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SUMMARY

The receiver operating characteristic (ROC) curve is the most widely used measure for evaluating the dis-
criminatory performance of a continuous marker. Often, covariate information is also available and several
regression methods have been proposed to incorporate covariate information in the ROC framework. Until
now, these methods are only developed for the case where the covariate is univariate or multivariate. We
extend ROC regression methodology for the case where the covariate is functional rather than univari-
ate or multivariate. To this end, semiparametric- and nonparametric-induced ROC regression estimators
are proposed. A simulation study is performed to assess the performance of the proposed estimators. The
methods are applied to and motivated by a metabolic syndrome study in Galicia (NW Spain).

Keywords: Area under the curve; Functional data; Functional linear model; Functional nonparametric model;
Metabolic syndrome; ROC curve.

1. INTRODUCTION

The receiver operating characteristic (ROC) curve is a popular method for evaluating the performance
of continuous markers and its presence is widespread in medical studies. Parametric and nonparametric
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estimators are available (Zou and others, 1997; Pepe, 2003; Peng and Zhou, 2004, among others). Often,
covariate information that affects the marker performance is also available and ignoring such covariates
can yield biased or oversimplified inferences. Various methods have been proposed to assess possible
covariate effects on the ROC curve. Induced methodology is based on using separate regression models for
the healthy and diseased populations and then computing the induced form of the ROC curve (Pepe, 1998;
Faraggi, 2003; Zheng and Heagerty, 2004; González-Manteiga and others, 2011; Rodrı́guez-Álvarez and
others, 2011b). Alternatively, direct methodology assumes a regression model for the ROC curve itself,
with the effects of the covariates being directly evaluated on the ROC curve (Alonzo and Pepe, 2002;
Pepe, 2003; Cai, 2004). For a comparative study of both methodologies, see Rodrı́guez-Álvarez and others
(2011a). Until now, these methodologies are only developed for the cases where the covariate is univariate
or multivariate, although in some settings of practical interest, the covariate can have a more complex
structure.

In this paper, we extend the estimation of the conditional ROC curve for the cases where the covariate
is functional within the induced context. A functional covariate means that the explanatory variable is
valued in an infinite-dimensional space. Examples of functional variables include minute by minute val-
ues of a speculative asset, meteorological and pollution monitoring data, seismic data, growth curves and
heart rates, and a plethora of examples in all fields of science and engineering. Analyzing functional data
with standard multivariate methods that ignore the functional nature of the data may significantly impact
the inferences. Thus, there is a need for specific techniques that can handle such data and extract rele-
vant information from it. For an overview of this topic see, for instance, Ramsay and Silverman (2006)
or Ferraty and Vieu (2006). Our approach is motivated by a medical study, conducted in Galicia—Spain,
concerning the use of the gamma-glutamyl-transferase (GGT) as a diagnostic test to detect women with
metabolic syndrome. Recent investigations suggest an association between the GGT levels and nocturnal
hypoxemia (decrease in arterial oxygen saturation). To this end, the arterial oxygen saturation was mea-
sured every 20 s during the patient’s sleep. It is our aim to investigate how the discriminatory ability
of GGT to detect metabolic syndrome is affected by the oxygen saturation. We should remark that our
approach is different from the existing approach for longitudinal markers (Etzioni and others, 1999; Zheng
and Heagerty, 2004). First, longitudinal and functional data are different in nature. While in the context
of longitudinal data analysis, a random function typically represents a subject that is often observed at a
small number of time points; in the functional setup, the data are recorded densely over time, often by a
machine (Zhao and others, 2004). Second, in longitudinal studies, the concepts of sensitivity and speci-
ficity incorporate both the time-varying nature of the marker and the clinical onset time of the disease,
whereas in our case, sensitivity and specificity are not time dependent and the subjects do not change the
state of health during the study.

For the most appropriate analysis of a given set of data, one desires a variety of readily available
models from which the data analyst can choose the most appropriate approach. In this work, we present
two estimators of the induced covariate-specific ROC curve: (1) a semiparametric estimator based on a
homocedastic functional linear model and (2) a nonparametric estimator based on an extension to the
functional context of kernel regression techniques. The functional linear model has been popularized by
Ramsay and Delzel (1991) and it imposes a linear constraint on the regression relationship. The linear
constraint is useful when the curves are very distant from each other, but it may be inappropriate for some
applications (Yao and Müller, 2010). It is therefore of interest to consider a flexible alternative. The func-
tional nonparametric model (see Ferraty and Vieu, 2002 for a first study of this model and Ferraty and
Vieu, 2006 for an overview) has been studied recently and is an interesting and complementary alterna-
tive to the functional linear model and is based solely on the assumption that the effect of the continuous
covariate follows a smooth function.

The remainder of the paper is organized as follows. In Section 2, we provide background mate-
rial on functional regression models. The estimation procedures used to derive the induced functional
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covariate-specific ROC curve are presented in Section 3. In Section 4, a simulation study is carried out to
assess the performance of the proposed models. Application of the proposed methods to a real example
concerning the diagnosis of metabolic syndrome is presented in Section 5. Concluding remarks are given
in Section 6.

2. BACKGROUND

2.1 Functional linear model with scalar response

In the simplest setting, the functional predictor and the scalar response are related by a linear operator.
Given a scalar response y on R and a smooth random predictor process X on a compact support T that is
square integrable (i.e.,

∫
T X2(t)dt < ∞), the classical functional linear model relates y and X by

y = 〈X, β〉 + ε =
∫

T
X (t)β(t)dt + ε. (2.1)

Here, 〈·, ·〉 denotes the usual inner product on L2(T ), the separable Hilbertian space of square
integrable functions defined on T , the regression parameter function β is also assumed to be smooth
and square integrable, and ε is a real random variable with zero mean and finite variance σ 2, and such that
E[X (t)ε] = 0 for t ∈ T . For simplicity, we assume that both variables are centered, i.e. E[X (t)] = 0 for
t ∈ T and E[y] = 0.

Suppose now we observe a random sample {(yi , Xi )}n
i=1. The model in (2.1) suggests to estimate β

by minimizing the residual sum of squares

RSS(β) =
n∑

i=1

(yi − 〈Xi , β〉)2, (2.2)

which may be accomplished by the principal components approach developed by Cardot and others (1999)
and further analyzed by Cai and Hall (2006) and Febrero-Bande and others (2010), among others. This
estimation method works as follows. Let �X be the sample covariance operator of X1, . . . , Xn which
transforms any function Z in L2(T ) into another function in L2(T ), given by

�X Z = 1

n

n∑
i=1

〈Xi , Z〉Xi .

The sample covariance operator �X admits a spectral decomposition in terms of the orthonormal
eigenfunctions {vk}k=1,2,..., which forms a complete basis of the functional space, with associated nonneg-
ative and nondecreasing eigenvalues {λk}k=1,2,..., such that �Xvk = λkvk for k � 1. By the well-known
Karhunen–Loève expansion, the predictor process admits the following representation:

Xi (t) =
∞∑

k=1

γikvk,

where γik = 〈Xi , vk〉 are the principal component scores. Recall that the regression parameter function β
is square integrable and {vk}k=1,2,... form a complete orthonormal basis, we have

β(t) =
∞∑

k=1

βkvk(t),
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where βk = 〈β, vk〉 for k � 1. Using these expansions, we can write the residual sum of squares
in (2.2) as

RSS(β) =
n∑

i=1

(
yi −

∞∑
k=1

γikβk

)2

.

As noted in Ramsay and Silverman (2006), minimizing such sum of squares, with respect to β1, β2, . . .,
yields a regression estimator that adapts perfectly to the sample points but is not very informative. To
tackle this problem, Cardot and others (1999) proposed to estimate β by taking βk = 0, for k � kn + 1,
where kn is some positive integer such that kn < n and λkn > 0, and estimating the coefficients βk , for
k = 1, . . . , kn , by minimizing the residual sum of squares given by

RSS(β(1:kn)) =
n∑

i=1

(
yi −

kn∑
k=1

γikβk

)2

= ‖Y − γ(1:kn)β(1:kn)‖2,

where Y = (y1, . . . , yn)
′, β(1:kn) is the kn-vector β(1:kn) = (β1, . . . , βkn )

′, and γ(1:kn) is the n × kn matrix
whose kth column is the vector γ.k = (γ1k, . . . , γnk)

′, the kth principal component score, which verifies
γ ′

.kγ.k = nλk and γ ′
.kγ.l = 0 for k 
= l. Using standard arguments, the least squares estimate of β(1:kn) is

β̂(1:kn) =
(

γ ′
.1Y

nλ1
, . . . ,

γ ′
.kn

Y

nλkn

)
,

which, finally, allows us to write the least squares estimate of the slope β, denoted by β̂(kn)

β̂(kn) =
kn∑

k=1

β̂kvk =
kn∑

k=1

γ ′
.kY

nλk
vk . (2.3)

To determine the cutoff kn in an automatic data-driven way, we have chosen the cutoff that minimizes
the predictive cross validation (PCV) criterion

PCV(k) =
n∑

i=1

(yi − 〈Xi , β̂(−i,k)〉)2, k = 1, . . . , kmax, (2.4)

where β̂(−i,k) is the least squares estimate of β using the cutoff k and leaving out the ith observation
(yi , Xi ) in the estimation. We pick the k that minimizes this criterion.

2.2 Functional nonparametric model

The functional nonparametric model is an interesting and complementary alternative to the functional
linear model. Moreover, when dealing with functional data, it is difficult to gain an intuition on whether
the linear model is adequate or which parametric model would best fit the data. We focus on the following
functional nonparametric regression model:

Y = μ(X) + ε,

where Y is a scalar response variable, X is a functional covariate, μ is an unknown but smooth regression
function, and the error ε satisfies E[ε|X ] = 0 and E[ε2|X ] = σ 2 < ∞.
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Nadaraya (1964) and Watson (1964) proposed to estimate μ as a locally weighted average using a
kernel as a weighting function. Recently, Ferraty and Vieu (2006) extended to the functional context the
Nadaraya–Watson estimator; they proposed to estimate μ as

μ̂ =
n∑

i=1

Wi,h(X)yi , with Wi,h(X) = K (h−1d(X, Xi ))∑n
i=1 K (h−1d(X, Xi ))

, (2.5)

where X1, . . . , Xn are a sample of curves for which the corresponding responses y1, . . . , yn have been
observed and X is an additional fixed curve. Additionally, K is an asymmetric decreasing kernel function,
h is a positive smoothing parameter or bandwidth, and d is a suitable semimetric in the functional space.

It is easy to see that the weights Wi,h(X) in (2.5) sum up to one and therefore the estimator is a
weighted average of the yi s. It is clear that the smaller d(X, Xi ), the larger K (h−1d(X, Xi )), i.e. the closer
Xi is to X , the larger is the weight assigned to yi . The parameter h plays a major role because it controls
the amount of weighting given to the yi s. The smaller h is, the more μ̂(X) is sensitive to small variations
of the yi s. In the opposite case, the larger h is, the larger is the weight assigned to distant observations.
In other words, if h is too small, the estimator will be too rough; but if it is too large, important features
will be smoothed out. In Fig. 1 of the supplementary material available at Biostatistics online, we show
the effect of the bandwidth on the ROC curve estimate. Cross validation (CV) is a popular method to
automatically select h. The criterion is

CV(h) =
n∑

i=1

(yi − μ̂−i
h (Xi ))

2, (2.6)

where μ̂−i
h (Xi ) indicates the estimate at Xi leaving out the ith element of the sample. We pick the h that

minimizes this criterion.
The choice of the semimetric is also crucial to the performance of the estimator and must be related

to the particular features of the data set at hand. Ferraty and Vieu (2006, p 223) suggest to choose the
semimetric based on the smoothness or roughness of the predictor curves X1, . . . , Xn . Specifically, when
the curves are smooth, they suggest to use the L2-norm of the qth derivative of the curve, while for rough
curves, they recommend semimetrics based on principal component analysis. For the definition of this
class of semimetrics, see Ferraty and Vieu (2006, p 28–30).

Regarding the choice of the kernel, any sensible choice will produce acceptable results, and thus this
choice is much less important than the choice of h and the semimetric.

3. INDUCED ROC REGRESSION METHODOLOGIES

3.1 Regression model

A location-scale regression model is assumed for the marker result in both healthy and diseased popula-
tions. More specifically, let

YD̄ = μD̄(X) + σD̄(X)εD̄ and YD = μD(X) + σD(X)εD,

where X denotes the functional covariate, μD̄ and μD are the regression functions, and σ 2
D̄

and σ 2
D are

the variance functions. The errors εD̄ and εD are independent of each other with zero mean, unit variance,
and distributions G D̄ and G D , respectively. To guard against misspecification of error distributions, we
do not assume specific distributions for the errors.
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Based on the above location-scale regression models, the covariate-specific ROC curve can be
expressed as

ROCX (p) = 1 − G D

(
G−1

D̄
(1 − p)

σD̄(X)

σD(X)
− μD(X) − μD̄(X)

σD(X)

)
, 0 < p < 1

where G−1
D̄

(1 − p) = inf{y: G D̄(y) � 1 − p}. The most popular summary measure of the diagnostic
accuracy is the area under the curve (AUC), which is given by

AUCX =
∫ 1

0
ROCX (p)dp.

For an useless test, AUC = 0.5, and for a perfect test, AUC = 1.

3.2 Semiparametric induced ROC regression estimator

We extend to the functional context the semiparametric model of Pepe (1998). In this model, the variance
parameters are not allowed to depend on covariates, i.e. we are dealing with homocedastic linear models.
In such case, σD̄(X) = σD̄ , σD(X) = σD , and the covariate effect on the ROC curve is contained in the
covariate effect on the difference in means between diseased and nondiseased subjects, μD̄(X) − μD(X),
where μD̄(X) = 〈X, βD̄〉 and μD = 〈X, βD〉.

Let {(yD̄i , X D̄i )}nD̄
i=1 and {(yDj , X Dj )}nD

j=1 be two independent random samples of size nD̄ and nD

from the healthy and diseased populations, respectively. The estimation procedure is as follows:

1. Estimate βD̄ and βD using the estimators proposed in (2.3) on the basis of samples {(yD̄i , X D̄i )}nD̄
i=1

and {(yDj , X Dj )}nD
j=1, respectively; as in Section 2.1, we are assuming that both the covariate and

the test result are centered.
2. Estimate σ 2

D̄
and σ 2

D as

σ̂ 2
D̄

=
∑nD̄

i=1(yD̄i − μ̂D̄(Xi ))
2

nD̄ − knD̄
− 1

and σ̂ 2
D =

∑nD
j=1(yDj − μ̂D(X j ))

2

nD − knD − 1
,

where knD̄
and knD are the number of principal components chosen by the PCV criterion.

3. Estimate distribution functions G D̄ and G D on the basis of the empirical distribution of the stan-
dardized residuals

Ĝ D̄(y) = 1

nD̄

nD̄∑
i=1

I

[
yD̄i − μ̂D̄(Xi )

σ̂D̄
� y

]
, Ĝ D(y) = 1

nD

nD∑
j=1

I

[
yDj − μ̂D(X j )

σ̂D
� y

]
.

4. Calculate the covariate-specific ROC curve as follows:

R̂OCX (p) = 1 − Ĝ D

(
Ĝ−1

D̄
(1 − p)

σ̂D̄

σ̂D
− μ̂D(X) − μ̂D̄(X)

σ̂D

)
, 0 < p < 1.

3.3 Nonparametric induced ROC regression estimator

While the semiparametric approach has the advantage of being more efficient if the parametric form of the
model is correct, it may misspecify the correct model form. Nonparametric models provide an alternative
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solution and are more robust and data adaptive. Within this context, the robustness is achieved by means
of not assuming any parametric forms for the mean and variance functions, and the errors can depend
heterocedastically on the functional covariate through σD̄ and σD . The proposed estimation scheme is the
following:

1. Estimate the regression functions μD̄ and μD using the kernel smoother estimator proposed in (2.5).

2. Estimate the variance functions σ 2
D̄

and σ 2
D , using the transformed samples {(zDi , X Di )}nD

i=1 and

{(zD̄i , X D̄i )}nD̄
i=1, where zDi = (yDi − μ̂(X Di ))

2 and zD̄i = (yD̄i − μ̂(X D̄i ))
2.

3. Estimate the distribution functions G D̄ and G D by the empirical distribution of the standardized
residuals

Ĝ D̄(y) = 1

nD̄

nD̄∑
i=1

I

[
yD̄i − μ̂D̄(Xi )

σ̂D̄(Xi )
� y

]
, Ĝ D(y) = 1

nD

nD∑
j=1

I

[
yDj − μ̂D(X j )

σ̂D(X j )
� y

]
.

4. Finally, compute the covariate-specific ROC curve as follows:

R̂OCX (p) = 1 − Ĝ D

(
Ĝ−1

D̄
(1 − p)

σ̂D̄(X)

σ̂D(X)
− μ̂D − μ̂D̄(X)

σ̂D(X)

)
, 0 < p < 1

4. SIMULATION STUDY

In this section, we present the results of a simulation study conducted to evaluate the small sample per-
formance of the proposed methods. Two different simulation scenarios were considered, namely: (a) a
linear scenario and (b) a nonlinear scenario, which, from an applied standpoint, appears plausible given
the results obtained in the data analysis (see Section 5).

Each predictor trajectory was observed discretely over the domain [0, 1] on an equally spaced grid of
N = 51 points and all of them were generated with a trend function X0(t) = t + sin(t), 0 < t < 1, and a
covariance function derived from two eigenfunctions v1(t) = √

2 sin(0.5π t) and v2(t) = √
2 sin(1.5π t)

associated with eigenvalues λ1 = 4, λ2 = 1, as well as λm = 0, m � 3. The predictor functional principal
component (FPC) scores are γm ∼ N(0, λm), m = 1, 2. In short, the predictor trajectories were generated
using the following:

X (t) = X0(t) +
2∑

m=1

γmvm(t). (4.7)

Figure 2(a) in supplementary material available at Biostatistics online gives an idea of their shape. In
both scenarios, the response was generated from a single regression function β(t) = v1(t) + v2(t). The
scenarios considered were as follows:

• Scenario 1

YD = 2 + 1.5〈β, X D〉 + 2εD, and YD̄ = 1.5 + 〈β, X D̄〉 + εD̄

• Scenario 2

YD = 1 + 0.5〈β, X2
D〉 + 2εD, and YD̄ = 〈β, X D̄〉 + 1.5εD̄

In both scenarios X D and X D̄ were independently generated using (4.7) and X2
D was obtained as the

square of each element X D(t), 0 < t < 1. Bearing in mind the distribution of the errors, εD and εD̄ , we
have considered standard normal, Student-t, and skew normal distributions. In the functional setting, it is
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not straightforward identifying the covariate to induce the ROC curve. We have considered covariates of
the form

Xz(t) = X0(t) + zv1(t),

where z lies between (−2
√

λ1, 2
√

λ1) and (−1.5
√

λ1, 1.5
√

λ1) in the simulation Scenarios 1 and 2,
respectively. By varying z, we cover a wide range of possible covariates. Figure 2(b) in supplementary
material available at Biostatistics online gives an idea of their shape.

To perform the computations, we determined the number of principal components retained by the PCV
criterion in (2.4), and the bandwidth needed for the nonparametric model was chosen by the CV criterion
in (2.6). We also need to specify the asymmetrical kernel as well as the most appropriate semimetric. The
asymmetrical Gaussian kernel, k(t) = √

2/π exp(−t2/2) for t ∈ (0, ∞), was used and the class of semi-
metrics {dderivative

q }2
q=0 was applied , where dderivative

q denotes the L2-norm of the qth derivative of the curve.
The discrepancy between the estimator and the true ROC curve is measured in terms of the empirical

version of the global mean squared error (MSE)

MSE = 1

nXz

nXz∑
l=1

1

n p

n p∑
r=1

(R̂OCXzl
(pr ) − ROCXzl

(pr ))
2.

The results of the simulation study pertaining to normally distributed errors are shown below; the
results for the remaining distributions as well as further details and comparisons can be found in the
supplementary material available at Biostatistics online.

The results are based on 1000 repetitions and, in all cases, the same sample size was considered,
with nD̄ = nD = 50, 100, 200. Under Scenario 1, Figures 4 and 5, in supplementary material available
at Biostatistics online, show the true ROC curve along with 2.5% and 97.5% simulation quantiles, for
z = −1.25, 0, and 2, for the semiparametric and nonparametric estimators, respectively. The covariates
corresponding to these z values are presented in Fig. 3 of the supplementary material available at
Biostatistics online. As can be seen, although the semiparametric estimator displayed the lowest vari-
ance, both estimators recover the functional form of the true ROCs successfully. This can also be seen
in Fig. 1. As expected, the variance of the estimates decreases as sample size increases. For Scenario 2,
where the covariate effect was far from linear, the estimates obtained by the semiparametric model were
clearly unsuitable, as can be checked both from the covariate-specific ROCs (Fig. 6 in supplementary
material available at Biostatistics online) and from the AUC curve (top of Fig. 2). In turn, the good perfor-
mance of the nonparametric estimator is evident, with it recovering the functional form of the true ROCs
(Fig. 7 in supplementary material available at Biostatistics online) and the true AUC successfully (bottom
of Fig. 2).

Table 1 in supplementary material available at Biostatistics online summarizes the mean-squared error
for each approach and scenario. In Scenario 1, the errors produced by the nonparametric approach are
larger than the errors from the semiparametric approach. On the other hand, in Scenario 2, the errors
produced by the semiparametric approach are much larger than the ones produced by the nonparamet-
ric approach. The mean-squared error decreases as sample size gets larger. Figure 8 of supplementary
material available at Biostatistics online presents boxplots of the mean-squared errors produced by the
two approaches for the different sample sizes considered. Table 4, also in the supplementary material
available at Biostatistics online, presents the MSEs for the aforementioned z values; the same conclusions
apply.

Regarding the performance of the two estimators under Student-t and skew normal errors, we found
out that methods are robust to departures from normality; the results with skew normal distributed errors
are competitive with the results of normal errors. With Student-t distributed errors, the difference is a
little bit more pronounced but still give good results. From our simulation study, we can conclude that
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Fig. 1. True AUC (solid line) versus the average of simulated AUCs along with 2.5% and 97.5% simulation quantiles
(dashed line) for Scenario 1. Top: semiparametric approach. Bottom: nonparametric approach.

the correct modeling of the covariate effect is far more important than the error distribution. A detailed
summary of all these results can be found in the supplementary material available at Biostatistics online.

5. APPLICATION: METABOLIC SYNDROME STUDY

Metabolic syndrome describes a cluster of abnormalities characterized by insulin resistance along with
specific risk factors, including visceral adiposity, dyslipidaemia, and high blood pressure (Despres and
Lemieux, 2006). Individuals with metabolic syndrome are at increased risk for cardiovascular disease
(Lakka and others, 2002).

Serum GGT is a well-known marker of alcohol consumption and liver dysfunction. GGT is also
associated with components of metabolic syndrome. Baseline serum GGT concentration appears to be
an independent risk factor for the development of metabolic syndrome and the occurrence of cardiovas-
cular disease and death (Lee and others, 2007). A hypothesis that appears to be consistent with these
findings is that elevations of GGT are a marker of the presence of the metabolic syndrome. An important
practical issue is whether, GGTs predictive properties can be used to identify people at high risk so that
intervention to improve outcomes can be initiated. It is certainly easy and cheap to measure. In a recent
study, Gude and others (2009) found, however, that serum concentrations of GGT are strongly associated
with markers of nocturnal hypoxemia, particularly with arterial oxygen saturation levels during sleep.
Since some conditions such as sleep disordering breathing or chronic obstructive pulmonary disease are
very prevalent, it is important to study whether or not the performance of GGT at diagnosing metabolic
syndrome may vary at different levels of arterial oxygen saturation.
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Fig. 2. True AUC (solid line) versus the average of simulated AUCs along with 2.5% and 97.5% simulation quantiles
(dashed line) for Scenario 2. Top: semiparametric approach. Bottom: nonparametric approach.

With the aim of investigating this possible relationship, a study was conducted using a sample of
220 individuals. The present study took advantage of a survey of the general adult population from the
municipality of A-Estrada, in northwestern Spain; detailed descriptions of study methodology and pop-
ulation sample characteristics have been reported elsewhere (González-Quintela and others, 2003; Gude
and others, 2009).

The recording of arterial oxygen saturation was performed at the patient’s home using a pulse oximeter
with a finger probe. The arterial oxygen saturation was measured every 20 s thus leading to genuine
functional data. As it is known that nocturnal oxygen arterial saturation has different patterns during the
several sleep phases, for all individuals, we skipped the first 2 h of measurements and saved the next
3 h. Hence, at the final, we had a total of 540 measurements. Since GGT values are elevated among
regular drinkers, we restricted the analysis to 115 women who reported no alcohol consumption. Thus,
possible higher levels of GGT were not due to alcohol consumption and differences between genders. In
short, the data analyzed here consist of 35 diseased and 80 healthy women. Our purpose is to investigate
how the collected samples of arterial oxygen saturation affect the ability of GGT to accurately detect
metabolic syndrome. The data analysis is divided into 2 parts. First, we examined the GGT performance
as a marker to diagnose metabolic syndrome and then we conducted our functional ROC analysis that
takes into account the effect of arterial oxygen saturation.

5.1 ROC analysis of GGT discriminatory’s capacity

We carried out an initial analysis to evaluate the discriminatory capacity of the GGT in women, ignoring
the arterial oxygen saturation effect. Here and in the subsequent analysis, we used the log-transformed
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Fig. 3. (a) Densities of the log-transformed GGT levels in healthy (dashed) and diseased populations (solid);
(b) ROC curve of log-transformed GGT measurements with no arterial oxygen saturation effect. The dashed curve is
the empirical estimator, the solid line is the estimator proposed by Zou and others (1997) and the dotted curve is the
estimator of Peng and Zhou (2004).

GGT levels. Figure 3(a) shows the densities of the log-transformed GGT levels in healthy and diseased
populations, whereas Fig. 3(b) are the corresponding nonparametric estimators of the ROC curve. The
curves lie well above the diagonal line, indicating a good discriminatory performance of GGT to distin-
guish between women with metabolic syndrome and those who are healthy. This can also be seen from
the AUC, which is 0.773 (0.688, 0.857) for the empirical estimator and 0.769 (0.689, 0.846) and 0.801
(0.720, 0.869) for the Zou and others (1997) and Peng and Zhou (2004) estimators, respectively.

5.2 Induced functional ROC regression analysis

After analyzing the GGT’s discriminatory capacity, we conducted our functional ROC analysis using the
procedures described in the previous sections. It is known that the nocturnal arterial oxygen saturation
shows different patterns between subjects with metabolic syndrome and healthy subjects (Gude and
others, 2009). In Fig. 4 (top left and right), we can see clearly such difference. In the bottom panel of
Fig. 4 is shown the smoothed mean and variance trajectories of the arterial oxygen saturation in each group
(the smoothness of the curves was achieved with kernel smoothing). Once more, the different behavior
of arterial oxygen saturation for healthy and diseased individuals is visible, with healthy subjects having
higher arterial oxygen saturation levels and lowest variance.

We carried out a FPCs analysis for the predictor process by pooling together the 115 trajectories.
The FPC scores displayed in Fig. 23(a) of the supplementary material available at Biostatistics online
show a separation between diseased and healthy subjects. These first two components account for 81%
of the variation in the data. Additionally, when we examined the plot of the log GGT levels against
the estimated FPC scores in Fig. 23(b) of supplementary material available at Biostatistics online, the
separation between the 2 groups still continue to be apparent.

To induce the covariate specific ROC curve, we have considered covariates of the form

Xz = X̄ + zv̂1,
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Fig. 4. Smoothed predictor trajectories in the diseased group (top left) and in the healthy group (top right). Mean
(bottom left) and variance (bottom right) predictor trajectories. Solid and dashed lines correspond, respectively, to the
diseased and healthy groups.

where X̄ is the mean trajectory function of the pooled data, z is a weight parameter, and v̂1 is the estimated
eigenfunction associated with the first principal component. By inspection of Fig. 23(a) in supplementary
material available at Biostatistics online, z was chosen to lie in the interval (−50, 50). By varying z,
we cover a wide range of covariate values and we therefore can investigate those covariates for which
the marker is useful. Figure 24(a) of supplementary material available at Biostatistics online shows the 50
covariates, we have used to induce the ROC and Fig. 24(b), also in the supplementary material available at
Biostatistics online, shows the covariates corresponding to z values of −40, 1, and 40. We remark that low
values of z correspond to low values of arterial oxygen saturation, whereas higher values of z correspond
to higher values of the oxygen saturation; as z increases, the arterial oxygen saturation curves also take
higher values.

To determine whether the assumption of linearity is plausible for the data at hand, Chiou and Muller
(2007) suggested to use the plots of the FPCs scores of the predictors curves against the response values.
These authors have shown that if the model is correct, these plots may show linear relationships between
the scores and the responses. Figure 25 in supplementary material available at Biostatistics online shows
the plots for the first 5 principal components in the diseased group and the first 3 principal components
in the healthy group, which appear to have a very slight relationship among some scores and the GGT val-
ues. To select the cutoff kn , the PCV criterion in (2.4) was computed. Figure 5(a) shows the corresponding
AUC curve. We have also included in the graph a confidence interval for the AUC, obtained by bootstrap.
We use a bootstrap of residuals, which are real random variables, to resample the regression models and
then the percentile method to obtain pointwise bootstrap confidence intervals for the AUC (500 bootstrap
resamples). For further details, see González-Manteiga and Marı́nez-Calvo (2011) for the parametric case
and Ferraty and others (2010) for the nonparametric one.

We then relaxed the linearity assumption and applied the nonparametric procedure. The smooth shape
of the curves (top of Fig. 4) suggests to use the class of semimetrics {dderivative

q }2
q=0. We have also used
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Fig. 5. AUC (solid line) together with the corresponding 95% bootstrap confidence bands (dashed lines). (a) Semi-
parametric functional model; (b) nonparametric functional model.

the asymmetrical Gaussian kernel and the bandwidth was determined in a data-driven way using (2.6).
Figure 5(b) shows the corresponding estimates of AUC.

A large discrepancy between the 2 approaches is apparent. Based on the low values of the correlation
between the FPC scores and the log GGT levels and based also on the results of our simulation study,
this may indicate that the linearity assumption may not be valid for this data set. The nonparametric
approach is more suitable due to its robustness, indicating that the arterial oxygen saturation affects the
discriminatory capacity of the GGT as a marker to diagnose metabolic syndrome, with high values of
oxygen saturation being associated with a better discrimination performance. In fact, Fig. 5(b) suggests
that GGT has a better performance at the high values of oxygen saturation. These values are normal in
healthy people (without chronic obstructive pulmonary disease or sleep apnea). At the low values, GGT
has bad performance discriminating people with metabolic syndrome. At very low values, there are few
cases, and the confidence intervals are wide. Thus, ignoring the oxygen saturation effect will result in an
underestimated AUC for healthy subjects (those with high values of arterial oxygen saturation) and an
overestimate for those suffering from chronic obstructive pulmonary disease and apnea (and hence with
low values of oxygen saturation during night). These findings indicate that nocturnal hypoxemia should be
taken into account when interpreting serum levels of GGT in clinical practice. Specifically, performance
of GGT is good in “healthy” subjects but not in individuals with chronic obstructive pulmonary disease
or sleep apnea.

6. DISCUSSION

In this paper, we discuss the extension to the functional context of induced ROC methodology. The need
for this modeling approach was motivated by a real-data example, where we evaluated the effect of arterial
oxygen saturation (measured densely over night) on GGT’s discriminatory capacity to detect metabolic
syndrome in women. Semiparametric and nonparametric approaches were considered for estimating the
induced functional ROC curve. Simulation results indicate a better performance of the semiparametric
approach when the linearity assumption holds. On the other hand, the nonparametric approach—even
with a loss of accuracy in the parametric case—overcomes the linearity issue, being thus more robust
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and flexible enough to model many practical situations. We thus provided a versatile class of models to
estimate the induced ROC from which the data analyst can choose the most appropriate one for the data
at hand. We point out that the methods are not computationally time consuming. R code is available from
the first author on request. Extensions to the functional context of direct ROC methodology warrant future
research.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.

ACKNOWLEDGMENTS

We thank the editor, the associate editor, and the 2 reviewers for their valuable comments and suggestions.
Vanda Inácio also thanks Antónia Amaral Turkman and Miguel de Carvalho for helpful comments and
support.

FUNDING

This research is funded by the Portuguese Foundation for Science and Technology through the PhD
(SFRH/BD/47742/2008) and through the projects PEst-OE/MAT/UI0006/2011 and PTDC/MAT/118335/
2010, and by the Spanish Ministry of Science and Innovation through the projects MTM2008-03010,
MTM2008-01603, and MTM2011-28285-C02-01.

REFERENCES

ALONZO, T. A. AND PEPE, M. S. (2002). Distribution-free ROC analysis using binary regression techniques.
Biostatistics 3, 421–432.

CAI, T. (2004). Semiparametric ROC regression analysis with placement values. Biostatistics 5, 45–60.

CAI, T. T. AND HALL, P. (2006). Prediction in functional linear regression. Annals of Statistics 34, 2159–2179.

CARDOT, H., FERRATY, F. AND SARDA, P. (1999). Functional linear model. Statistics and Probability Letters 45,
11–22.

CHIOU, J. M. AND MULLER, H. G. (2007). Diagnostics for functional regression via residual processes. Computa-
tional Statistics and Data Analysis 51, 4849–4863.

DESPRES, J. P. AND LEMIEUX, I. (2006). Abdominal obesity and metabolic syndrome. Nature 444, 881–887.

ETZIONI, R., PEPE, M. S., LONGTON, G., HU, C. AND GOODMAN, G. (1999). Incorporating the time dimension
in receiver operating characteristic curves: a case study of prostate cancer. Medical Decision Making 19, 242–251.

FARRAGGI, D. (2003). Adjusting receiver operating characteristic curves and related indices for covariates. The
Statistician 52, 179–192.
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