body weight (Figure S1F), feeding (Figure S1G), or BAT

UCP1 protein content (Figure S1H).
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GRP78 in the VMH Reversed the Central Ceramide
Effect on Insulin Resistance
Given the effects of central ceramide administration on body

weight and BAT thermogenesis, we next evaluated its impact

on glucose homeostasis and insulin action. Our data showed

that central ceramide did not impact glucose tolerance (Fig-

ure 3A) but impaired insulin sensitivity, which was reversed by

GRP78 adenovirus in the VMH (Figures 3B and 3C).

Inactivation of GRP78 in the VMH Induced ER Stress and
Weight Gain and Decreased UCP1 in BAT
Having shown that GRP78 overexpression in the VMH inhibited

central ceramide’s anabolic actions, we next investigated

whether GRP78 inactivation in the same hypothalamic nucleus

would have the opposite effect on body weight and BAT

markers. For this, we treated rats with an adenovirus harboring



Figure 2. Effect of GRP78 Overexpression in the VMH on Central Ceramide Actions and Energy Balance
(A–C) Representative immunofluorescence (A, left: 43, scale bar, 300 mm; A, right: 203, scale bar 100 mm) with anti-GFP showing GFP expression in the VMH,

representative western blot autoradiographic images (B, left; spliced bands loaded in the same gel) and hypothalamic protein levels of UPR (B, right; see Fig-

ure S1A for analysis of inflammatory markers in the hypothalamus), and ceramide levels (C) in the mediobasal hypothalamus of rats treated with GFP or GRP78

WT adenoviruses into the VMH.

(D–H) Body weight change (D, left) and daily food intake (D, right); weight of iBAT, gWAT, and iWAT pads (E); representative western blot autoradiographic images

(F, left; spliced bands loaded in the same gel) and protein levels of BAT UCP1 (F, right); representative infrared thermal images (G, left) and temperature of the BAT

area (G, right); and rectal temperature (H) of rats centrally treated with vehicle or ceramide and stereotaxically treated with GFP or GRP78 WT adenoviruses into

the VMH. In order to simplify (D)–(H), the vehicle Ad GRP78 WT group has been omitted; in any case, it is important to note that no differences were found in that

group when compared to vehicle Ad GFP (see Figures S1B and S1C).

Error bars represent SEM; n = 6 (fat pads and temperature) or 7–47 animals per experimental group. 3V, third ventricle; ME, median eminence. *p < 0.05, ** p <

0.01, and ***p < 0.001 versus Ad GFP or vehicle Ad GFP; #p < 0.05, ## p < 0.01, and ###p < 0.001 ceramide Ad GFP versus ceramide Ad GRP78WT. See Figures

S1D–S1H for analysis of GRP78 WT adenoviruses in the arcuate nucleus of the hypothalamus.
a dominant-negative isoform of GRP78 (GRP78 DN) (Shen et al.,

2002) in the VMH or the ARC. Infection efficiency was assessed

by expression of GFP (similarly to Figures 2A and S1D for GRP78

WT) and increased concentration of GRP78 in the VMH or ARC,

since GRP78 DN isoform was most likely recognized by GRP78

antibody (Figures 4A and S2A). Our data demonstrated that ste-

reotaxic delivery of GRP78 DN induced a significant UPR activa-

tion in the VMH (Figure 4A), which accounts for increased ER

stress, feeding-independent weight gain (Figures 4B and 4C),

and decreased UCP1 concentration in BAT (Figure 4D). On the

other hand, despite ER stress induction in the ARC (Figure S2A),
GRP78 DN adenovirus did not impact body weight (Figure S2B),

food intake (Figure S2C), or UCP1 protein levels in BAT

(Figure S2D).

GRP78 in the VMH Reversed Ceramide-Induced ER
Stress in Obese Zucker Rats
To elucidate the contribution of ceramide-induced ER stress in

the context of obesity, we used obese Zucker rats (OZR). Our

data showed increased concentration of ceramide C16 and

C18 in the MBH of OZR when compared to lean Zucker rats

(LZR) (Figure 5A). In addition, UPR response was increased in
Cell Reports 9, 366–377, October 9, 2014 ª2014 The Authors 369



Figure 3. Effect of GRP78 Overexpression in

the VMH on Central Ceramide Actions on

Glucose Homeostasis and Insulin Sensitivity

Glucose tolerance test (GTT) (A), insulin tolerance

test (ITT) (B), and area under the curve (AUC) (C)

from ITT of rats centrally treated with vehicle or

ceramide and stereotaxically treated with GFP or

GRP78 WT adenoviruses into the VMH. Error bars

represent SEM; n = 7–9 animals per experimental

group. *p < 0.05 versus vehicle Ad GFP; # p < 0.05

ceramide Ad GFP versus ceramide Ad GRP78 WT.
the VMH of OZR (Figure 5B), indicating ER stress. Next, we eval-

uated the effect of GRP78 overexpression in the VMHof LZR and

OZR. Our results indicate that stereotaxic injection of GRP78WT

adenovirus into the VMH induced feeding-independent weight

loss in OZR, but not in LZR (Figures 5C and 5D), and ameliorated

hypothalamic ER stress (Figure 5E) without changes in hypotha-

lamic ceramide levels (Figures 5F and 5G).

GRP78 in the VMH Increased BAT Thermogenesis and
Improved the Metabolic Profile of Obese Zucker Rats
Next, we investigated the effect of GRP78 WT adenovirus on

thermogenesis. Our data showed that reversion of hypothalamic

ER stress with GRP78 WT induced a marked increase in UCP1

protein levels in BAT (Figure 6A), as well as increased BAT (Fig-

ure 6C) and core temperature (Figure 6E) in OZR, indicating

increased thermogenesis. These effects were associated with

an improvement in the metabolic phenotype of OZR, as demon-

strated by decreased hepatic steatosis (Figure 6G) associated

with reduced levels of acetyl-coenzyme A carboxylase alpha

(ACCa; data not shown) and iWATweight (Figure 6I) and reduced

circulating cholesterol and TAG levels (Table S2). Of note, no

changes were detected in LZR rats treated with the GRP78 WT

adenovirus (Figures 6A, 6B, 6D, 6F, and 6H).

GRP78 in the VMH Improves Leptin Signaling and Insulin
Resistance in Obese Zucker Rats
Administration of GRP78 WT adenovirus into the VMH did not

affect the protein levels of pSTAT3 (phosphorylated signal

transducer and activator of transcription 3), pPI3K (phosphory-

lated phosphatidylinositide 3-kinase), phosphorylated AKT

(pAKT), and SOCS3 (suppressor of cytokine signaling 3) in the

VMH of LZR rats (Figure 7A). GRP78 WT adenoviruses induced

significantly the concentration of pSTAT3, pPI3K, and pAKT in

the VMH of OZR, whereas SOCS3 levels were reduced

(Figure 7B).
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Administration of GRP78 WT adeno-

virus into the VMH did not affect glucose

tolerance in either LZR or OZR, although

they reduced insulin circulating levels as

early as 30 min after glucose administra-

tion in OZR (Figures 7C and 7D). On the

other hand, GRP78 WT adenoviruses

tended to increase insulin sensitivity in

LZR (Figure 7E). Notably, this effect was

more pronounced in OZR, where a signif-
icant improvement in insulin resistance was found (Figure 7F). In

keeping with these data, GRP78 WT adenovirus increased the

levels of pAKT in the muscle (Figure 7H) and the levels of

pPI3K and pAKT in the liver (Figure 7J) of OZR. No significant

changes were observed in LZR (Figures 7G and 7I). Overall,

this evidence demonstrates that GRP78 WT into the VMH treat-

ment improves insulin sensitivity in OZR.

DISCUSSION

This study identifies a physiological link among ceramides, hy-

pothalamic ER stress, and the modulation of energy balance.

Specifically, we show that ceramide-induced hypothalamic lipo-

toxicity and ER stress elicits decreased sympathetic tone to

BAT, which leads to decreased thermogenesis and feeding-in-

dependent weight gain. In addition, we show that genetic mod-

ulation of the ceramide-induced ER stress pathway in a specific

hypothalamic nucleus, the VMH, modulates energy balance by

influencing BAT thermogenesis in a sympathetic nervous system

(SNS)-mediatedmanner and insulin sensitivity, as well as by pro-

moting an overall improvement of the metabolic phenotype of

leptin and insulin resistant obese Zucker rats.

Ceramides comprise a family of simple sphingolipids gener-

ated from fatty acid and sphingosine (Bikman and Summers,

2011; Chavez and Summers, 2012). Although ceramides are pre-

sent at low levels within biological membranes, they make

important contributions to cell membrane structure. In addition,

ceramides exert diverse regulatory effects on cell-signaling

pathways that mediate growth, proliferation, motility, adhesion,

differentiation, senescence, and apoptosis (Holland and Sum-

mers, 2008; Hannun and Obeid, 2008; Cowart, 2009). Increased

ceramide production can lead to ER stress, a mechanism under-

lying insulin resistance and liver diseases (Kahn et al., 2006;

Holland and Summers, 2008; Bikman and Summers, 2011;

Chavez and Summers, 2012). In keeping with this, systemic



Figure 4. Effect of GRP78 Inhibition in the

VMH on Energy Balance

Representative western blot autoradiographic im-

ages (A, left; spliced bands loaded in the same gel)

and hypothalamic protein levels of UPR (A, right),

body weight change (B), daily food intake (C), and

representative western blot autoradiographic im-

ages (D, left; spliced bands loaded in the same gel)

and protein levels of BAT UCP1 (D, right) of rats

treated with GFP or GRP78 DN adenoviruses into

the VMH. Error bars represent SEM; n = 7–9 ani-

mals per experimental group. *p < 0.05, ** p < 0.01,

and ***p < 0.001 versus Ad GFP. See Figure S2 for

analysis of GRP78 DN adenoviruses in the arcuate

nucleus of the hypothalamus.
pharmacological inhibition or global genetic ablation of de novo

synthesis of ceramides improves insulin sensitivity and glucose

homeostasis (Summers et al., 1998; Yang et al., 2009) and

protects against glucocorticoid-, saturated fat-, and obesity-

induced insulin resistance (Holland et al., 2007). Current evi-

dence indicates that brain ceramide levels are increased during

high-fat diet-induced obesity (Borg et al., 2012) and in streptozo-

tocin-induced diabetic rats (Car et al., 2012). Also, hypothalamic

ceramide levels regulated by carnitine palmitoyltransferase 1c

(CPT1c, a specific isoform located in the ER), mediate the orexi-

genic effect of ghrelin (Ramı́rez et al., 2013). Finally, current evi-

dence has related hippocampal ceramides with impaired energy

balance and weight gain (Picard et al., 2014). However, despite

of this evidence, no data have linked hypothalamic ceramide-

induced lipotoxicity with ER stress and energy homeostasis.

Therefore, we hypothesized that positive energy balance in

obesity might bemediated by specific alterations in hypothalam-

ic ceramide levels and ER stress.
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Our data demonstrate that central

administration of C6 ceramide (which

acts as a long-chain ceramide precursor)

increases the C16 ceramide concentra-

tion in the ventromedial hypothalamus.

Of note, this effect was associated with

feeding-independent weight gain, hypo-

thalamic inflammation (leading to lipotox-

icity), and increased concentration of

UPR proteins (a functional indicator of

elevated ER stress), alongside with a

decrease in SNS firing and thermogenic

capacity of BAT. To determine the physi-

ological relevance of these observations,

we investigated whether selective modu-

lation of hypothalamic UPR (and then ER

stress) was sufficient to overrule central

ceramide’s effects in vivo. For this pur-

pose, we focused on the chaperone

GRP78 (also called BiP). GRP78 is the

most abundant ER-resident chaperone

that can prevent accumulation of

unfolded/misfolded proteins within the

ER (Schröder and Kaufman, 2005; Marci-
niak and Ron, 2006; Ron andWalter, 2007; Martı́nez deMorentin

and López, 2010; Fu et al., 2012; Cnop et al., 2012). Our data

showed that chronic intracerebroventricular (ICV) ceramide

administration increased GRP78 protein concentration in the

MBH, as and adaptive response to ameliorate ER stress. To

test this possibility, we treated rats with adenoviral particles

overexpressing GRP78 specifically within the VMH, which is

known to control BAT thermogenesis through the SNS (Cannon

and Nedergaard, 2004; López et al., 2010; Martı́nez de Morentin

et al., 2012, 2014; Whittle et al., 2012; Beiroa et al., 2014). We

show that GRP78 overexpression in the VMH reduces ER stress

and reverses the anabolic effects of central ceramide adminis-

tration by promoting weight loss (independently of food intake),

increasing UCP1 protein content in BAT, and thermogenesis.

Conversely, inactivation of GRP78 (by adenoviral-driven expres-

sion of DN isoforms) within the VMH promotes ER stress and

increases body weight in a feeding-independent manner, in as-

sociation with decreased UCP1 expression in BAT. Remarkably,
7, October 9, 2014 ª2014 The Authors 371



Figure 5. Effect of GRP78 Overexpression in the VMH of Obese Zucker Rats on Energy Balance

(A and B) Ceramide levels in themediobasal hypothalamus (A) and representative western blot autoradiographic images (B, left; spliced bands loaded in the same

gel) and hypothalamic protein levels of UPR (B, right) in LZR and OZR.

(C–G) Body weight change (C and D, left) and daily food intake (C and D, right) from LZR and OZR, respectively; representative western blot autoradiographic

images (E, left; spliced bands loaded in the same gel) and VMH protein levels of UPR from OZR (E, right); and ceramide levels in the mediobasal hypothalamus of

LZR (F) and OZR (G) stereotaxically treated with GFP or GRP78 WT adenoviruses into the VMH.

Error bars represent SEM; n = 7–33 animals per experimental group. *p < 0.05, **p < 0.01, ***p < 0.001 versus LZR or OZR Ad GFP.
no effect on body weight or BAT thermogenesis was detected

when GRP78 was targeted (by using either WT or DN adenovi-

ruses) in the neighboring ARC, which has been primarily involved

in the regulation of feeding, rather than energy expenditure (Yeo

and Heisler, 2012; Williams and Elmquist, 2012; López et al.,

2013). Overall, these data suggest that ceramides and GRP78

regulate energy balance in anatomical-specific pattern. In keep-

ing with this concept, ceramide-induced insulin resistance is

also improved when GRP78 was overexpressed within the

VMH that is also recognized as key site modulating glucose ho-

meostasis (McCrimmon et al., 2006, 2008). Although, classically,

the VMH is considered to be a regulator of feeding control (‘‘the

satiety center’’), our data reinforce recent proofs revealing a

more complex physiological role. These data support the idea

that the VMH is a fundamental brain area in the regulation of ther-

mogenesis and energy balance, integrating peripheral signaling

(i.e., thyroid hormones, bone morphogenetic protein 8b, estra-
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diol, and glucagon like peptide-1) and metabolite sensing (i.e.,

fatty acids and ceramides) with cellular energy sensors (i.e.,

AMP-activated protein kinase) (McCrimmon et al., 2006, 2008;

López et al., 2008, 2010; Whittle et al., 2012; Martı́nez deMoren-

tin et al., 2014; Beiroa et al., 2014) and now with cellular machin-

ery, namely ER stress and UPR.

A typical problem associated with malfunction of the central

mechanism governing energy balance is the development of

resistance to peripheral signals, such as insulin and leptin

(Caro et al., 1996; Howard et al., 2004). Current evidence has

demonstrated that one of the pathological mechanisms of leptin

resistance is hypothalamic ER stress (Zhang et al., 2008; Hosoi

et al., 2008; Ozcan et al., 2009; Won et al., 2009; Ropelle et al.,

2010; Schneeberger et al., 2013). Remarkably, these studies

demonstrate that pharmacological interventions that improve

protein folding (i.e., chemical chaperones) recover leptin and

insulin signaling, normalizing body weight (Zhang et al., 2008;



Figure 6. Effect of GRP78 Overexpression

in the VMH of Obese Zucker Rats on BAT

Thermogenesis and Liver Steatosis

Representative western blot autoradiographic im-

ages (A, left; spliced bands loaded in the same gel)

and protein levels of BAT UCP1 (A, right); repre-

sentative infrared thermal images (B and C, left)

and temperature of the BAT area (B and C, right);

rectal temperature (D and E); representative oil red

O-stained liver sections (F and G, left; scale bar,

50 mm) and their quantification (F and G, right

panel); and weight of iBAT, gWAT, and iWAT pads

from LZR (H) and OZR (I) stereotaxically treated

with GFP or GRP78 WT adenoviruses into the

VMH. Error bars represent SEM; n = 7–9 animals

per experimental group. *p < 0.05 and **p < 0.01

versus LZR or OZR Ad GFP; ##p < 0.01 OZR Ad

GFP versus OZR Ad GRP78 WT.
Hosoi et al., 2008; Ozcan et al., 2009; Won et al., 2009; Schnee-

berger et al., 2013). Nevertheless, most of the current evidence

has been related to the ARC (i.e., melanocortin neurons) and

feeding. Here, we focused on the pathophysiological relevance

of ER stress in the VMH using a well-established model of leptin

resistance, the OZR, which presents a defective leptin receptor

signaling (Phillips et al., 1996). We observed increased hypotha-

lamic ceramide levels in Zucker rats, associated with increased

UPR and ER stress in the VMH. Next, we stereotaxically treated

OZR with an adenovirus harboring GRP78 into the VMH. That

paradigm recapitulated the previous data, with GRP78 promot-

ing an amelioration of the hypothalamic ER stress associated

with marked negative energy balance in OZR, leading to

increased BAT thermogenesis, and improved metabolic profile

as indicated by the weight loss and the increased leptin signaling

and insulin sensitivity, as well as reduced liver steatosis and
Cell Reports 9, 366–377
circulating lipid levels. Notably, these ef-

fects were totally independent of feeding

behavior, as food intake remained un-

changed after the adenoviral treatment.

Overall, these data indicate that modula-

tion of ER stress in the VMH ameliorates

obesity in an extreme model of leptin

resistance, which is a condition in human

obesity (Caro et al., 1996; Howard et al.,

2004).

Conventionally, the toxic effects of the

accumulation of lipids, such as ceram-

ides, have been located in peripheral tis-

sues, such as pancreatic b cells, and liver,

heart, and skeletal muscle, where they

have been linked with inflammation and

the pathophysiology of insulin resistance,

type 2 diabetes, liver disease, atheroscle-

rosis, and cardiovascular disease (Unger,

2002; Virtue and Vidal-Puig, 2008; Sy-

monsandAbel, 2013).Of note, lipotoxicity

can also occur in the CNS, as observed in

certain neurodegenerative disorders (i.e.,
polyglutamine diseases, Parkinson’s disease, and amyotrophic

lateral sclerosis) (Ilieva et al., 2007). However, one key question

that remained to be addressed relates the status of lipid meta-

bolismandwhether accumulation of specific lipid species occurs

in the hypothalamus, leading to lipotoxicity, which might have

deleterious effects on energy homeostasis. Here, we present ev-

idence demonstrating that ceramides play a key role within the

hypothalamus to modulate energy balance through induction of

lipotoxicity ER stress and modulation of BAT function. Thus,

our data provide an alternative hypothalamic-centered paradigm

showing that amelioration of central ER stress leads to a marked

improvement inweight gain in a geneticmodel of obesity.Overall,

these data identify a network involving central ceramides, hypo-

thalamic lipotoxicity, ER stress, andVMH-regulatedBAT thermo-

genesis as a pathophysiological mechanism promoting obesity

and a promising target for therapeutic intervention.
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EXPERIMENTAL PROCEDURES

Animals

Male Sprague-Dawley rats (200–250 g; Animalario General University of San-

tiago deCompostela (USC), Santiago deCompostela, Spain and Charles River

Laboratories) and obese Zucker rats (OZR; fa/fa; 300–350 g) and their controls,

LZR (fa/�; 250–300 g), both provided by Charles River, were used for the ex-

periments. All animals were housed on a 12 hr light (8:00 to 20:00), 12 hr dark

cycle, in a temperature- and humidity-controlled room. The animals were al-

lowed free access to standard laboratory pellets of rat chow and tap water.

In all the experimental settings, animals and their food were weighed daily

at the beginning of the light phase. The experiments were performed in

agreement with the International Law on Animal Experimentation and were

approved by the USC Local Ethical Committee, the Xunta de Galicia (Project

ID 15010/14/006), and the University of Iowa Institutional Animal Care and

Use Committee.

Implantation of Intracerebroventricular Cannulae and Central

Treatments

Chronic ICV cannulae were implanted under ketamine-xylazine anesthesia

(50 mg/kg, intraperitoneal), as described previously, and correct positioning

in the lateral ventricle was confirmed by postmortem histological examination

(López et al., 2008, 2010; Whittle et al., 2012; Martı́nez de Morentin et al.,

2014). A catheter tube was connected from the brain infusion cannulae to an

osmotic minipump flow moderator (model 2001; Alzet). The minipump was in-

serted in a subcutaneous pocket on the dorsal surface of the animal, created

using blunt dissection. The incision was closed with surgical sutures. The rats

were then infused with C6 ceramide (N-hexanoyl-D-sphingosine; 1.25 mg/ml

dissolved in saline containing one-third DMSO; Sigma-Aldrich) or vehicle (sa-

line containing one-third DMSO; control rats) for 5 days. The selection of these

doses was based on previous reports (Ramı́rez et al., 2013). The animals were

caged individually and used for experimentation 5–7 days later. During this

postoperative recovery period, the rats became accustomed to the handling

procedure under nonstressful conditions.

Stereotaxic Microinjection of Adenoviral Expression Vectors

Rats were placed in a stereotaxic frame (David Kopf Instruments) under keta-

mine-xylazine anesthesia. The VMH and ARC were targeted bilaterally using a

25G needle (Hamilton). The injections were directed to the following stereo-

taxic coordinates: (1) for the VMH, 2.4/3.2 mm posterior to the bregma (two

injections were performed in each VMH), ±0.6 mm lateral to midline and

10.1 mm ventral; and (2) for the ARC, 2.8 posterior to bregma, ±0.3 mm lateral

to midline and 10.2 mm ventral, as previously reported (López et al., 2008;

López et al., 2010;Whittle et al., 2012; Martı́nez deMorentin et al., 2014; Beiroa

et al., 2014). Adenoviral vectors (Viraquest) containing GFP (used as control),

GRP78 WT (at 1012 particles/ml), GRP78 DN (dominant-negative, at 108 parti-

cles/ml) (Hendershot et al., 1995) were delivered at a rate of 200 nl/min for

5 min (1 ml/injection site) as previously reported (López et al., 2008, 2010;

Whittle et al., 2012; Martı́nez de Morentin et al., 2014; Beiroa et al., 2014).

Animals were treated for 6–9 days.

Glucose and Insulin Tolerance Tests

Seven days after stereotaxic surgery, blood glucose levels were measured at

0, 15, 30, and 60min after glucose or insulin administration with an glucometer

(Accucheck, Roche) after an intraperitoneal injection of 0.75 U/kg insulin

(Actrapid, Novonordisk) for insulin tolerance test (ITT) or 2 mg/g D-glucose
Figure 7. Effect of GRP78 Overexpression in the VMH of Obese Zu

Sensitivity

Representative western blot autoradiographic images (A and B, left; spliced ban

pathway in the VMH (A and B, right) from LZR and OZR; GTT (C and D, left) and ser

ITT (E and F, left) and area under the curve (AUC) from ITT (E and F, right); and r

loaded in the same gel) and protein levels of insulin signaling pathway in skeletal m

GRP78WT adenoviruses into the VMH. Error bars represent SEM; n = 6 (pAKT and

and ***p < 0.001 versus LZR Ad GFP or OZR Ad GFP.
(Sigma-Aldrich) administered orally via gavage for glucose tolerance test

(GTT) (Beiroa et al., 2013). In this case, the animals were fasted overnight.

To assay insulin sensitivity, insulin (100 U/ml; Actrapid, Novonordisk) was in-

jected in the portal vein. Thirty seconds after the insulin injection, the liver

was removed, and 90 s later the gastrocnemius muscle was extracted. All

samples were immediately homogenized on ice.

Ceramide Quantification

Ceramides were extracted and analyzed via an liquid chromatography-electro-

spray ionization/multistage mass spectrometry system (API 3000 PE Sciex;

Spectralab Scientific) in positive ionization as formerly described (Ramı́rez

et al., 2013). Concentrations weremeasured bymultiple reaction monitoring ex-

perimentsusingN-heptadecanoyl-D-erythro-sphingosine (C17- ceramide) asan

internal standard (50 ng/ml). The method was linear over the range from 2 to

600 ng/ml using as patrons N-palmitoyl-D-erythro-sphingosine (C16 ceramide)

and N-stearoyl-D-erythro-sphingosine (C18 ceramide; Avanti Polar Lipids).

Sample Processing and Analytical Methods

Sample processing, serum analyses, temperature measurements, sympa-

thetic nerve activity (SNA) recording, real-time quantitative PCR, western

blotting, and immunohistochemistry were performed as described previously

(López et al., 2008, 2010; Whittle et al., 2012; Martı́nez deMorentin et al., 2012,

2014; Seoane-Collazo et al., 2014; Beiroa et al., 2014) (see the Supplemental

Experimental Procedures for detailed protocols).

Statistical Analysis

Data are expressed as mean ± SEM. mRNA, and protein data were expressed

in relation (%) to control (vehicle or GFP-treated) rats. SNAwas expressed as a

percent change from baseline. Statistical significance was determined by

t-Student when two groupswere compared or ANOVA and post hoc two-tailed

Bonferroni test when more than two groups were compared. p < 0.05 was

considered significant.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

two figures, and three tables and can be found with this article online at
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