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1 CIMUS Biomedical Research Institute, University of Santiago de Compostela-IDIS, Santiago de Compostela, Spain, 2 Proteomics Unit, IDIS, Santiago de Compostela,
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Abstract

Elucidation of the structure of PrPSc continues to be one major challenge in prion research. The mechanism of propagation
of these infectious agents will not be understood until their structure is solved. Given that high resolution techniques such
as NMR or X-ray crystallography cannot be used, a number of lower resolution analytical approaches have been attempted.
Thus, limited proteolysis has been successfully used to pinpoint flexible regions within prion multimers (PrPSc). However, the
presence of covalently attached sugar antennae and glycosylphosphatidylinositol (GPI) moieties makes mass spectrometry-
based analysis impractical. In order to surmount these difficulties we analyzed PrPSc from transgenic mice expressing prion
protein (PrP) lacking the GPI membrane anchor. Such animals produce prions that are devoid of the GPI anchor and sugar
antennae, and, thereby, permit the detection and location of flexible, proteinase K (PK) susceptible regions by Western blot
and mass spectrometry-based analysis. GPI-less PrPSc samples were digested with PK. PK-resistant peptides were identified,
and found to correspond to molecules cleaved at positions 81, 85, 89, 116, 118, 133, 134, 141, 152, 153, 162, 169 and 179.
The first 10 peptides (to position 153), match very well with PK cleavage sites we previously identified in wild type PrPSc.
These results reinforce the hypothesis that the structure of PrPSc consists of a series of highly PK-resistant b-sheet strands
connected by short flexible PK-sensitive loops and turns. A sizeable C-terminal stretch of PrPSc is highly resistant to PK and
therefore perhaps also contains b-sheet secondary structure.
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Introduction

Prions are the etiological agents responsible for a diverse set of

transmissible fatal neurodegerative diseases of humans and

animals, characterized by an abnormal accumulation of prion

protein (PrP) [1,2], primarily in the brain. Prions replicate by

converting the normal non-infectious cellular prion protein (PrPC)

into a prion (PrPSc), via a poorly characterized post-translational

conformational transformation. In mice, PrP contains approxi-

mately 209 amino acids (numbered 23–231 after cleavage of a 22–

mer signal peptide) and has four covalent post-translational

modifications: two asparagine N-linked glycans at residues N180

and N196, a disulfide bridge between residues C178–C213 and a

glycosylphosphatidylinositol (GPI) anchor attached to the C-

terminus of the protein (residue S231) [2,3]. Mouse PrPC is a

monomer, while PrPSc is a heterogeneous multimer [2,3]. There

have been no demonstrated covalent differences between mouse

PrPSc and PrPC. The only difference between PrPSc and PrPC is

conformational; they are isoforms [2].

The structure of folded, monomeric, recombinant PrP, highly

likely to be identical to that of PrPC, has been solved by NMR

spectroscopy [4] and X-ray crystallography [5]. In contrast, the

structure of PrPSc remains unclear because the insolubility of PrPSc

and the failure to crystallize the heterogeneous PrPSc multimers

prevent the application of the mentioned high resolution analytical

techniques. However, a variety of lower resolution instrumental

techniques have provided some information about the structure of

PrPSc. Unlike PrPC, PrPSc is partially resistant to proteinase K

(PK) digestion [2,6]. The secondary structure of PrPC is largely

composed of unstructured and a-helical regions, while PrPSc is

largely composed of b-sheet with little, if any, a-helix [7,8,9]. The

structure of PrPSc has also been studied using electron microscopy-

based analysis of two-dimensional crystals of the PK resistant core

of Syrian hamster (SHa) PrPSc (PrP27–30) [10,11] and mass

spectrometry(MS)-based analysis of hydrogen/deuterium ex-

change [9]. Although theoretical models for PrPSc have been

proposed [10,12], there is an insufficient amount of experimental

data to reach a definitive consensus.

In a previous study, we used limited proteolysis to elucidate

structural features of PrPSc [13]. Conformational parameters such

as surface exposure of amino acids, flexibility, and local

interactions correlate well with limited proteolysis. Peptide bonds

located within b-strands are resistant to proteolytic cleavage,

whereas peptide bonds within loops and, more rarely, a-helices

may be cleaved [14]. Therefore, the targets for limited proteolysis
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are locally unfolded or highly flexible segments [14]. In our

previous study [13], we demonstrated the usefulness of combining

limited proteolysis and mass spectrometry (MS) to obtain

structural information about two strains of hamster PrPSc. We

concluded that the amino-terminal half of PrPSc features a series of

short PK-resistant stretches, presumably b-strands, interspersed

with short PK-sensitive stretches, likely loops and turns. Unfortu-

nately, the structural information was largely limited to the N-

terminal portion of the protein, as a consequence of the covalent

attachment of the heterogeneous GPI anchor and the heteroge-

neous asparagine-linked sugar antennae to amino acids in the C-

terminal portion of the molecule, which prevented MS-based

analysis of this part of the molecule.

Here we extended our studies of the structure of PrPSc, by using

transgenic (tg) mice expressing PrPC lacking the GPI anchor

(GPI2) [15]. The GPI2 PrPSc produced by these mice is fully

infectious, lacks the GPI anchor, and is largely unglycosylated,

which reduces the heterogeneity in the C-terminal portion of the

molecule [15,16]. These properties make it ideal to carry out

structural studies, and have allowed us to obtain, for the first time,

a complete survey of the whole PrPSc sequence, regarding its

susceptibility to proteolysis.

Results

Accumulation of PrPSc in GPI-anchorless Mice
Homozygous GPI-anchorless PrP mice were inoculated at 6

weeks of age with the RML strain of murine-adapted scrapie.

Three-hundred sixty-five days post-inoculation, the mice were

humanely euthanized. Their brains were surgically removed for

further biochemical processing. The presence of PrPSc was

confirmed by digesting a portion of some of these brains, after

suitable homogenization, with proteinase K (PK) and analyzing

the result by Western blot (Figure 1A and S1). The PK treatment

yielded the characteristic PK resistant core protein, referred to as

PrP27-30 in PK-treated wild-type PrPSc, although in this case its

apparent MW is lower, given the lack of GPI and sugars.

Histological analysis of brains from several of the infected

transgenic mice showed a characteristic PrP accumulation pattern,

as previously described [15,16], with hyaline deposits arranged

radially around blood vessels. Those deposits were strongly

immunoreactive to PrP monoclonal antibody 6H4. Deposits were

also located submeningeally, subventricularly and scattered in the

neuropil (Figure 1B). In order to verify that the GPI- PrPSc was

infective, a group of ten wild-type (C57BL/6) mice were

inoculated with brain homogenate prepared from one of the

infected transgenic mice. All ten of these wild-type mice became ill

with clinical signs characteristic of the RML strain of murine-

adapted scrapie and were humanely euthanized. The incubation

period of the disease was 154615 days post-inoculation

(Figure 1C).

Identification of PK Cleavage Sites in GPI-anchorless PrPSc

by Mass Spectrometric Detection
We isolated PK-resistant PrPSc fragments from infected GPI2

brains. Purity of this material was assessed by SDS-PAGE followed

by Coomassie staining (Figure S2). Using a high resolution

Tricine/SDS-PAGE system [17], we compared the distribution of

these fragments with that of fragments present in PK-treated

unpurified GPI2 infected brain homogenate, and found them to

be similar, which demonstrates that our purification process

isolates all of the PK-resistant fragments (Figure S3). GPI2 PrPSc,

unlike wild-type PrPSc, permits the use of MS to accurately identify

all PK cleavage sites. This allowed us to analyze samples by

Western blot (WB) and by MS.

We analyzed our samples with high mass accuracy using nano-

LC-ESI-Qq-TOF MS (Figure S4) and identified three peaks of

17148, 16728, and 16371 Da (peptides G81-S232, G85-S232, and

G89-S232). The smaller peptides were analyzed by MALDI-TOF.

MS-based analysis revealed that the seven bands present in the

WB (vide infra) contained thirteen peptides with MWs of 17148,

16726, 16371, 13606, 13463, 12173, 12041, 11171, 9687, 9573,

8358, 7436 and 6274 Da. By comparing the observed masses with

those calculated from the mouse GPI- PrP sequence, we

determined that they correspond to peptides G81-S232, G85-S232,

G89-S232, A116-S232, G118-S232, M133-S232, S134-S232, G141-S232,

N152-S232, M153-S232, Y162-S232, S169-S232 and V179-S232 (Figure 2

and Table 1). No C-terminally truncated peptides were observed

in our MS or WB-based analysis (vide infra).

Identification of PK Cleavage Sites in GPI-anchorless PrPSc

by Western Blot
In parallel we used Tricine-SDS-PAGE [17] followed by WB to

analyze the PK-digested GPI- PrPSc (Figure 3). When the WB was

probed with the antibody #51 (epitope G92-K100), just one wide

band (,17 kDa) was observed, suggesting a set of cleavage

products near G89 with no C-terminally truncated fragments. A

blot probed with the W226 antibody (epitope W144-N152), revealed

three additional faint bands (,14.6, 13 and 12 kDa), suggesting

three PK cleavage sites between the epitopes of these antibodies.

Probing with the C-terminal R1 antibody (epitope Y225-S230)

revealed three more bands (,10.2, 8 and 6.7 kDa), suggesting

three additional cleavage sites near residues Y149, P164 and V175.

These bands agree quite well with our MS-based analysis (vide

supra). In order to exclude the possibility that the observed PK-

resistant fragments are the result of the known preference of PK of

certain amino acid residues, rather than structural constraints, we

subjected a similar amount of freshly refolded, recombinant

MoPrP to cleavage by PK. A concentration of PK much lower

than that used with mouse GPI- PrPSc, 1 mg/ml, completely

destroyed all PrP, leaving no PK-resistant fragments larger than

3.5 kDa (Figure S5). Only PK concentrations below 1 mg/ml

yielded some partially resistant fragments, whose sizes do not

match those of PK-treated GPI- PrPSc.

Kinetics of PK Digestion in GPI-anchorless PrPSc

We performed a PK-digestion time course to determine the

relationship of these peptides to one another. A time-dependent

reduction in intensity of all PK-resistant bands was observed

(Figure 4). The intensities of the 17, 14.6, 13, 12, and 6.7 kDa

bands decreased steadily over time. By 240 minutes the intensities

of the 17 and 10.2 kDa bands are nearly equal and by 360 minutes

the intensity of the 17, 10.2 and 8 kDa bands are similar. These

results are consistent with a progressive digestion of GPI- PrPSc

from the N-terminus. This further suggests that different PK-

resistant fragments are not from different sub-populations of GPI-

PrPSc, instead they are derived from a larger common GPI- PrPSc

peptide.

PK Cleavage Analysis After Partial Unfolding of GPI-
anchorless PrPSc

The above observations were confirmed when the GPI2 PrPSc

was partially unfolded with increasing concentrations of guanidine

prior to PK cleavage, following the procedure of Kocisko et al.

[18]. These authors have shown that partial unfolding of PrPSc

with up to 2.5–3 M guanidine is reversible upon dialysis. GPI-

Structural Organization of Mammalian Prions
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PrPSc became more susceptible to proteolytic digestion in a

guanidine-concentration dependent manner. At concentrations

above 1 M, the 10.2 and, to a lesser extent, 12 and 8 kDa bands

(N152-S232/M153-S232, G141-S232, and Y162-S232) predominate.

Above 3 M guanidine, which renders the unfolding irreversible

[18], almost no PK-resistant material remains (Figure 5). These

results mirror those of the PK time course (vide supra), i.e. all of the

bands are derived from the progressive N-terminal digestion of a

progenitor peptide. In their original report, Kocisko et al. identified

in SHaPrPSc partially unfolded with guanidine, a highly stable PK-

resistant core starts before position 143 and continues to the C-

terminus [18]. Sajnani et al. also detected a resistant SHaPrPSc

core starting at position 139/142 [13].

Discussion

We present a complete survey of susceptibility to limited

proteolysis of a PrPSc strain (Figure S6). The map of PK-

susceptible spots: 116–118, 133–134, 141, 152–153, 162, 169, and

179, strongly suggests regions corresponding to loops and turns,

while nicks at 81, 85, and 89 signal the frontier between the

structured C-terminal and unstructured N-terminal domains of

PrPSc. Given the high proportion of b-sheet secondary sctructure

derived from FTIR analyses, it is logical to conclude that PK-

resistant stretches flanking these spots most likely are strands of b-

sheet.

Our results are in excellent agreement with our previous studies

of wild-type PrPSc [13]. Our experiments with two different

SHaPrPSc strains showed the sequence stretches 23–86 (263K),

23–101 (Dy), 117–119, 131–142, and the region around 154 ( =

mouse M153) to be sensitive to PK. In the present study, besides

confirming these regions as being PK-sensitive, we identified three

additional PK cleavage sites in the C-terminal region of GPI-

PrPSc (Y162, S169 and V179).

We did not find evidence of any PK-resistant peptide with an N-

terminus beginning beyond V179. This is not a consequence of

technical limitations, since the Tricine-based SDS-PAGE allows

identification of peptides as small as 3.5 kDa (Figure 3). Instead,

either this region is completely resistant to PK, or no stable PK-

resistant cores remain if PK cleaves beyond that point.

Our results also agree with several studies describing amino-

terminally truncated PK-resistant peptides in human CJD PrPSc.

Figure 1. Characterization of GPI- PrPSc. A. Western blot of brain homogenate from scrapie-infected GPI2 tg mouse before and after digestion
with PK (25 mg/ml); WB probed with SAF83 antibody. B. Histopathological and immunohistochemical analyses of scrapie-infected GPI2 tg mouse
brain. (a) Haematoxylin-eosin staining of the hippocampal formation. (b) IHC staining (antibody 6H4) of the hippocampal formation. C. Kaplan-Meier
survival curves of wild-type mice (C57BL/6) inoculated with 2% of brain homogenate from scrapie-infected GPI2 PrPSc (green line) and a negative
control inoculated with PBS (red line).
doi:10.1371/journal.pone.0050111.g001

Structural Organization of Mammalian Prions
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Figure 2. MALDI-TOF spectrum of PK-treated purified GPI2 PrPSc. Doubly-charged ions from peptides with m/z 16371 and 17148 are
indicated (*). Low resolution in the .16 kDa region precluded identifying unmarked peaks. A scheme of GPI- PrP sequence with PK cleavage points
(color coded) and secondary structure of PrPC is included at the top: (octarepeats (%), b-sheets (c), and a-helices (I)); epitopes of the mAbs used are
also indicated.
doi:10.1371/journal.pone.0050111.g002

Table 1. PK-resistant fragments in GPI2 PrPSc.

WESTERN BLOT MALDI-TOF

Band kDa Peak (Da) Theoretical mass (Da) Cleavage point Peptide

1 17 17148 16726 16371 17148 16729 16371 81 85 89 G81 - S232 G85 - S232 G89 - S232

2 14.6 13606 13463 13605 13463 116 118 A116 - S232 G118 - S232

3 13 12173 12041 12172 12041 133 134 M133 - S232 S134 - S232

4 12 11171 11172 141 G141 - S232

5 10.2 9687 9573 9688 9574 152 153 N152 - S232 M153 - S232

6 8 8358 8358 162 Y162 - S232

7 6.7 7436 6274 7436 6278 169 179 S169 - S232 V179 - S232

*Entries sharing a color represent PK-resistant peptides of very similar MW that were not resolved on the tricine gel.
doi:10.1371/journal.pone.0050111.t001
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Zou et al. described human CJD PrPSc PK-resistant C-terminal

peptides spanning from positions 154/156 and 162/167 to the C-

terminus [19]. These fragments are analogous to GPI- PrPSc

peptides N152-S232/M153-S232 and Y162-S232, S169-S232, respec-

tively. Zanusso et al. described two additional amino-terminally

truncated human CJD PrPSc peptides (MW of 16/17 kDa) [20],

analogous to the GPI- PrPSc peptides G141-S232 and M133-S232/

S134-S232. Kocisko et al. used a C-terminal antibody (epitope 217-

232) to demonstrate the presence of a number of amino-terminally

truncated PK-resistant species in SHaPrPSc [18]. Using synthetic

mouse prions, Bocharova et al. identified the regions beginning at

138/141, 152/153, and 162, and extending to the C-terminus as

being resistant to PK [21]. This suggests that synthetic prions and

PrPSc share key structural elements, which would explain the

capacity of recombinant PrP fibrils to change their conformation,

via a ‘‘deformed templating’’ mechanism, to that of PrPSc [22].

In contrast, relatively few C-terminally truncated peptides have

been described. Notari et al. reported two human CJD PrPSc

peptides truncated near position 228 [23]. Stahl et al. also reported

the presence of a peptide truncated at position 228 in PK-treated

SHaPrPSc [24]. The absence of such fragments in our study could

be explained by slight differences in sample preparation, or

perhaps by the fact that the absence of the GPI-anchor might have

an effect on nearby residues.

This conspicuous absence of the C-terminally truncated

peptides is a reflection of the stability of the C-terminal region,

in GPI2 PrPSc appears to be the most stable part of the molecule,

which is inconsistent with the presence of substantial stretches of a-

helical secondary structure in that region. Our results agree with

Smirnovas et al., who showed the C-terminus of GPI- PrPSc to

exhibit extremely low rates of H/D exchange, typical of extensive

H-bonding (b-sheet) [9]. These authors showed that an FTIR

absorbance band (,1,660 cm21) previously assigned to a-helical

secondary structure in PrPSc is also present in the spectrum of

recombinant PrP amyloid fibrils, which contain no a-helices, and

therefore cannot be taken as evidence of the presence of a-helical

structure. They concluded that GPI2 PrPSc consists of a series of

b-sheet stretches connected by short loops and/or turns, in

agreement with our conclusions. Some stretches exhibiting a

somewhat higher exchange rate, suggested to overlap with loops/

turns, such as 133–148 or 81–118, are consistent with flexible

stretches identified in our study, although discrepancies also exist.

The limited resolution of both analytical techniques prevents a

more exhaustive comparison, but overall both of them agree.

GPI- PrPSc fibrils are about 3–5 nm wide ([25] and our

unpublished results). This constraint means that each PrPSc

monomer must be coiled in such a way as to fit approximately

140–145 residues (,G85–S232) into this width. To do so, PrPSc

monomers must necessarily adopt a multi-layer architecture, as

seen in SH3 fibers [26] or the HET-s fungal prion domain [27].

The HET-s prion domain packs 70 residues into two b-strands

alternating with turns and loops [27]. Wille et al. have suggested

that PrPSc fibrils are composed of four rungs of b-strands, based on

their interpretation of X-ray diffraction patterns [28]. In this

model, each rung would comprise ,36–37 residues. Positions

N152-M153 lie near the middle of the G85-S232 sequence, so it is

tempting to speculate that they might be located at an exposed

position at the border between rungs. This might explain why the

N152-S232 and/or M153-S232 fragment emerges as the most

conspicuous PK-resistant fragment after prolonged treatment with

PK or partial unfolding with guanidine (Figures 4 and 5). Positions

A116-G118 might be the border between the two most amino-

terminal rungs (approximately G85-A115 and A119-E151). On the

other hand, our results are partially inconsistent with the location

Figure 3. Western blot analysis of PK-resistant GPI2 PrPSc.
Unpurified GPI- PrPSc was treated with 25 mg/ml of PK and subsequently
deglycosylated with PNGase F. Samples were resolved on Tricine-SDS-
PAGE and probed with the monoclonal antibodies, #51 (lane 1), W226
(lane 2), and R1 (lane 3).
doi:10.1371/journal.pone.0050111.g003

Figure 4. Kinetics of PK digestion of unpurified GPI2 PrPSc. Samples were digested with PK (25 mg/ml) and the reaction stopped after 0, 30,
60, 120, 180, 240, 300 and 360 minutes. Samples were treated with PNGase F and subjected to Tricine-SDS-PAGE the blot was probed with R1
antibody.
doi:10.1371/journal.pone.0050111.g004
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assigned by Govaerts et al., using threading algorithms, to residues

K100-P104 and E145-R163, placed in loops and not rungs [10]. Our

data show that the stretches formed by residues K100-P104, N142-

E151, and Y154-Y161, are PK-resistant, i.e., likely part of a b-strand

rung (Figure 2 and Table 1).

In summary, our data support a PrPSc structure consisting of a

series of highly PK-resistant b-sheet strands interspersed with PK-

sensitive short flexible loops and turns. Furthermore, the region

comprising ,V179 to the C-terminus of PrPSc is probably

composed primarily of b-sheet, as it is highly resistant to PK.

Our data are consistent with our previous results (263K and Dy

strains) and those of other researchers using SHaPrPSc. Further-

more, they are consistent with those observed for human CJD

PrPSc, which suggests that the myriad human, hamster and mouse

prions share a common basic structure.

Materials and Methods

Ethics Statement
Animal experiments were carried out in accordance with the

European Union Council Directive 86/609/EEC. The procedures

and animal care were governed by a protocol that was approved

by the Institutional Ethics Committee of the University of Santiago

de Compostela. All efforts were made to minimize the suffering of

the animals.

Animals
Transgenic heterozygous GPI-anchorless (GPI-) PrP mice

(tg44(+/2)) were a generous gift from Bruce Chesebro, Rocky

Mountain Laboratories, NIH, Montana, USA. Mice were crossed

to obtain homozygous GPI- animals (tg442/2), which were

identified by tail DNA analysis using the PCR protocol described

by Chesebro et al. [15]. Homozygous animals were bred and

expression of GPI- PrP confirmed by Western blot (Figure S1).

Female mice were intracerebrally inoculated at six weeks of age

with 20 ml of a 2% RML-infected mouse brain homogenate (BH),

kindly provided by Juan Marı́a Torres, CISA, Madrid, Spain.

After 365 days post inoculation, the asymptomatic mice [16] were

euthanized, their brains surgically removed, rinsed in PBS, and

stored at 280uC until needed.

Preparation of Brain Homogenates and Isolation of GPI-
anchorless PrPSc

Mouse BH, 10% w/v, were prepared in PBS, 5% sarkosyl,

using a dounce homogenizer (Wheaton Industries Inc, NJ, USA),

followed by one pulse of sonication to clarify the homogenate, with

an ultrasonic homogenizer probe (Cole Parmer Instrument CO.,

Chicago IL, USA).

GPI2 PrPSc was isolated using the method of Baron et al. [8].

During the purification, total PrPSc was treated with 10 mg/ml of

proteinase K. The final GPI2 PrPSc pellet was resuspended in

100 ml of deionised water or in 20 ml of a 6 M guanidine solution

(final concentration 1.75 mg/ml). The stock suspension was stored

at 4uC. Its purity was assessed by Coomassie stained SDS-PAGE

gel and estimated to be ,95% pure. The yield of GPI- PrPSc was

,35 mg per brain (BCA protein assay).

Recombinant PrP
Recombinant Mouse PrP(23-231) was expressed in E. coli, and

purified and refolded in-column on an NTA affinity column (GE

Healthcare, Uppsala, Sweden), as previously described [29].

Refolded protein was dialyzed against 10 mM sodium phosphate

buffer pH 5.8 and then against d.i. water.

Limited Proteolysis
Aliquots of BH (10% in PBS, 5% Sarkosyl) were digested with

PK (Sigma-Aldrich, St. Louis, MO, USA) in 20 mM Tris-HCl

pH 8.5 at 37uC for 1 h unless otherwise stated. Digestion was

stopped by addition of Pefabloc (Fluka, Buchs, Switzerland) to a

final concentration of 2 mM. Deglycosylation was carried out with

2 ml of PNGase F solution (New England Biolabs, Ipswich, MA,

USA) at 37uC for 48 h, according to the manufacturer’s

instructions.

Digestion with PK After Partial Unfolding with
Guanidinehcl (Gnd)

Samples of BH (5 ml) were mixed with an equal volume of an

appropriate aqueous Gnd solution to yield the desired final Gnd

concentration and then incubated at 37uC for 1 h. After

incubating, the samples were diluted with buffer (20 mM Tris-

HCl pH 8.5) to yield a 0.4 M Gnd solution, which were then

treated with PK (25 mg/ml) for 1 h at 37uC. The digestion was

stopped by adding Pefabloc (2 mM final concentration) and the

protein was precipitated by addition of ice-cold methanol (85%

final concentration). The resulting pellets were resuspended in 9 ml

of deionized water, and deglycosylated with PNGase F (vide supra).

Tricine-SDS-PAGE and Western Blot Analysis
The precipitated pellets were boiled for 10 minutes in 10 ml of

Tricine sample buffer (BioRad, Hercules, CA, USA) containing

2% (v/v) of b-mercaptoethanol. Electrophoresis was performed

using precast 10–20% Tris-Tricine/Peptide gels (BioRad, Hercu-

les, CA, USA), in the Criterion System (BioRad, Hercules, CA,

USA). The cathode buffer was Tris-Tricine-SDS buffer 1 6
(Sigma-Aldrich, St. Louis, MO, USA) and the anode buffer, 1 M

Tris-HCl pH 8.9. Electrophoresis was performed at constant

voltage (125 volts) for 200 minutes, on ice.

The gels were electroblotted (350 mA, for 150 minutes; 4uC)

onto PVDF membranes (Immobilon-P, 0.45 mm; Millipore, Bill-

erica, MA, USA). Membranes were probed with the following

monoclonal antibodies: mAb #51 (epitope: G92-K100), undiluted;

W226 (epitope: W144-N152), at 1:5000 dilution; or R1 (epitope:

Y225-S230), at a 1:5000 dilution. Peroxidase-conjugated anti-mouse

or anti-human antibodies (GE Healthcare, Little Chalfont, UK)

Figure 5. Western blot of PK-digested series of GPI2 PrPSc

samples following partial unfolding by guanidine HCl. After
guanidine partial unfolding with 0 M, 0.5 M, 1 M, 2 M, 3 M and 4 M and
PK treatment (25 mg/ml), the samples were treated with PNGase F and
resolved on Tricine-SDS-PAGE. The WB was probed with the R1
antibody.
doi:10.1371/journal.pone.0050111.g005
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were used as a secondary antibody, as appropriate (1:5000

dilution). Blots were developed with ECL-plus reagent (GE

Healthcare, Little Chalfont, UK). Three sets of partially overlap-

ping MW markers, Peptide Molecular Weight (Sigma-Aldrich, St.

Louis, MO, USA), Kaleidoscope Prestained Standard (BioRad,

Hercules, CA, USA) and Novex Sharp Protein Standard

(Invitrogen, Carlsbad, CA, USA) were run in each analysis to

calibrate the MW of the bands.

Mass Spectrometry
NanoLC/ESI/MS analysis was done with an Applied Biosys-

tems (AB SCIEX, Framingham, MA) model QStar Pulsar

equipped with a Proxeon Biosystems (Odense, Denmark) nanoe-

lectrospray source. Samples of the Gnd stock solution (vide supra)

were loaded automatically onto a C-18 trapping cartridge and

chromatographed on a reversed-phase column (Vydac Everest

238EV5.07515, 75 mm 6 150 mm) fitted with a coated spray tip

(FS360-50-5-CE; New Objective, Inc.). A nanoflow LC system

(Dionex, Sunnyvale, CA) with autosampler, column switching

device, loading pump, and nanoflow solvent delivery system was

used. Elution solvents were A (0.5% acetic acid in water) and B

(0.5% acetic acid in 80% acetonitrile/20% water). Samples were

eluted at 250 nL/min using a binary gradient (8% B at 0 min to

80% B in a 30 min linear gradient, held at 80% B for 5 min, then

back to 8% B for 15 minutes). The QStar Pulsar was externally

calibrated daily with human [Glu1]-fibrinopeptide B.

In parallel, 1 mL of the Gnd stock solution was mixed with with

49 mL of sinapinic acid (SA) solution (10 mg/mL SA dissolved in

30% ACN with 0.3% TFA) and analyzed by MALDI-TOF. One

half mL aliquots were deposited using the dried-droplet method

onto a 384 Opti-TOF MALDI plate (Applied Biosystems, Foster

City, CA, USA). MALDI analysis was performed in a 4800

MALDI-TOF/TOF analyzer (Applied Biosystems, Foster City,

CA, USA). MS spectra were acquired in linear mode (20 kV

source) with a Nd:YAG, (355 nm) laser, and averaging 500 laser

shots. The mass of the peptide M153-S232 (9573 Da) was

determined by an iterative calibration approach, using insulin

(m/z = 5733), ribonuclease A (m/z = 13682) and lysozyme (m/

z = 14305), (Sigma-Aldrich, St. Louis, MO) as internal standards.

Then, the signals from the M153-S232 (9573 Da), G89-S232

(16371 Da), and G81-S232 (17148 Da) peptides were used to

calibrate the rest of peaks in the spectrum. Masses were matched

to PrP fragments with the help of GPMAW 6.0 software

(Lighthouse, Odense, Denmark).

Immunohistochemistry
Immediately after extraction, the brain was fixed in formalin

and then sliced into four transversal sections by cutting the brain

caudally and rostrally to the midbrain and at the level of the basal

nuclei. The sections were dehydrated by equilibration in solutions

of progressively higher ethanol concentration and then equilibrat-

ed with xylene before being embedded in paraffin. Haematoxylin-

eosin was used to stain the 4 mm thick sections. Additional sections

were mounted on 3-triethoxysilyl-propylamine-coated glass slides

for immunohistochemical (IHC) studies.

These brain sections were deparaffinised, immersed in formic

acid containing peroxidase inhibitors, and autoclaved prior to

IHC analysis. These autoclaved samples were washed, treated

with proteinase K, washed again, and then incubated overnight

with the antibody 6H4 (1:2000, Prionics AG, Schlieren, Switzer-

land). The sections were developed using the DAKO EnVision

system and 3,39diaminobenzidine as the chromogenic substrate.

Supporting Information

Figure S1 Western blot of unpurified GPI2 PrPSc 2/+
PK. Both samples were treated with PNGase F. WB was probed

with the #51 antibody.

(TIF)

Figure S2 Characterization of isolated GPI2 PrPSc. 10 ml

of sample were loaded and separated in a 15% gel by SDS-PAGE.

The gel was stained by Coomassie blue. The molecular weight of

the GPI-less PrP27-30 is ,16750 Da.

(TIF)

Figure S3 Western blot of PK-resistant fragments. In

unpurified (1) and purified GPI- PrPSc (2). Both samples were

digested with proteinase K, 25 mg/ml and 10 mg/ml, respectively,

treated with PNGase F and resolved on a Tricine-SDS-PAGE gel.

WB was probed with the R1 antibody.

(TIF)

Figure S4 Bayesian protein reconstruction of the nano-
LC-ESI-MS spectra of PK-treated purified GPI2 PrPSc.
The mass graphs of the three peaks: 17148 Da (top), 16729 Da

(middle) and 16371 Da (bottom), identified by ESI-TOF are

shown.

(TIF)

Figure S5 Western blot of recombinant MoPrP(23–231)
cleavage by PK. Samples were digested with different

concentrations of PK: 0, 0.2, 1, 5, 10 and 25 mg/ml. Samples

were subjected to Tricine-SDS-PAGE and the blot was probed

with R1 antibody.

(TIF)

Figure S6 Schematic representations of the data. A. A

scheme of GPI2 PrP sequence, showing the PK-resistant areas

(blue squares) and the PK cleavage points and flexible areas (gray

line). B. Lengthwise comparison of the different peptides found by

limited proteolysis and MALDI-TOF analysis (colors match those

displayed in Figure 2).

(TIF)
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