Accepted Manuscript

Diagnosis of Constitutional Mismatch Repair-deficiency Syndrome Based on Microsatellite Instability and Lymphocyte Tolerance to Methylating Agents

Sahra Bodo, Chrystelle Colas, Olivier Buhard, Ada Collura, Julie Tinat, Noémie
 Lavoine, Agathe Guilloux, Alexandra Chalastanis, Philippe Lafitte, Florence Coulet, Marie-Pierre Buisine, Denisa Ilencikova, Clara Ruiz-Ponte, Miriam Kinzel, Sophie Grandjouan, Hilde Brems, Sophie Lejeune, Hélène Blanché, Qing Wang, Olivier Caron, Odile Cabaret, Magali Svrcek, Dominique Vidaud, Béatrice Parfait, Alain Verloes, Ulrich J. Knappe, Florent Soubrier, Isabelle Mortemousque, Alexander Leis, Jessie Auclair-Perrossier, Thierry Frébourg, Jean-François Fléjou, Natacha Entz-Werle, Julie Leclerc, David Malka, Odile Cohen-Haguenauer, Yael Goldberg, Anne-Marie Gerdes, Faten Fedhila, Michèle Mathieu-Dramard, Richard Hamelin, Badre Wafaa, Marion Gauthier-Villars, Franck Bourdeaut, Eamonn Sheridan, Hans Vasen, Laurence Brugières, Katharina Wimmer, Martine Muleris, Alex Duval

```
PII: S0016-5085(15)00872-0
DOI: 10.1053/j.gastro.2015.06.013
Reference: YGAST 59847
```

To appear in: Gastroenterology
Accepted Date: 13 June 2015

Please cite this article as: Bodo S, Colas C, Buhard O, Collura A, Tinat J, Lavoine N, Guilloux A, Chalastanis A, Lafitte P, Coulet F, Buisine M-P, Ilencikova D, Ruiz-Ponte C, Kinzel M, Grandjouan S, Brems H, Lejeune S, Blanché H, Wang Q, Caron O, Cabaret O, Svrcek M, Vidaud D, Parfait B, Verloes A, Knappe UJ, Soubrier F, Mortemousque I, Leis A, Auclair-Perrossier J, Frébourg T, Fléjou J-F, Entz-Werle N, Leclerc J, Malka D, Cohen-Haguenauer O, Goldberg Y, Gerdes A-M, Fedhila F, Mathieu-Dramard M, Hamelin R, Wafaa B, Gauthier-Villars M, Bourdeaut F, Sheridan E, Vasen H, Brugières L, Wimmer K, Muleris M, Duval A, on behalf of the European Consortium "Care for CMMRD" (C4CMMRD), Diagnosis of Constitutional Mismatch Repair-deficiency Syndrome Based on Microsatellite Instability and Lymphocyte Tolerance to Methylating Agents, Gastroenterology (2015), doi: 10.1053/j.gastro.2015.06.013.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

All studies published in Gastroenterology are embargoed until 3PM ET of the day they are published as corrected proofs on-line. Studies cannot be publicized as accepted manuscripts or uncorrected proofs.

DIAGNOSIS OF CONSTITUTIONAL MISMATCH REPAIR-DEFICIENCY SYNDROME BASED ON MICROSATELLITE INSTABILITY AND LYMPHOCYTE TOLERANCE TO METHYLATING AGENTS

Short title: Functional diagnosis of CMMRD syndrome

Sahra Bodo ${ }^{1,2, \star}$, Chrystelle Colas ${ }^{1,2,3, \star}$, Olivier Buhard ${ }^{1,2, \star}$, Ada Collura ${ }^{1,2}$, Julie Tinat ${ }^{4}$, Noémie Lavoine ${ }^{5}$, Agathe Guilloux ${ }^{1,2}$, Alexandra Chalastanis ${ }^{1,2}$, Philippe Lafitte ${ }^{1,2}$, Florence Coulet 2,3, Marie-Pierre Buisine ${ }^{6,7}$, Denisa llencikova ${ }^{8}$, Clara Ruiz-Ponte ${ }^{9}$, Miriam Kinzel ${ }^{10}$, Sophie Grandjouan ${ }^{11}$, Hilde Brems ${ }^{12}$, Sophie Lejeune ${ }^{13}$, Hélène Blanché ${ }^{14}$, Qing Wang ${ }^{15}$, Olivier Caron ${ }^{16}$, Odile Cabaret 25, Magali Svrcek 1,2,17, Dominique Vidaud ${ }^{18}$, Béatrice Parfait ${ }^{18}$, Alain Verloes ${ }^{19}$, Ulrich J Knappe ${ }^{20}$, Florent Soubrier ${ }^{21}$, Isabelle Mortemousque ${ }^{22}$, Alexander Leis ${ }^{23}$, Jessie Auclair-Perrossier ${ }^{15}$, Thierry Frébourg ${ }^{4}$, Jean-François Fléjou ${ }^{1,2,17}$, Natacha Entz-Werle ${ }^{24}$, Julie Leclerc ${ }^{6,7}$, David Malka ${ }^{26}$, Odile Cohen-Haguenauer ${ }^{27}$, Yael Goldberg 28, Anne-Marie Gerdes ${ }^{29}$, Faten Fedhila ${ }^{30}$, Michèle Mathieu-Dramard ${ }^{31}$, Richard Hamelin ${ }^{1,2}$, Badre Wafaa ${ }^{32}$, Marion Gauthier-Villars ${ }^{33}$, Franck Bourdeaut ${ }^{34}$, Eamonn Sheridan ${ }^{35}$, Hans Vasen ${ }^{36}$, Laurence Brugières ${ }^{5}$, Katharina Wimmer ${ }^{37}$, Martine Muleris ${ }^{1,2, \#}$ Alex Duval ${ }^{1,2, \#}$, on behalf of the European Consortium "Care for CMMRD" (C4CMMRD)

[^0]\# Co-leadership and corresponding authors
Centre de Recherche Saint-Antoine (UMRS 938), Equipe "Instabilité des Microsatellites et Cancers", Hôpital Saint-Antoine, Batiment Kourilsky, 184 rue du Faubourg Saint-Antoine, 75012 Paris, France

E-mails: martine.muleris@inserm.fr; alex.duval@inserm.fr
${ }^{1}$ INSERM, UMR_S 938 Centre de Recherche Saint-Antoine, Equipe "Instabilité des Microsatellites et Cancer », Equipe Labellisée par la Ligue Nationale contre le Cancer, F-75012, Paris, France
${ }^{2}$ UPMC Univ Paris 06, F-75005, Paris, France
${ }^{3}$ AP-HP, Laboratoire d'Oncogénétique et d'Angiogénétique, GH Pitié-Salpétrière, F-75013, Paris, France
${ }^{4}$ Département de génétique, Hôpital universitaire, F-76183, Rouen, France
${ }^{5}$ Department of Children and Adolescents Oncology, Gustave Roussy Cancer Institute, F-94805, Villejuif, France
${ }^{6}$ Institut de Biochimie et Biologie moléculaire, Oncologie et Génétique Moléculaires, CHRU Lille, F-59037, Lille, France
${ }^{7}$ INSERM UMR837 et Université Lille 2, F-59045, Lille, France
${ }^{8} 2 n d$ Pediatric Department of Children University Hospital, Comenius University, Bratislava, Slovakia
${ }^{9}$ Fundación Pública Galega de Medicina Xenómica (FPGMX) SERGAS, Grupo de Medicina Xenómica, IDIS, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERer), Santiago de Compostela, Spain
${ }^{10}$ Praxis für Medizinische Genetik, Berlin, Germany
${ }^{11} \mathrm{CHU}$ Cochin, faculté René-Descartes-Paris-V, F-75014, Paris, France
${ }^{12}$ Department of Human Genetics, KU Leuven, Leuven, Belgium
${ }^{13}$ CHRU Lille, Service de génétique clinique, F-59037, Lille, France
${ }^{14}$ CEPH, Fondation Jean Dausset, Institut de Génétique Moléculaire, F-75010, Paris, France
${ }^{15}$ Plateforme de Génétique constitutionnelle HCL-CLB, Laboratoire de recherche translationnelle, Centre Léon Bérard, F-69373, Lyon, France
${ }^{16}$ Department of Medical Oncology, Gustave Roussy Cancer Institute, F-94805, Villejuif, France
${ }^{17}$ AP-HP, Hôpital Saint-Antoine, Service d'Anatomie et Cytologie Pathologiques, F-75012, Paris, France
${ }^{18}$ INSERM UMR745 Université Paris Descartes, Faculté des Sciences Pharmaceutiques et Biologiques, F75006, Paris, France
${ }^{19}$ AP-HP, Département de Génétique and INSERM UMR 1141 « PROTECT », Hôpital Robert Debré, F-75019 Paris, France
${ }^{20}$ Department of Neurosurgery, Johannes Wesling Klinikum, Minden, Germany
${ }^{21}$ AP-HP, Département de génétique, GH Pitié-Salpêtrière, F-75013, Paris, France
${ }^{22}$ CHRU de Tours, Service de Génétique, F-37044, Tours, France
${ }^{23}$ French Medical Institute for Children, Kabul, Afghanistan
${ }^{24}$ Pédiatrie Onco-Hématologie Pédiatrie CHRU Hautepierre UdS EA 3430, Strasbourg, France
${ }^{25}$ Service de Génétique, Département de Biologie et Pathologie Médicales, Institut Gustave Roussy, F-94805, Villejuif, France
${ }^{26}$ Department of Cancer Medicine, Gustave Roussy, F-94805, Villejuif, France
${ }^{27}$ Service d'Oncologie Médicale, Hôpital Saint-Louis, Paris, France
${ }^{28}$ Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
${ }^{29}$ Department of Clinical Genetics, Copenhagen University Hospital Rigshospital, Copenhagen, Denmark
${ }^{30}$ Service de médecine infantile, hôpital d'enfants de Tunis, Tunis, Tunisia
${ }^{31}$ Unit of medical Genetics, Amiens University Hospital, Amiens, France
${ }^{32}$ Department of Hepato-Gastro-Enterology, Ibn Rochd, Hospital University Center, Casablanca 20270, Morocco
${ }^{33}$ Service de Génétique, Institut Curie, Paris, France
${ }^{34}$ Department of Pediatric Oncology \& INSERM U830, Institut Curie, Paris, France
${ }^{35}$ Department of Molecular Medicine, University of Leeds, LS2 9JT, Leeds, UK
${ }^{36}$ Department of Gastroenterology \& Hepatology, Leiden University Medical Centre, Leiden, The Netherlands
${ }^{37}$ Division of Human Genetics, Medical University Innsbruck, Innsbruck, Austria

Funding

This work was supported by grants from "La Ligue Nationale Contre le Cancer" (to Alex Duval; team label) and the "Association pour la Recherche contre le Cancer" (number 5079 to Martine Muleris). Sahra Bodo is a recipient of the "Ministère de l'Enseignement Supérieur et de la Recherche" and the "Association pour la Recherche contre le Cancer" fellowship. Ada Collura is a recipient of the "Institut National du Cancer" (INCa) fellowship.

Abstract

Abbreviations

CMMRD, constitutional mismatch repair; evMSI, ex vivo microsatellite instability; gMSI, germline microsatellite instability; IHC, immunohistochemical; FAP, familial adenomatous polyposis; LCL, lymphoblastoid cell line; LS, Lynch syndrome; MMR, mismatch repair; MNNG, N-methyl-N-nitro-N-nitrosoguanidine; MSI, microsatellite instability; NF1, neurofibromatosis type 1; PBLs, peripheral blood lymphocytes; VUS, variant of unknown functional significance; 6-TG, 6-thioguanine.

Author contributions ACCEPTED MANUSCRIPT

study concept and design: M Muleris, A Duval
acquisition of data: S Bodo, O Buhard, C Colas, A Collura, J Tinat, N Lavoine, A Chalastanis, P Lafitte, F Coulet, MP Buisine, M Svrcek
analysis and interpretation of data: S Bodo, O Buhard drafting of the manuscript: S Bodo, A Duval, M Muleris critical revision of the manuscript: K Wimmer statistical analysis: A Guilloux
study supervision: M Muleris, A Duval
biological material suppliers: all other authors

Conflict of interest

The authors disclose no conflicts.

BACKGROUND \& AIMS: Patients with bi-allelic germline mutations in mismatch repair (MMR) genes (MLH1, MSH2, MSH6, or PMS2) develop a rare but severe variant of Lynch syndrome called constitutional MMR deficiency (CMMRD). This syndrome is characterized by early-onset colorectal cancers, lymphomas or leukemias, and brain tumors. There is no satisfactory method for diagnosis of CMMRD because screens for mutations in MMR genes are non-informative for 30% of patients. MMR-deficient cancer cells are resistant to genotoxic agents and have microsatellite instability (MSI), due to accumulation of errors in repetitive DNA sequences. We investigated whether these features could be used to identify patients with CMMRD.

METHODS: We examined MSI by PCR analysis and tolerance to methylating or thiopurine agents (functional characteristics of MMR-deficient tumor cells) in lymphoblastoid cells (LCs) from 3 patients with CMMRD and 5 individuals with MMR-proficient LCs (controls). Using these assays, we defined experimental parameters that allowed discrimination of a series of 14 patients with CMMRD from 52 controls (training set). We then used the same parameters to assess 23 patients with clinical but not genetic features of CMMRD.

RESULTS: In the training set, we identified parameters, based on MSI and LC tolerance to methylation, that detected patients with CMMRD vs controls with 100% sensitivity and 100%. Among 23 patients suspected of having CMMRD, 6 had MSI and LC tolerance to methylation (CMMRD highly probable), 15 had neither MSI nor LC tolerance to methylation (unlikely to have CMMRD), and 2 were considered doubtful for CMMRD based on having only 1 of the 2 features.

CONCLUSION: The presence of MSI and tolerance to methylation in LCs identified patients with CMMRD with 100% sensitivity and specificity. These features could be used in diagnosis of patients.

KEYWORDS: functional tests, colon cancer, tumor, predisposition

INTRODUCTION

Individuals with Lynch syndrome (LS) harbor germline heterozygous mutations affecting one of the four major mismatch repair (MMR) genes (i.e. MLH1, MSH2, MSH6 or PMS2) and are at greatly increased risk of developing colorectal and other epithelial tumors ${ }^{1}$. Typically, individuals with germline MLH1 or MSH2 defects develop MMR-deficient cancers during their $4^{\text {th }}$ or $5^{\text {th }}$ decade, whereas those with MSH6 or PMS2 mutations are affected less consistently. Patients with bi-allelic germline mutations in MMR genes suffer from Constitutional MMR-Deficiency (CMMRD) ${ }^{2-5}$, a distinct inherited cancer syndrome (OMIM \#276300) ${ }^{6}$. This syndrome is characterized by the development of childhood tumors such as early-onset colorectal cancers, lymphomas/leukemias, and brain tumors ${ }^{6-8}$. Since CMMRD is mainly due to bi-allelic inheritance of PMS2 or MSH6 germline mutations, the family history of patients shows only a low incidence of LS-related cancers in first- and second-degree relatives. To date, CMMRD has been reported in 146 patients from 91 distinct families. Because of variable clinical presentation, lack of unequivocal diagnostic features, and phenotypical overlap with other cancer syndromes (e.g. neurofibromatosis type 1 (NF1), Li-Fraumeni, syndrome, familial adenomatous polyposis (FAP)), CMMRD syndrome is frequently unrecognized by clinicians and its incidence is almost certainly underestimated.

Within the European Consortium ‘Care for CMMRD’ (C4CMMRD), we recently proposed clinical diagnostic criteria that should raise the suspicion of CMMRD when observed in a child or young adult cancer patient, based on the phenotypic presentation ${ }^{9}$. The suspected diagnosis then needs to be either confirmed or refuted. The current diagnosis of CMMRD requires identification of bi-allelic, deleterious germline MMR defects. Unfortunately, mutation analysis leads to non-informative results when variants of unknown functional significance (VUS) are detected, as observed in around 30% of patients. Moreover, the detection of PMS2 alterations responsible for 60% of CMMRD families is complicated by
the presence of numerous pseudogenes, resulting in a lack of sensitivity when performing mutation analysis only. Hence, although extensive mutation screening that includes comprehensive searches for large genomic rearrangements of MMR genes remains crucial for identification of CMMRD patients and genetic counseling in CMMRD families, tests that can unequivocally confirm or refute a suspected diagnosis are highly desirable.

Since all CMMRD patients share a common and specific functional property, i.e. MMR deficiency, we hypothesized that the detection of characteristic functional features of MMRdeficient blood cells from such patients could be used to diagnose this syndrome. Inactivation of MMR is known to increase cellular tolerance to specific genotoxic agents such as methylating and thiopurine drugs ${ }^{10-15}$. Moreover, MMR-deficient cancer cells specifically exhibit a microsatellite instability (MSI) phenotype due to accumulation of replication errors in repetitive DNA sequences ${ }^{16}$. In tissues derived from MMR-deficient neoplastic cells, MSI is easily detected through PCR amplification of microsatellites. However, earlier studies have shown that MSI cannot be detected in the germline DNA of CMMRD patients except by using the laborious technique of "small pool PCR" ${ }^{6,17}$. The presence of somatic mutations within DNA repeats in MMR-deficient cells is related to cell division. We therefore hypothesized that in vitro culture of immortalized lymphoblastoid cells from CMMRD patients would eventually lead to the onset of both an MSI phenotype and tolerance to methylating/thiopurine agents.

In the present work we first validated the proof of concept that MSI and tolerance to methylating/thiopurine agents could be detected in lymphoblastoid cell lines (LCLs) derived from several CMMRD patients, but not in LCLs from MMR-proficient controls including LS patients. In a case-control study, we next determined the experimental conditions that allowed accurate discrimination of a series of CMMRD patients from MMR-proficient controls. Finally, we tested our functional approach using the same experimental conditions in a series of patients who showed clinical characteristics of CMMRD but for whom the standard diagnostic method was non-informative. This was performed within a European

Consortium 'Care for CMMRD' (C4CMMRD) that allowed us to collect a unique series of confirmed CMMRD cases and at-risk individuals for this syndrome.

PATIENTS AND METHODS

Patients

At the $1^{\text {st }}$ workshop of the European Consortium 'Care for CMMRD' (C4CMMRD) held in Paris on June 9, 2013, a call was made to contribute blood samples or LCLs from definite or possible CMMRD patients. Eligible subjects included patients already diagnosed with CMMRD, i.e. with bi-allelic deleterious germline mutations in any of the 4 major MMR genes, as well as patients with a strong clinical suspicion of CMMRD, i.e. with a clinical score ≥ 3 according to Wimmer et al. ${ }^{9}$. LCLs were available ($n=10$) or were established ($\mathrm{n}=27$) for 37 of the 42 eligible patients. MMR-proficient LCLs used as controls originated from 47 LS patients and 15 subjects considered free of MMR germline defects including patients with FAP or NF1 syndrome. All patients gave written informed consent. This study was approved by the institutional review boards/ethics committees of the participating centres.

Mutation screening of MMR genes

All analyses were performed in clinically approved laboratories. Analysis of MLH1, MSH2 and MSH6 genes was performed across different laboratories whereas analysis of PMS2 was performed in the Rouen, Lille or Innsbruck laboratories. Bi-directional Sanger sequencing from genomic DNA or direct cDNA sequencing ${ }^{18}$ was performed to identify point mutations in exonic and flanking intronic regions. Sequencing reactions were performed using the ABI PRISM Kit (Applied Biosystems) and sequences were analyzed on an automated sequencer (ABI 3130XL Genetic Analyzer, Applied Biosystems) using Sequencing Analysis Software v5.2 (Applied Biosystems) ${ }^{19}$. Screening for large rearrangements in the $\mathrm{MLH} 1, \mathrm{MSH} 2$ and MSH 6 genes was performed using Multiplex

Ligation-dependent Probe Amplification and/or Quantitative Multiplex PCR of Short Fluorescent Fragments. Rearrangements of the PMS2 gene were analyzed by Quantitative Multiplex PCR of Short Fluorescent Fragments for exons 6, 7, 8 and 10, and/or by Multiplex Ligation-dependent Probe Amplification using the SALSA MLPA kit P008 (MRC-Holland, Amsterdam, The Netherlands) together with appropriate reference DNAs that have an equal (2:2) distribution of gene- and pseudogene-derived sequences in exons 13-15 ${ }^{20}$. In patient C26, the PMS2-exon 12 deletion escaped detection by Multiplex Ligation-dependent Probe Amplification, but was identified by direct cDNA sequencing. Screening of the NF1 gene was performed using a variety of methodologies including DNA and RNA sequencing for small lesions, polymorphic microsatellite marker analysis and Multiplex Ligationdependent Probe Amplification or real-time PCR-based gene dosage analysis to allow the assessment of microdeletions, as previously described ${ }^{21}$. Mutation analysis of the APC gene was performed by direct sequencing and Multiplex Ligation-dependent Probe Amplification ${ }^{22}$.

Lymphoblastoid cell lines

LCLs obtained following standard Epstein-Barr virus infection were grown in RPMI 1640 with stable glutamine supplemented with 20% fetal calf serum, $100 \mathrm{IU} / \mathrm{ml}$ penicillin and $100 \mathrm{mg} / \mathrm{ml}$ streptomycin (PAA). Only LCLs with comparable growth rates and with viability greater than 85% were included.

Ex vivo microsatellite instability analysis

PCR products following amplification of the NR27, NR21 and BAT26 microsatellites were separated by capillary electrophoresis on an ABI 3100 genetic analyzer and quantified using Gene Mapper software v3.7. In order to confidently detect allelic shifts of as little as 1 base pair in size, DNA from LCL and peripheral blood lymphocytes (PBLs) were analyzed concurrently in octuplicate.

Chemicals

All chemicals were obtained from Sigma unless otherwise indicated. Cells were exposed to 6-Thioguanine (6-TG) and N-Methyl-N'-Nitro-N-Nitrosoguanidine (MNNG) (TCI Europe). To exclude differences in MNNG cytotoxicity due to variations in O^{6}-methylguanine methyltransferase enzyme activity, the latter was abrogated by exposure to O^{6} benzylguanine $(20 \mu \mathrm{M}$ final concentration) during the entire experiment. All chemicals were dissolved in DMSO to a concentration of 20 mM , protected from light and stored at $-20^{\circ} \mathrm{C}$ until used.

Methylation tolerance assay

Exponentially growing lymphoblastoid cells were seeded into 96 -well round-bottom plates at a density of $0.15-1 \times 10^{4}$ cells/well. After $24-\mathrm{h}$ incubation, extemporaneously reconstituted MNNG solution was added at $1.25,2.5$ and $5 \mu \mathrm{M}$ final concentration. Because of the short half-life of MNNG in aqueous solution (1 hour), the medium was not replaced after drug treatment and 1, 2 or 3 rounds of treatment separated by 24 -h were performed. Cell growth was evaluated after a total incubation time of 10 days and all samples were tested in triplicate. Each experiment was conducted at least in duplicate. Cytotoxicity was examined by the WST kit according to the supplier's recommendations (Roche). Absorbance was read at 450 nm using a microplate reader (Tecan Infinite F500) and analyzed using Xfluor4GENiosPro software. Percent cell survival was represented as the absorbance of treated sample relative to control.

Statistical analyses

A Metropolis-Hastings algorithm was used to estimate the sensitivity and specificity of the three different diagnostic methods (MMR gene sequencing, functional testing, gMSI testing). This algorithm was applied to results obtained from genetically confirmed CMMRD patients, control patients, and patients with a strong clinical suspicion of CMMRD but without a molecularly confirmed diagnosis.

RESULTS

Proof-of-concept study

We first investigated whether MSI and methylation/thiopurine tolerance could be detected in LCLs from 3 CMMRD patients with bi-allelic deleterious mutations in MSH6, PMS2 or MLH1, but not in LCLs from 5 negative controls comprising 4 LS patients (MSH6, MSH2, PMS2 or MLH1 heterozygous mutations) and one individual with wild-type MMR status.

MSI screening. As expected, MSI was not detected in PBLs from CMMRD patients (figure 1A) following the analysis of 3 mononucleotide microsatellite markers (NR27, NR21, BAT26) that are used routinely to assess MSI status in tumor cells. In contrast, a clear MSI phenotype showing characteristic, aberrant alleles was observed in LCLs from all 3 CMMRD patients (figure 1A), whereas the 5 control LCLs displayed stable allelic profiles (figure 1B and supplementary table 2). The MSI phenotype was only demonstrated ex vivo in LCLs and was thus termed evMSI to distinguish it from the in vivo MSI phenotype detected in MMR-deficient cancer cells.

Drug tolerance assay. We first evaluated the cytotoxic effects of MNNG (methylating agent) and 6-thioguanine (6-TG, thiopurine) in 11 human colorectal cancer cell lines. Cell lines that were MLH1-, MSH2- or MSH6-deficient were on average up to 10 -fold more tolerant to $1 \mu \mathrm{M}$ MNNG than MMR-proficient cell lines and 2-fold more tolerant to $15 \mu \mathrm{M} 6$ TG (supplementary figure 1). We next investigated the response of LCLs to both drugs. All 3 CMMRD-derived LCLs were phenotypically distinguishable from cells with heterozygous or wild-type MMR status. They displayed better cell survival compared to controls and there was no overlap between the two groups under several MNNG experimental conditions (figure 1C), whereas 6-TG was less discriminant (figure 1D).

Case-control study

We next sought to identify experimental conditions that would best discriminate CMMRD patients from controls. Among 42 patients collected from several European cancer centers (including the 3 patients previously analyzed in the proof of concept study), 19 had been diagnosed as definite CMMRD cases by molecular analysis, i.e. bi-allelic pathogenic MMR gene alterations. Of these, LCLs from 14 cases were available for the present case-control study (table 1, figure 2). Pedigrees for all previously unreported patients are shown in supplementary figure 2. Clinical and tumor data together with detailed results of germline MMR analysis are provided in supplementary table 1.
evMSI. LCLs from the 14 CMMRD patients comprising carriers of bi-allelic mutations in PMS2 ($\mathrm{n}=10$), MSH6 ($\mathrm{n}=3$) or MLH1 ($\mathrm{n}=1$) displayed microsatellite deletions ranging from 1 to 7 base pairs (figure 4A). Detection of the evMSI phenotype in the cell lines was achieved 120 days after immortalization at the latest. The median culture time for a positive evMSI phenotype was 83.6 ± 22.6 days (range $45-120$) (supplementary table 2). In contrast, LCLs from all 23 MMR-proficient controls (12 LS patients and 11 MMR wild-type individuals) showed no deletions. For all 23 controls except two, the cell lines were grown for at least 120 days without any evidence of deletions (median culture time $=175$ days ± 62.6, range 83-304 days). Five control cell lines were grown for longer than 220 days without any evidence of deletions. Therefore, for subsequent experiments the cut-off value used to define a cell line as positive for evMSI was set as a 1 base pair deletion across all three markers and a maximum culture time of 120 days was used.

Drug tolerance assays. By varying the MNNG concentration and number of treatments, we found the optimal experimental condition that allowed CMMRD patients to be discriminated from controls was two rounds of $2.5 \mu \mathrm{M}$ MNNG. Using this condition, LCLs from all 14 CMMRD patients displayed a cell survival rate above 60%. In contrast, 51/52 LCLs from controls displayed a cell survival rate lower than 40% (median cell survival rates
of 87.5% and 20.9%, respectively; $P<.0001$; Student's t test) (figures 3 and $4 A$). At an arbitrary cut-off value of 50% cell survival, the methylation tolerance assay was therefore shown to be 100% sensitive (14/14) and 98% specific (51/52; the positive sample was from an LS patient with an MSH6 defect). The thiopurine tolerance test was found to be less discriminatory and hence was not continued further (supplementary figure 3). This result concurs with previous findings that MMR-deficient cells are 100 -fold more tolerant than MMR-proficient cells to death induced by methylating agents, but only about 10-fold more tolerant to 6-TG treatment ${ }^{23}$.

Overall, evMSI and methylation tolerance assays were found to be highly specific and sensitive and gave concordant results for all cases tested with both methods. In subsequent studies we therefore deemed that both assays must show abnormal results in order to conclude a definite diagnosis of CMMRD. To rule out a diagnosis of CMMRD, both assays should display normal results. Diagnosis should be considered as doubtful if results from the two functional tests are discordant.

Application of functional tests for the detection of CMMRD in at-risk

individuals

In 23 of the 42 patients from our series, a diagnosis of CMMRD was suspected based on clinical presentation, but the diagnosis could not be confirmed by MMR gene mutation analysis (table 1, figure 2). These comprised 8 patients with bi-allelic MMR mutations that included one or two VUS, 5 patients with a single MMR mutation and 10 patients in which no MMR mutation was detected. We evaluated these patients using the functional assay conditions described above (table 2, figure 4B). Six patients displayed positive results for both the evMSI and methylation tolerance assays, indicating a highly probable diagnosis of CMMRD. They included 5 patients with MSH6 or PMS2 bi-allelic MMR alterations comprising VUS. Consistent with our results, in silico prediction favored a pathogenic
nature for the MSH6 and PMS2 variants in four of these patients (C20.1, C20.2, C18, C22).
In the $6^{\text {th }}$ patient (C29.1), no apparent germline MMR mutations were detected. In another 15 patients, evMSI and methylation tolerance assays were both negative, indicating that a diagnosis of CMMRD was very unlikely. These included one compound heterozygote for an MSH2 variant, 5 patients with a single MLH1, PMS2 or MSH2 alteration, and 9 patients where no MMR alteration had been detected. In the two remaining patients (C21 and C23, with bi-allelic MSH6 mutations comprising one or two VUS, respectively), the data showed methylation tolerance but no evMSI phenotype. We therefore concluded a result of "doubtful" for both patients.

Comparison of functional assays with other methodological approaches

We trialed a recently described method that evaluates dinucleotide repeats for the detection of MSI in germline DNA (gMSI) ${ }^{24}$. In the case-control cohort, the gMSI assay yielded interpretable results in 15 of 18 CMMRD patients and in 16 of 19 controls. CMMRD patients with bi-allelic mutations involving PMS2 ($\mathrm{n}=11$), MLH1 $(\mathrm{n}=1)$ or MSH2 $(\mathrm{n}=1)$ displayed abnormal gMSI values. In agreement with the original report ${ }^{24}$, we found however that CMMRD patients with bi-allelic deleterious mutations involving MSH6 ($\mathrm{n}=2$) displayed normal gMSI ratios, thus reducing the sensitivity of this method (table 2, supplementary table 3, supplementary figure 4). gMSI ratios were normal for all controls. gMSI also yielded interpretable results in 21 of 23 patients suspected of having CMMRD. The five carriers of bi-allelic MSH6 alterations displayed normal gMSI, as expected. Moreover, gMSI corroborated the results of our functional assays in all patients with PMS2, MLH1 or MSH2 mutations, with the exception of one (C18). This patient carried one deleterious mutation and one VUS in the PMS2 gene. He displayed normal gMSI but abnormal evMSI and methylation tolerance results (table 2). The c.2249G>A missense mutation found in the PMS2 gene of patient C18, together with complete deletion of the other PMS2 allele, was previously reported in a patient diagnosed with rectal cancer and a brain tumor at 22 and 23
years of age, respectively ${ }^{25}$. This further corroborates a pathogenic role for the VUS in patient C 18 and is consistent with the results of our functional assay. The evMSI, methylation tolerance and gMSI assay results were all abnormal in patient C29.1 who lacked apparent MMR germline mutations. This prompted us to conduct additional PMS2 screening using Multiplex Ligation-dependent Probe Amplification, which led to the identification of a homozygous deletion of exons 14-15. Normal functional test results and gMSI ratio were found in an asymptomatic brother aged 11 years (C29.2) who was later found to be heterozygous for the PMS2 deletion.

Another tool proposed for CMMRD screening is IHC analysis to detect loss of MMR protein expression in normal tissues. IHC was recently reported to be 100% sensitive when performed on normal colonic or skin tissues from 5 CMMRD patients ${ }^{26}$. However, based on previous observations in LS patients, IHC may lack sensitivity, especially for the detection of some missense and truncating MMR gene mutations ${ }^{27,28}$, resulting in false negative diagnosis for CMMRD. This was demonstrated in the present study where positive MSH6 staining was observed in two patients (C20.2 and C22) with homozygous MSH6 missense mutations and who are likely to be CMMRD according to the functional assays and in silico predictions. Conversely, PMS2 protein was not expressed in the normal colonic mucosa of patient C25, the carrier of a single deleterious PMS2 mutation in which a diagnosis of CMMRD was ruled out based on normal results for the evMSI, methylation tolerance and gMSI tests (table 2 and supplementary table 1).

Estimation of sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) for the functional assays and for other methodological approaches

In our case-control cohort, the functional assay (i.e. evMSI and methylation tolerance) was 100% sensitive and 100% specific whereas gMSI testing was $86.7 \%(13 / 15)$ sensitive and
$100 \%(16 / 16)$ specific (see above). It is worth noting that the sensitivity of gMSI is likely to be an overestimate, since this depends on the proportion of CMMRD patients with MSH6 alterations. In our series this was only $13 \%(2 / 15)$, however MSH6 alterations are thought to be responsible for a higher proportion ($\sim 20 \%$) of all CMMRD patients ${ }^{9}$. The performance of IHC could not be evaluated properly due to the lack of a standardized method for the analysis of MMR gene expression in the normal tissue of controls (i.e. MMR-proficient cases).

We next estimated the performance of functional testing compared to the standard method of MMR gene sequencing. This was done for the entire cohort, including patients deemed to be at-risk. Using a Metropolis-Hastings algorithm, the functional assay revealed higher sensitivity (94.2\% (95\% CI: 79.4\%-99.9\%) vs 80.1\% (54.1\%-99.0\%)), higher NPV (97.2\% (89.8\%-99.9\%) vs $91.2 \%(76.6 \%-99.6 \%)$), but lower specificity (90.1% ($76.1 \%-$ 99.5\%) vs 97.6\% (91.2\% - 99.9\%)) and lower PPV (80.5\% (53.9\% - 99\%) vs 93.6\% (77.9\% - 99.8\%)) for CMMRD diagnosis. In order to include gMSI in the comparison, an estimation of the sensitivity and specificity was made in the smaller series of patients and controls for which results from all tests were available. Functional testing still offered the highest sensitivity (93.3\% (76.7\% - 99.8\%) and a lower specificity (Supplementary table 4), however these differences did not reach statistical significance because of small cohort sizes. As stated above, the lack of a standardized method for IHC analysis of normal tissues meant we were unable to properly evaluate the sensitivity and specificity of this method.

DISCUSSION

In this paper, we propose a new approach for the diagnosis of CMMRD that involves the common and specific functional characteristic of all CMMRD patients, i.e. MMR deficiency. Our approach was based on the exploitation of this feature through the evaluation of MSI and methylation tolerance in MMR-deficient, immortalized lymphoblastoid cells. This
method gave unequivocal results in CMMRD patients with known bi-allelic deleterious mutations. If one assumes that abnormal results for both assays indicate a diagnosis of CMMRD, whereas normal results for both assays rule this out, our method was 100% sensitive and 100% specific in this case-control study. When applied to additional patients suspected of having CMMRD syndrome because of evocative clinical criteria but who lacked the confirmatory standard genetic defects, a clear discrimination into two groups was obtained. In the first group showing abnormal results for both tests, we considered that CMMRD was highly probable. In contrast, a diagnosis of CMMRD was highly unlikely in the second group of patients showing normal results for both tests. Our novel functional approach may therefore be especially useful for the confirmation or rejection of CMMRD diagnosis in patients with VUS by providing an assessment of the pathogenicity of MMR variants. It is also useful in cases where the diagnostic method failed to detect bi-allelic MMR mutations despite an evocative CMMRD clinical phenotype (e.g. patient C29.1). Furthermore, our approach can rule out that a second mutation has been missed in patients with heterozygous, pathogenic $P M S 2$ or $M S H 2$ mutations who nevertheless show an unusually early onset of cancer (e.g. colon tumors at 12, 17 and 25 years of age in patients C24, C26 and C25, respectively). The results from our functional approach support the existence of a clinical continuum that spans the less severe CMMRD phenotypes that mimic LS (e.g. patient C18), to more severe and early onset LS phenotypes that mimic CMMRD ${ }^{29}$. Overall, our findings highlight that functional tests capable of assessing constitutional MMR-deficiency are highly desirable for the accurate diagnosis of CMMRD patients.

Although we have investigated by far the largest CMMRD series reported to date in the literature, our method requires further confirmation in additional cohorts of CMMRD patients. This will help to refine the criteria for the functional assays in cases with ambiguous results, such as the two patients who harbored VUS in the MSH6 gene and showed methylation tolerance but not evMSI (C21, C23). One possible explanation for this
observation is that certain MMR gene mutations might uncouple the DNA mismatch repair and DNA damage-induced apoptosis functions, as reported in mice ${ }^{30,31}$. Overall, we found that functional testing showed better sensitivity than either MMR gene sequencing or gMSI , although it may have a lower specificity. Bearing this in mind, we propose a flow chart for the use of our assay alone or in combination with other tests in routine clinics in the next future (figure 5). IHC could not be evaluated properly in this study due to the lack of a standardized method for assessment of MMR gene expression in the normal tissues of MMR-proficient subjects. The results with IHC are likely to be highly dependent on the type of tissue being studied (e.g. colon, brain, skin, lymphoid cells). Moreover, it is well known that IHC can give rise to false negative results for MMR deficiency in cases where inactivating missense mutations nevertheless result in expression of the mutant protein ${ }^{27}$, ${ }^{28}$. Further studies should evaluate MMR protein expression using standardized methods in normal and tumor tissues from large cohorts of CMMRD patients, MMR-proficient controls and Lynch syndrome patients, in the same manner as performed here to assess our functional assay.

In summary, the novel functional approach proposed here showed higher sensitivity for CMMRD diagnosis compared to MMR sequencing or gMSI, the two other methods used so far. This approach can be used to determine whether MMR variants of uncertain pathogenicity are responsible for functional inactivation of the MMR system. The ability to classify variants as pathogenic or neutral is a major challenge in clinical genetics, particularly with the advent of next-generation sequencing. Moreover, the diagnosis of CMMRD syndrome based solely on clinical and genetic data is presently inadequate. As an overall diagnostic strategy, we therefore recommend the implementation of our functional assays in combination with IHC and gMSI analysis (figure 5). These tests can be performed in any order upon suggestion of CMMRD syndrome based on an evocative clinical score. This strategy has already been introduced at the Saint-Antoine Hospital in Paris with the
aim of further validating our assay in an independent cohort of CMMRD patients. The service is available upon request. We are confident this assay will provide a functional definition, or "signature", for CMMRD, similar to the chromosomal breakage test for diagnosis of Fanconi anemia. In the near future, we believe that individuals who are at-risk of CMMRD will be tested solely using functional assays as the initial test.

ACKNOWLEDGEMENTS

We thank the cell bank from AP-HP Cochin - Saint Vincent de Paul, Paris, France, for providing most of the lymphoblastoid cell lines, Anne Durandy and Sven Kracker for providing biological material from 2 patients, Hélène Delhomelle for logistical assistance, and Barry lacopetta for critical reading of the manuscript.

REFERENCES

1. Lynch HT, de la Chapelle A. Hereditary colorectal cancer. N Engl J Med 2003;348:919-32.
2. Ricciardone MD, Ozcelik T, Cevher B, et al. Human MLH1 deficiency predisposes to hematological malignancy and neurofibromatosis type 1. Cancer Res 1999;59:290-3.
3. Wang Q, Lasset C, Desseigne F, et al. Neurofibromatosis and early onset of cancers in hMLH1-deficient children. Cancer Res 1999;59:294-7.
4. Shlien A, Campbell BB, de Borja R, et al. Combined hereditary and somatic mutations of replication error repair genes result in rapid onset of ultra-hypermutated cancers. Nat Genet 2015;47:257-62.
5. Wimmer K, Brugieres L, Duval A, et al. Constitutional or biallelic? Settling on a name for a recessively inherited cancer susceptibility syndrome. J Med Genet in press.
6. Wimmer K, Etzler J. Constitutional mismatch repair-deficiency syndrome: have we so far seen only the tip of an iceberg? Hum Genet 2008;124:105-22.
7. Felton KE, Gilchrist DM, Andrew SE. Constitutive deficiency in DNA mismatch repair. Clin Genet 2007;71:483-98.
8. Herkert JC, Niessen RC, Olderode-Berends MJ, et al. Paediatric intestinal cancer and polyposis due to bi-allelic PMS2 mutations: case series, review and follow-up guidelines. Eur J Cancer 2011;47:965-82.
9. Wimmer K, Kratz CP, Vasen HF, et al. Diagnostic criteria for constitutional mismatch repair deficiency syndrome: suggestions of the European consortium 'Care for CMMRD' (C4CMMRD). J Med Genet 2014;51:355-365.
10. Karran P, Stephenson C. Mismatch binding proteins and tolerance to alkylating agents in human cells. Mutat Res 1990;236:269-75.
11. Karran P. Mechanisms of tolerance to DNA damaging therapeutic drugs. Carcinogenesis 2001;22:1931-7.
12. Karran P, Bignami M. Self-destruction and tolerance in resistance of mammalian cells to alkylation damage. Nucleic Acids Res 1992;20:2933-40.
13. Hawn MT, Umar A, Carethers JM, et al. Evidence for a connection between the mismatch repair system and the G2 cell cycle checkpoint. Cancer Res 1995;55:3721-5.
14. Carethers JM, Hawn MT, Chauhan DP, et al. Competency in mismatch repair prohibits clonal expansion of cancer cells treated with N-methyl-N'-nitro-Nnitrosoguanidine. J Clin Invest 1996;98:199-206.
15. Kat A, Thilly WG, Fang WH, et al. An alkylation-tolerant, mutator human cell line is deficient in strand-specific mismatch repair. Proc Natl Acad Sci U S A 1993;90:64248.
16. Ionov Y, Peinado MA, Malkhosyan S, et al. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature 1993;363:558-61.
17. Parsons R, Li GM, Longley M, et al. Mismatch repair deficiency in phenotypically normal human cells. Science 1995;268:738-40.
18. Etzler J, Peyrl A, Zatkova A, et al. RNA-based mutation analysis identifies an unusual MSH6 splicing defect and circumvents PMS2 pseudogene interference. Hum Mutat 2008;29:299-305.
19. Sourrouille I, Coulet F, Lefevre JH, et al. Somatic mosaicism and double somatic hits can lead to MSI colorectal tumors. Fam Cancer 2013;12:27-33.
20. Wernstedt A, Valtorta E, Armelao F, et al. Improved multiplex ligation-dependent probe amplification analysis identifies a deleterious PMS2 allele generated by recombination with crossover between PMS2 and PMS2CL. Genes Chromosomes Cancer 2012;51:819-31.
21. Pasmant E, Sabbagh A, Masliah-Planchon J, et al. Role of noncoding RNA ANRIL in genesis of plexiform neurofibromas in neurofibromatosis type 1. J Natl Cancer Inst 2011;103:1713-22.
22. Mongin C, Coulet F, Lefevre JH, et al. Unexplained polyposis: a challenge for geneticists, pathologists and gastroenterologists. Clin Genet 2012;81:38-46.
23. Jiricny J. The multifaceted mismatch-repair system. Nat Rev Mol Cell Biol 2006;7:335-46.
24. Ingham D, Diggle CP, Berry I, et al. Simple Detection of Germline Microsatellite Instability for Diagnosis of Constitutional Mismatch Repair Cancer Syndrome. Hum Mutat 2013;34:847-52.
25. Senter L, Clendenning M, Sotamaa K, et al. The clinical phenotype of Lynch syndrome due to germ-line PMS2 mutations. Gastroenterology 2008;135:419-28.
26. Bakry D, Aronson M, A Durno C, et al. Genetic and clinical determinants of constitutional mismatch repair deficiency syndrome: report from the constitutional mismatch repair deficiency consortium. Eur J Cancer 2014;50:987-96.
27. Okkels H, Lindorff-Larsen K, Thorlasius-Ussing O, et al. MSH6 mutations are frequent in hereditary nonpolyposis colorectal cancer families with normal pMSH6 expression as detected by immunohistochemistry. Appl Immunohistochem Mol Morphol 2012;20:470-7.
28. Grindedal EM, Aarset H, Bjornevoll I, et al. The Norwegian PMS2 founder mutation c.989-1G > T shows high penetrance of microsatellite instable cancers with normal immunohistochemistry. Hered Cancer Clin Pract 2014;12:12.
29. Bougeard G, Olivier-Faivre L, Baert-Desurmont S, et al. Diversity of the clinical presentation of the MMR gene biallelic mutations. Fam Cancer 2014;13:131-5.
30. Yang G, Scherer SJ, Shell SS, et al. Dominant effects of an Msh6 missense mutation on DNA repair and cancer susceptibility. Cancer Cell 2004;6:139-50.
31. Lin DP, Wang Y, Scherer SJ, et al. An Msh2 point mutation uncouples DNA mismatch repair and apoptosis. Cancer Res 2004;64:517-22.
32. Auclair J, Leroux D, Desseigne F, et al. Novel biallelic mutations in MSH6 and PMS2 genes: gene conversion as a likely cause of PMS2 gene inactivation. Hum Mutat 2007;28:1084-90.
33. Chmara M, Wernstedt A, Wasag B, et al. Multiple pilomatricomas with somatic CTNNB1 mutations in children with constitutive mismatch repair deficiency. Genes Chromosomes Cancer 2013;52:656-64.
34. Ilencikova D, Sejnova D, Jindrova J, et al. High-grade brain tumors in siblings with biallelic MSH6 mutations. Pediatr Blood Cancer 2011;57:1067-70.
35. Gardes P, Forveille M, Alyanakian MA, et al. Human MSH6 deficiency is associated with impaired antibody maturation. J Immunol 2012;188:2023-9.
36. Raevaara TE, Gerdes AM, Lonnqvist KE, et al. HNPCC mutation MLH1 P648S makes the functional protein unstable, and homozygosity predisposes to mild neurofibromatosis type 1. Genes Chromosomes Cancer 2004;40:261-5.

Author names in bold designate shared co-first authorship.

LEGENDS

Figure 1. Proof of concept study. (A) LCLs but not PBLs from CMMRD patients display evMSI. Electrophoretograms of fluorescent amplification products for NR27, NR21 and BAT26 microsatellites. The length of the predominant allele in base pairs (bp) and the fluorescence intensity are indicated in the box below each profile. Deletions (red arrows) occurred at these loci in lymphoblastoid cell lines (LCLs) derived from CMMRD patients C01.1 (PMS2 deficient), C14 (MSH6 deficient) and C15 (MLH1 deficient) compared with their respective peripheral blood lymphocytes (PBLs). In PBLs, the PCR profiles were similar in CMMRD patients C01.1 or C14 and their respective parents, demonstrating that MSI could only be demonstrated ex vivo. (B). CMMRD patients but not controls display evMSI. Deletions, expressed as the size of deletion for each marker and the cumulative size of deletion (i.e. the sum of the deletions observed in the 3 markers) were observed in LCLs from the 3 CMMRD patients but not in MMR-proficient controls that included 4 LS patients and one individual with wild-type (wt) MMR status. (C) LCLs from CMMRD patients displayed methylation tolerance. One, two or three rounds of MNNG treatment at 24-hour intervals were performed. LCLs from the 3 CMMRD patients (red) were phenotypically distinguishable from heterozygous (green) and wild-type (blue) LCLs using several experimental conditions. (D) 6-TG response of LCLs from the 3 CMMRD patients (red), 4 LS patients (green) and one individual with wild-type MMR status (blue).

Figure 2. Flow diagram of patient study cohort.
The functional assay, which includes the evMSI and methylation tolerance tests, allowed either the diagnosis or exclusion of CMMRD.

DM, deleterious mutation; VUS, variant of unknown significance; LCL, lymphoblastoid cell line.

Figure 3. Tolerance of immortalized lymphoblasts derived from 14 CMMRD patients and a series of MMR-proficient controls (including LS patients and MMR wild-type individuals) to increasing concentrations of MNNG.

Because of the short half-life of MNNG in aqueous solution, 1, 2 or 3 pulses of treatment were performed. With the exception of $\mathrm{MLH}^{+/-}$LCLs $(\mathrm{n}=11)$ that behaved similarly to MMR wild-type lymphoblasts $(\mathrm{n}=12)$ in all experimental conditions, $M S H 2^{+/-}(\mathrm{n}=12)$, PMS2 $^{+/-}(\mathrm{n}=4)$ and mainly $\mathrm{MSH6}^{+-}$cell lines ($\mathrm{n}=13$) exhibited increased cell survival under low MNNG concentrations. At higher MNNG concentrations and/or increasing numbers of drug treatments, the survival of $\mathrm{MSH}^{+/-}, \mathrm{PMS2}^{+/-}$and $\mathrm{MSH}^{+/-}$lines decreased towards that of $\mathrm{MLH}^{+/-}$and MMR wild-type cells, whereas CMMRD LCLs remained quite tolerant to the drug. The best experimental condition to discriminate CMMRD patients from controls was two rounds of $2.5 \mu \mathrm{M}$ MNNG (red box). Patients with CMMRD or LS are represented with distinct colors depending on the MMR gene that was mutated (red for PMS2, blue for MSH6, yellow for MSH2 and green for MLH1).

Figure 4. evMSI and methylation tolerance assays in a case-control study (A) and in patients considered at-risk for this syndrome (B).
A. Case-control study involving 14 CMMRD patients and 23 MMR-proficient controls comprising 12 LS patients with heterozygous mutations affecting MMR genes and 11 patients with no detected germline MMR mutation. EvMSI assay (left): Deletion sizes (in
base pair, bp) are expressed as the sum of the deletions for the 3 markers (NR27, NR21 and BAT26). The cut-off value used to define a cell line as positive for evMSI was set at 1 bp deletion for all 3 markers (red dotted line). LCLs from all 14 CMMRD patients showed decreased allele size, regardless of which MMR gene was mutated, whereas no deletions were detected in the 23 MMR-proficient controls tested. Methylation tolerance assay (right): Survival (\%) of immortalized lymphoid cells derived from the same 14 CMMRD patients and from controls after 2 rounds of $2.5 \mu \mathrm{M}$ MNNG treatment. Since some LS patients displayed increased tolerance to MNNG compared to MMR wild-type controls, a larger series of LS patients was used for the drug assay. Whereas $\mathrm{MLH} 1^{+/}$LCLs behaved similarly to MMR wild-type lymphoblasts, $\mathrm{MSH2}^{+-}$and especially $\mathrm{MSH}^{+/-}$cell lines exhibited significantly increased median cell survival. Overall, all CMMRD-derived LCLs displayed cell survival higher than 60%, whereas cell survival of all MMR-proficient LCLs was lower than 40%, with the exception of one case. The cut-off value was arbitrarily set at 50% cell survival (red dotted line). Student's t test.
B. evMSI (left) and methylation tolerance (right) tests were applied for the detection of CMMRD syndrome in 23 patients with a clinical presentation suggestive of CMMRD, but for whom the diagnosis could not be confirmed (or excluded) by sequencing of MMR genes. These comprised of 8 patients with bi-allelic MMR alterations involving one or two VUS, 5 patients with a single MMR alteration and 10 patients without germline MMR mutation. One of the latter (patient C29.1) showed abnormal functional assay results for both tests, which prompted us to perform additional PMS2 genetic screening that led to the identification of a homozygous deletion.

Vertical line=VUS, cross=deleterious mutation.
CMMRD and LS patients are represented using distinct colors depending on the MMR gene that was mutated.

Figure 5. Proposed algorithm for the evaluation of patients suspected of having CMMRD.

In the next future, individuals with a clinical score of ≥ 3 according to Wimmer et al. ${ }^{9}$ should be initially tested by functional assays. Since this approach has a high NPV, a normal result obtained with the functional assays would confidently allow the diagnosis of CMMRD to be excluded without the need for additional tests. Alternatively, an abnormal result would be highly suggestive of CMMRD. However, due to the relatively low PPV (80.5\%) associated with this assay, we recommend that medical geneticists and pediatricians further investigate these 'at-very-high-risk' cases using other approaches (IHC, gMSI, sequencing of MMR genes) in order to confirm the diagnosis. It is worth noting that IHC results can be used to guide germline mutation analysis to a specific MMR gene, whereas in this context the finding of a normal gMSI ratio would direct genetic analysis to the MSH6 gene.

* LS should be sought in cases with evocative criteria

Patient	$\begin{aligned} & \text { Clinical } \\ & \text { score }^{\text {a }} \end{aligned}$	Germline MMR analysis				Publication or physician (country)
		Gene	Mutation type	$\text { Class }{ }^{\text {b }}$	Status	
CMMRD patients with confirmed molecular diagnosis, i.e. with bi-allelic pathogenic MMR gene alterations						
C01.1	7	PMS2	Frameshift / Missense	DM / DM	Compound heterozygous	Auclair et al., $2007{ }^{32}$
C01.2	7	PMS2	Frameshift / Missense	DM / DM	Compound heterozygous	Auclair et al., $2007{ }^{32}$
C 02	3	PMS2	Frameshift / Frameshift	DM / DM	Homozygous	Ilencikova (Slovakia)
C03.1	8	PMS2	Frameshift / Frameshift	DM / DM	Homozygous	patient 1 in Chmara et al., 20133^{33}
C03.2	9	PMS2	Frameshift / Frameshift	DM / DM	Homozygous	patient 1.2 in Chmara et al., $2013{ }^{33}$
C 04	7	PMS2	Large deletion / Large deletion	DM / DM	Compound heterozygous	patient 2 in Chmara et al., $2013{ }^{33}$
C 05	10	PMS2	Nonsense / Nonsense / Frameshift	DM / DM / DM	Compound heterozygous	Brugières (France)
C06	8	PMS2	Splice / Splice	DM / DM	Homozygous	Brugières (France)
C 07	8	PMS2	Missense / Missense	DM / DM	Homozygous	Colas (France)
C08	8	PMS2	Missense / Missense	DM / DM	Homozygous	Malka (France)
C09.1	5	PMS2	Splice / Splice	DM / DM	Homozygous	Brugières (France)
C10	4	PMS2	Splice / Splice	DM / DM	Homozygous	Brugières (France)
C11	11	$\begin{aligned} & \text { PMS2 } \\ & \text { MSH2 } \\ & \text { MSH6 } \\ & \hline \end{aligned}$	Large deletion / Large deletion Missense Missense	DM / DM VUS VUS	Homozygous Heterozygous Heterozygous	Fedhila / Colas (Tunisia)
C12	5	MSH6	Frameshift / Frameshift	DM / DM	Homozygous	patient PIV. 5 in Ilencikova et al., $2011{ }^{34}$
C13.1	10	MSH6	Frameshift / Frameshift	DM / DM	Compound heterozygous	patient P6 in Gardes et al., $2012{ }^{35}$
C14	8	MSH6	Frameshift / Frameshift	DM / DM	Compound heterozygous	Auclair et al., $2007{ }^{32}$
C15	10	MLH1	Splice / Splice	DM / DM	Homozygous	Entz Werle (France)
C16	9	MLH1	Missense / Missense	DM / DM	Homozygous	Raevaara et al., $2004{ }^{36}$
C17	6	MSH2	Large deletion / Large deletion	DM / DM	Homozygous	Verloes (France)
Patients with clinical characteristics of CMMRD syndrome but a lack of confirmatory standard genetic defect						
C18	6	PMS2	In frame deletion / Missense	DM / VUS	Compound heterozygous	Lejeune (France)
C19	8	PMS2	Missense / Frameshift	VUS / DM	Compound heterozygous	Dramard (France)
C20.1	7	MSH6	Missense / Missense	VUS / VUS	Homozygous	Leis (Afghanistan)
C20.2	7	MSH6	Missense / Missense	VUS / VUS	Homozygous	Leis (Afghanistan)
C21	14	MSH6 MSH2	Frameshift / In frame deletion Missense	$\begin{aligned} & \text { DM / VUS } \\ & \text { VUS } \\ & \hline \end{aligned}$	Compound heterozygous Heterozygous	Bougeard et al. $2014{ }^{29}$
C22	8	$\begin{aligned} & \text { MSH6 } \\ & \text { PMS2 } \end{aligned}$	Missense / Missense Missense	$\begin{aligned} & \text { VUS / VUS } \\ & \text { vUS } \end{aligned}$	Homozygous Heterozygous	Wafaa / Colas (Marocco)
C23	13	MSH6	In frame duplication / In frame duplication	VUS / VUS	Heterozygous	Gauthier-Villars (France)
C24	6	MSH2	Splice / Splice	DM / VUS	Compound heterozygous	Ruiz Ponte (Spain)
C25	5	PMS2	Frameshift	DM	Heterozygous	Colas (France)
C26	4	PMS2	Large deletion	DM	Heterozygous	Kinzel (Germany)
C27	3	MLH1	Frameshift	DM	Heterozygous	Colas (France)

		MSH2 Missense ACCEPIED) VANUSCRIPI				
C28	1	MLH1	Splice	DM	Heterozygous	Caron (France)
C29.1	4	-	no MMR mutation identified ${ }^{\text {c }}$	-	-	Brugières (France)
C30	4	MSH2	Splice	VUS	Heterozygous	Brugières (France)
C31	3	-	no MMR mutation identified	-	-	Mortemousque (France)
C32	3	-	no MMR mutation identified	-	-	Brugières (France)
C33	4	-	no MMR mutation identified	-	-	Wang (France)
C34.1	4	-	no MMR mutation identified	-	-	Grandjouan (France)
C35	6	-	no MMR mutation identified	-	-	Brugières (France)
C36	3	-	no MMR mutation identified	-	-	Grandjouan (France)
C37	4	-	no MMR mutation identified	-	-	Colas (France)
C29.2	NA	-	no MMR mutation identified ${ }^{\text {c }}$	-	-	Brugières (France)
C34.2	4	-	no MMR mutation identified	-	-	Brugières (France)

Table 1. Data set for known and putative CMMRD patients
${ }^{\text {a }}$ Clinical score according to Wimmer et al. ${ }^{9}$; NA, not applicable
${ }^{b}$ DM, deleterious mutation; VUS, variant of unknown significance
${ }^{\text {c }}$ Extensive genetic screening was performed post-hoc in view of the abnormal functional assay results found in patient C29.1. It led to the identification of a homozygous deletion of exons 14-15 of the PMS2 gene, c.276-? (*160?) del, while the brother (patient C29.2) was found as heterozygote for the PMS2 deletion.
Detailed description of the MMR gene alterations is provided in supplementary table 1

Patient	MMR sequencing	Functional assays		Diagnosis according to functional assays	Comparison with other tests	
	status MMR gene	$e v \text { MSI }$	methylation tolerance		gMSI	MMR protein expression in normal tissue (IHC)
CMMRD patients $\mathrm{n}=14$						
$\begin{aligned} & \hline \mathrm{C} 15 \\ & \mathrm{C} 06, \mathrm{C} 07, \mathrm{C} 08, \mathrm{C} 09.1 \\ & \mathrm{C} 10 \\ & \mathrm{C} 04, \mathrm{C} 05 \\ & \mathrm{C} 01.1 \end{aligned}$	hmz DM $M L H 1$ hmz DM $P M S 2$ hmz DM $P M S 2$ cpd htz DM $P M S 2$ cpd htz DM $P M S 2$	+	+		+	lost lost NA lost NA
C01.2	cpd htz DM PMS2	+	+	CMMrd	NA	lost
$\begin{aligned} & \hline \mathrm{C} 02 \\ & \mathrm{C} 14 \end{aligned}$	hmz DM PMS2 cpd htz DM MSH6	+	+		NI	$\begin{aligned} & \text { NA } \\ & \text { lost } \end{aligned}$
$\begin{aligned} & \mathrm{C} 12 \\ & \mathrm{C} 13.1 \end{aligned}$	hmz DM MSH6 cpd htz DM MSH6	+	$+$		-	$\begin{aligned} & \text { NA } \\ & \text { NA } \end{aligned}$
Patients at-risk for CMMRD n=23						
C29.1	no mutation ${ }^{\text {a }}$	+	+		+	lost
$\begin{aligned} & \text { C20.1 } \\ & \text { C20.2, C22 } \\ & \text { C18 } \end{aligned}$	hmz VUS MSH6 hmz VUS MSH6 DM + VUS PMS2	+	+	CMMRD	-	lost conserved lost
C19	DM + VUS PMS2	+	+		NI	lost
$\begin{aligned} & \mathrm{C} 24 \\ & \mathrm{C} 30 \\ & \mathrm{C} 25 \\ & \mathrm{C} 26 \\ & \mathrm{C} 27 \\ & \mathrm{C} 28 \\ & \mathrm{C} 34.2 \end{aligned}$	DM + VUS $M S H 2$ htz VUS $M S H 2$ htz DM $P M S 2$ htz DM $P M S 2$ htz DM $M L H 1$ htz DM $M L H 1$ no mutation		-	not CMMRD	-	conserved NA lost conserved NA conserved conserved

C29.2, C31, C32, C34.1, C35, C36, C37	no mutation ${ }^{\text {a }}$		-	-		NA	
C33	no					NI	NA
$\begin{aligned} & \mathrm{C} 21 \\ & \mathrm{C} 23 \end{aligned}$	$\begin{gathered} \text { DM + VUS } \\ \text { hmz VUS } \end{gathered}$	$\begin{aligned} & \text { MSH6 } \\ & \text { MSH6 } \end{aligned}$	-	+	Doubtful	-	lost lost

Table 2. evMSI, methylation tolerance, gMSI and IHC data in the series of 14 CMMRD patients with bi-allelic pathogenic MMR gene alterations and in 23 patients at-risk for whom diagnosis could not be confirmed by MMR sequencing.
${ }^{\text {a }}$ extensive genetic screening that was performed post-hoc led to the identification of a deletion of exons 14-15 in the PMS2 gene that was found at an homozygous or heterozygous status in patients C29.1 and C29.2, respectively.

Detailed data on the expression of MMR proteins in normal tissue and on gMSI test are provided in supplementary tables 1 to 3.

VUS, variant of unknown significance; DM, deleterious mutation; hmz, homozygous; htz, heterozygous; cpd, compound; + , positive/abnormal; -, negative/normal; NI, not interpretable; NA, not available.
A.

Table 2. $e v$ MSI, methylation tolerance, gMSI and IHC data in the series of 14 CMMRD patients with bi-allelic pathogenic MMR gene alterations and in patients at-risk for whom diagnosis could not be confirmed by MMR sequencing.
${ }^{\text {a }}$ extensive genetic screening that was performed post-hoc led to the identification of a deletion of exons 14-15 in the PMS2 gene that was found at an homozygous or heterozygous status in patients C29.1 and C29.2, respectively.

Detailed data on the expression of MMR proteins in normal tissue and on gMSI test are provided in supplementary tables 1 to 3 .

VUS, variant of unknown significance; DM, deleterious mutation; hmz, homozygous; htz, heterozygous; cpd, compound; +, positive/abnormal; -, negative/normal; NI, not interpretable; NA, not available.

SUPPLEMENTARY MATERIAL AND METHODS

Patients. All of the 19 genetically confirmed and 19 of the 23 suspected CMMRD patients included in this study had a score ≥ 3 points according to the recently published clinical criteria for the suspected diagnosis of CMMRD. Additionally, four patients were included in this study. One patient (C28) was included because he displayed a very severe clinical history with four LS-related tumors from 32 to 36 year and osteosarcoma at the age of 11 years old (osteosarcoma was found in the CMMRD patient C05 at the age of 24 years old). Equally, one patient (C27) was included since, compared to other members of this LS family, he had a very early onset (30 years) of two synchronous colon cancers with an adenoma and a brother who had a malignant brain tumour at the age of 18 years. Another patient (C33) had a cerebral tumor at the age of 27 years old as well as CALMs and her sister displayed a cerebral tumor (22 years). Finally, one was an asymptomatic sibling with CALMs of a possible CMMRD patient (C29.2). Altogether, the study included 42 patients (37 families) from several European cancer centers. Control subjects considered free of MMR germline defects included five FAP and two NF1 individuals with identified germline APC or NF1 mutations, respectively (FAP and NF1 were chosen because they represent cancer predisposition syndromes showing clinical overlap with CMMRD) and eight control patients diagnosed with sporadic colorectal cancer without familial cancer history. These patients had developed microsatellite stable tumors (6 cases) or MSI tumors due to epigenetic silencing of MLH 1 because of somatic methylation (2 cases) and thus were not suspected of having CMMRD syndrome.

Colorectal cell lines. Human colorectal cancer cell lines were grown in DMEM with glutamax supplemented with 10% FCS, $100 \mathrm{IU} / \mathrm{ml}$ penicillin and $100 \mathrm{mg} / \mathrm{ml}$
streptomycin (PAA). They included 6 microsatellite unstable (HCT116, LIM2405, LS174T, KM12 (all MLH1-deficient), HCT15 (MSH6 mutated) and LoVo (homozygous deletion of exons 2-8 of MSH2)) and 5 microsatellite stable (LS513, SW620, Caco-2, FET and HCT116 mlh1-2 (HCT116 transfected with an MLH1expression vector ${ }^{1}$) cell lines.

Treatment of colorectal cell lines. Cells in the exponential growth phase were counted by trypan blue exclusion and seeded into 24 -well plates (Falcon) at a density of $0.2-5 \times 10^{5}$ cells/well in complete medium. After $24-\mathrm{h}$ incubation, 6 -TG (1, 5,15 , $20 \mu \mathrm{M}$ final concentrations) or extemporaneously reconstituted MNNG (0.1, 1, 5, $20 \mu \mathrm{M}$ final concentrations) was added. Medium was removed and replaced with fresh medium after 24-h or 1-h incubation, respectively. Cell growth was evaluated after a total incubation period of 7 to 9 days. To exclude differences in MNNG cytotoxicity due to variations in O^{6}-methylguanine methyltransferase enzyme activity, the latter was abrogated by exposure to O^{6}-benzylguanine ($20 \mu \mathrm{M}$ final concentration) during the entire experiment. All samples were tested in quadruplicate.

6-TG treatment of lymphoblastoid cell lines. Cells suspended in complete medium $\left(3 \times 10^{5} \mathrm{cell} / \mathrm{mL}\right)$ were distributed into 6 microtubes with increasing concentrations of 6TG ($0.15,0.3,0.6,1.25$ and $2.5 \mu \mathrm{M}$ final concentrations) into 5 of them. After 24-h incubation, all microtubes were centrifuged, the cells were rinsed with fresh medium and then seeded in $100 \mu \mathrm{~L}$ aliquots into 96 -well round-bottom plates $\left(0.6 \times 10^{4}\right.$ cells/well). Cell growth was evaluated after a total incubation time of 7 days and all samples were tested in sextuplicate.

DNA extraction for evMSI and gMSI assays. Ficoll-Plaque PLUS was used to isolate human lymphocytes from blood patients, according to the supplier's recommendations (GE Healthcare). DNA extraction from lymphocytes or LCL was
performed using QIAmp DNA kit according to the supplier's recommendations (Qiagen).

Determining the gMSI ratio. Multiplex PCR amplification in triplicate (denaturation of $95^{\circ} \mathrm{C}$ for 2 min , followed by 35 cycles of $95^{\circ} \mathrm{C}$ fo $\mathrm{r} 30 \mathrm{sec}, 55^{\circ} \mathrm{C}$ for 30 sec , and $72^{\circ} \mathrm{C}$ for 60 sec , with a final extension at $72^{\circ} \mathrm{C}$ for 10 min) of the dinucleotide microsatellite markers D17S791, D2S123 and D17S250 was developed using the primers previously described ${ }^{2}$, and using 10 ng of patient germinal DNA. PCR products were separated by capillary electrophoresis on an ABI3100 genetic analyzer and quantified using Gene Mapper software v3.7. Briefly, the gMSI ratio was determined by dividing the height of an allele's trailing "stutter" peak $(\mathrm{n}+1)$ by the height of the allele's major peak (n). Interpretation required that the size difference between alleles in heterozygous individuals was $\geq 6 \mathrm{bp}{ }^{2}$.

Statistical analysis. We developed a Bayesian approach to conduct inference for the unknown prevalence, sensitivity and specificity of the three diagnostic methods as performed in Joseph et al. ${ }^{3}$. Our setting was however different from theirs, in particular we knew the true disease status for controls and genetically confirmed CMMRD patients, which removes the lack of identifiability of Joseph et al. approach pointed out in Johnson et al. ${ }^{4}$.

In the saturated model, the joint distribution of the tests or combination of tests was assumed to be multinomial with 16 categories, corresponding to all possible observations. The multinomial parameters were expressed as the true proportion of confirmed CMMRD patients, sensitivity and specificity of the tests. We assumed conditional independence of the tests to ensure identifiability in the unsaturated model. A Metropolis-Hastings algorithm was run on the data to estimate the seven parameters and two-sided confidence intervals ${ }^{3,5}$. Let D be the true CMMRD status
$(+/-), \mathrm{T}_{1}(+/-), \mathrm{T}_{2}(+/-)$ and $\mathrm{T}_{3}(+/-)$ be the result of MMR gene sequencing, functional testing and gMSI testing, respectively. The true proportion of CMMRD patients, sensitivity and specificity of the three tests or combination of tests are defined as:

$$
\begin{aligned}
\pi & =\mathbb{P}(D=+) \\
s_{1} & =\mathbb{P}\left(T_{1}=+\mid D=+\right) \text { and } c_{1}=\mathbb{P}\left(T_{1}=-\mid D=-\right) \\
s_{2} & =\mathbb{P}\left(T_{2}=+\mid D=+\right) \text { and } c_{2}=\mathbb{P}\left(T_{2}=-\mid D=-\right) \\
s_{3} & =\mathbb{P}\left(T_{3}=+\mid D=+\right) \text { and } c_{3}=\mathbb{P}\left(T_{3}=-\mid D=-\right)
\end{aligned}
$$

The observed data are summarized in the table below (the rows with no observations are not reported), the usual latent variables are denoted by $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$.

Genetic testing	Methylation tolerance and evMSI	$\mathbf{g M S I}$	True status	Data
+	+	+	CMMRD +	9
+	+	-	CMMRD +	2
-	-	-	CMMRD +	Y
-	-	-	CMMRD-	$9+15-\mathrm{Y}$
-	+	+	CMMRD +	X
-	+	+	CMMRD-	$1-\mathrm{X}$
-	+	-	CMMRD +	Z
-	+	-	CMMRD-	$4-Z$

We particularized MSH6 cases, since gMSI is not relevant to identify CMMRD patients with MSH6 defects. As a consequence, we rewrite $Y=Y_{\mathrm{MSH} 6}+Y_{\mathrm{noMSH} 6}$

$$
\text { with } \quad Y_{\mathrm{MSH} 6} \sim \mathcal{B}\left(2, \frac{\pi\left(1-s_{1}\right)\left(1-s_{2}\right)}{\pi\left(1-s_{1}\right)\left(1-s_{2}\right)+(1-\pi) c_{1} c_{2}}\right)
$$

$$
\text { and } \quad Y_{\mathrm{noMSH} 6} \sim \mathcal{B}\left(13, \frac{\pi\left(1-s_{1}\right)\left(1-s_{2}\right)\left(1-s_{3}\right)}{\pi\left(1-s_{1}\right)\left(1-s_{2}\right)\left(1-s_{3}\right)+(1-\pi) c_{1} c_{2} c_{3}}\right)
$$

$$
Z=Z_{\mathrm{MSH} 6}+Z_{\mathrm{noMSH} 6}
$$

$$
\text { with } Z_{\mathrm{MSH} 6} \sim \mathcal{B}\left(1, \frac{\pi\left(1-s_{1}\right) s_{2}}{\pi\left(1-s_{1}\right) s_{2}+(1-\pi) c_{1}\left(1-c_{2}\right)}\right)
$$

$$
\text { and } \quad Z_{\mathrm{noMSH} 6} \sim \mathcal{B}\left(3, \frac{\pi\left(1-s_{1}\right) s_{2}\left(1-s_{3}\right)}{\pi\left(1-s_{1}\right) s_{2}\left(1-s_{3}\right)+(1-\pi) c_{1}\left(1-c_{2}\right) c_{3}}\right)
$$

conditionally to the parameters.

This formulation allowed us to fit the model through the Metropolis-Hastings algorithm ${ }^{6}$. In the latter, we considered a Dirichlet prior for the joint distribution of the seven parameters. The parameters of the marginal prior distributions were chosen as $(1,1)$ for the true proportion of CMMRD patients, the sensitivities and the specificities. The Metropolis-Hastings algorithm was run on 50000 iterations and the last 25000 iterations were used to derive estimations and confidence intervals for the sensitivities, specificities, positive and negative predictive values of MMR gene sequencing, functional testing and gMSI testing. The same procedure has been applied for the comparison between MMR gene sequencing and functional testing.

References

1. Jacob S, Aguado M, Fallik D, et al. The role of the DNA mismatch repair system in the cytotoxicity of the topoisomerase inhibitors camptothecin and etoposide to human colorectal cancer cells. Cancer Res 2001;61:6555-62.
2. Ingham D, Diggle CP, Berry I, et al. Simple Detection of Germline Microsatellite Instability for Diagnosis of Constitutional Mismatch Repair Cancer Syndrome. Hum Mutat 2013.
3. Joseph L, Gyorkos TW, Coupal L. Bayesian estimation of disease prevalence and the parameters of diagnostic tests in the absence of a gold standard. Am J Epidemiol 1995;141:263-72.
4. Johnson WO, Gastwirth JL, Pearson LM. Screening without a "gold standard": the Hui-Walter paradigm revisited. Am J Epidemiol 2001;153:921-4.
5. Hui SL, Walter SD. Estimating the error rates of diagnostic tests. Biometrics 1980;36:167-71.
6. Hastings WK. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 1970;57:97-109.

Legends

Supplementary figure 1. Tolerance of human colon cancer cell lines to increasing concentrations of MNNG (A) and 6-TG (B).

Regardless of the defective MMR gene, MMR-deficient colon cancer cell lines (red symbols) showed statistically significant increases (10-fold using $1 \mu \mathrm{M}$ MNNG and 2fold using $15 \mu \mathrm{M} 6-\mathrm{TG})$ in mean cell survival compared with MMR-proficient cell lines (blue symbols). Mean $\pm S D .{ }^{*}$ for $P<0.05$, ** for $P<0.01$, *** for $P<0.001$; ns, not significant ; Student's t test.

Supplementary figure 2. Pedigrees of all previously unreported patients with indications for LS- or CMMRD-related (filled symbols) and other (striped symbols) malignancies / pre-malignancies and age at diagnosis (in years).

Arrows indicated the patients included in the study and their concise MMR genotype is shown (bold characters). Ad, adenoma; AML, acute myeloid leukemia; C, cancer ; CALMs, café-au-lait macules; CRC, colorectal cancer; CT, cerebral tumor; DM, deleterious mutation; EC, endometrial cancer; hmz, homozygous; htz, heterozygous; mut, mutation; VUS, variant of unknown significance.

Supplementary figure 3. Tolerance of immortalized lymphoblasts derived from 14 CMMRD patients and a series of MMR-proficient controls (including LS patients and

MMR wild-type individuals) to increasing concentrations of 6-TG.
Patients with CMMRD or LS are represented with distinct colors depending on which MMR gene was mutated (red for PMS2, blue for MSH6, yellow for MSH2 and green for MLH1).

Supplementary figure 4. Histogram showing gMSI ratios at each marker (D17S791, D2S123 and D17S250) for the 18 CMMRD patients tested (the deficient MMR gene is indicated) and for a series of 19 LS patients and 220 controls from the Human Genome Diversity Panel.

Error bars represent the standard error of the mean. The horizontal blue, red and green lines indicate the gMSI cut-off values for markers D17S791, D2S123 and D17S250, respectively. Test result is positive (i.e. abnormal) when the gMSI ratios of at least 2 markers are above the cut-off value, and negative (i.e. normal) when the gMSI ratios of at least 2 markers are below the cut-off value. Otherwise, the result is considered as not interpretable which made the test non-informative in $3 / 18$ (16.7\%) CMMRD patients (labeled with *), 3/19 (15.8\%) LS patients and 39/220 (17.7\%) controls. The two CMMRD patients with MSH6 deficiency (C12 and C13.1) were not detected by this method whereas CMMRD patients with PMS2, MLH1 or MSH2 deficiency displayed abnormal gMSI values. All controls were negative.

ACCEPTED MANUSCRIPT

Patient	Clinical and tumor data ${ }^{\text {a }}$	$\begin{array}{\|c\|} \hline \text { Clinical } \\ \text { score }^{\text {b }} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { Familial } \\ \text { history } \\ \hline \end{array}$	Germline MMR analysis				
				Gene	Exon	Mutation (Amino-acid change)	Type	Class ${ }^{\text {e }}$
CMMRD patients with confirmed molecular diagnosis, i.e. with bi-allelic pathogenic MMR gene alterations								
C01.1	oligodendroglioma (19); two colorectal cancers (MSI) (24)	7	S, R	PMS2	$\begin{gathered} 11 \\ 4 \end{gathered}$	c.1730dup ; p.Arg578Alafs*3 c.137G $>$ T ; p.Ser46Ile	Frameshift Missense	DM DM
C01.2	CALMs; colorectal cancer (MSI / PMS2 normal at 1rst analysis; lost in N and T at 2nd look) with 12 adenomas (20); endometrial cancer (24)	7	S, R	PMS2	$\begin{gathered} 11 \\ 4 \end{gathered}$	c. 1730dup ; p.Arg578Alafs*3 c. 137G $>\mathrm{T}$; p.Ser46Ile	Frameshift Missense	DM DM
C02	glioblastoma (4)	3	Co, R	PMS2	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	c.2521del ; p.Trp841Glyfs*10 c. 2521 del ; p.Trp841Glyfs*10	Frameshift Frameshift	$\begin{aligned} & \text { DM } \\ & \text { DM } \end{aligned}$
C03.1	pilomatricomas (PMS2 lost in N and T) (2), oligodendroglioma (11)	8	S, Co	PMS2	$\begin{aligned} & 11 \\ & 11 \end{aligned}$	c. 1164 del ; p.His 388 Glnfs *10 c.1164del ; p.His388GInfs*10	Frameshift Frameshift	DM DM
C03.2	CALMs; pilomatricomas (2), pre B-cell non Hodgkin lymphoma (3); glioblastoma (9)	9	S, Co	PMS2	$\begin{aligned} & 11 \\ & 11 \end{aligned}$	c. 1164 del ; p.His 388 Glnfs *10 c.1164del ; p.His388Glnfs*10	Frameshift Frameshift	$\begin{aligned} & \text { DM } \\ & \text { DM } \end{aligned}$
C04	CALMs; glioblastoma (4); B-cell non Hodgkin lymphoma (5); pilomatricomas (PMS2 lost in N and T)	7	-	PMS2	$\begin{gathered} 7-9 \\ 9-15 \end{gathered}$	$\begin{aligned} & \text { c. } 706-? .903+\text { ?del ; p.? } \\ & \text { c. } 904-? *+\text { del ; p.? } \end{aligned}$	Large deletion Large deletion	$\begin{aligned} & \text { DM } \\ & \text { DM } \end{aligned}$
C05	glioblastoma (22); colorectal cancer (MSI / PMS2 lost in N and T) with three adenomas (24); osteosarcoma (24); acute myeloblastics leukemia (30)	10	Co	$P M S 2$	$\begin{gathered} 5 \\ 5 \\ 11 \end{gathered}$	$\begin{aligned} & \text { c. } 400 \mathrm{C}>\mathrm{T} ; \text { p. } \mathrm{Arg} 134^{*} \\ & \text { c.400C>T } ; \text { p. Arg134* } \\ & \text { c. } 1579 \mathrm{del} ; \text { p.Arg } 527 \mathrm{Glyfs} * 68 \end{aligned}$	Nonsense Nonsense Frameshift	DM DM DM
C06	CALMs; testicular T-lymphoblastic lymphoma (5 and 14); rectal cancer (MSI/PMS2 lost in N and T) (16)	8	Co	PMS2	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & \text { c. } 2007-2 \mathrm{~A}>\mathrm{G} ; \mathrm{p} . ? \\ & \mathrm{c} .2007-2 \mathrm{~A}>\mathrm{G} ; \mathrm{p} . ? \end{aligned}$	Splice Splice	DM DM
C07	no CALMs; colorectal cancer (22); colorectal cancer (MSI/PMS2 lost in N and T) (25); glioblastoma (34); endometrial cancer (PMS2 lost in N and T) (36); duodenal cancer (MSS/PMS2 lost in N and T) (37); benin sebaceous cyst (37); multiple colorectal adenomas (>15) (since 22)	8	P, Co	PMS2	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	c.137G>T ; p.Ser46Ile c.137G>T ; p.Ser46Ile	Missense Missense	$\begin{aligned} & \text { DM } \\ & \text { DM } \end{aligned}$
C08	CALMs; colorectal cancer (19); colorectal cancer (MSI / PMS2 lost in N and weak in T) (20); lymphoblastic lymphoma (27)	8	-	PMS2	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	c.137G $>\mathrm{T} ; \mathrm{p}$. Ser46Ile c. 137G>T ; p.Ser46Ile	Missense Missense	$\begin{aligned} & \text { DM } \\ & \text { DM } \end{aligned}$
C09.1	CALMs; lymphoblastic lymphoma (4); PMS2 lost in normal skin	5	Co	PMS2	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & \text { c. } 2007-2 \mathrm{~A}>\mathrm{G} ; \mathrm{p} . ? \\ & \mathrm{c} .2007-2 \mathrm{~A}>\mathrm{G} ; \mathrm{p} . ? \end{aligned}$	Splice Splice	$\begin{aligned} & \text { DM } \\ & \text { DM } \end{aligned}$
C10	CALMs; glioblastoma (6)	4	Co	PMS2	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & \text { c. } 2007-2 \mathrm{~A}>\mathrm{G} ; \mathrm{p} . ? \\ & \mathrm{c} .2007-2 \mathrm{~A}>\mathrm{G} ; \mathrm{p} . ? \\ & \hline \end{aligned}$	Splice Splice	$\begin{aligned} & \text { DM } \\ & \text { DM } \end{aligned}$
C11	T-cell lymphoblatic mediastinal lymphoma (14), colorectal cancer with polyposis (16)	11	S	$\begin{aligned} & \text { PMS2 } \\ & \text { MSH2 } \\ & \text { MSH6 } \end{aligned}$	$\begin{gathered} 14 \\ 14 \\ 4 \\ \text { i3 } \end{gathered}$	$\begin{aligned} & \text { c. } 2275+210 _2446-1356 \mathrm{del} ; \text { p.Ala759Glyfs*8 } \\ & \text { c. } 2275+210 _2446-1356 \mathrm{del} ; \text { p.Ala759Glyfs*8 } \\ & \text { c. } 728 \mathrm{G}>\mathrm{A} ; \text {; } . \operatorname{Arg} 243 \mathrm{Gln} \\ & \text { c. } 627+25 _627+27 \mathrm{del} ; \text { p.? } \\ & \hline \end{aligned}$	Large deletion Large deletion Missense Missense	DM DM vus vus

C12	CALMs; T-non Hodgkin lymphoma (2) since publication	5	Co, R	MSH6	5	c.3261dupC ; p.Phe1088Leufs*5 c.3261dupC ; p.Phe1088Leufs*5	Frameshift Frameshift	$\begin{aligned} & \text { DM } \\ & \text { DM } \end{aligned}$
C13.1	CALMs; colon adenomas (10), glioblastoma (12.5); MSH6 lost in tumor of the sister	10	S, R	MSH6	9	c.3984_3987dup ; p.Leu1330Valfs*12 c.3959_3962del ; p.Ala1320Glufs*6	Frameshift Frameshift	$\begin{aligned} & \text { DM } \\ & \text { DM } \end{aligned}$
C14	CALMs; multiple adenomas (MSS / MSH6 lost in N and T) with high grade dysplasia (9)	8	S, R	MSH6	5	c.1596_1597dup ; p.Glu533Valfs*39 c.3261del ; p.Phe1088Serfs*2	Frameshift Frameshift	$\begin{aligned} & \text { DM } \\ & \text { DM } \end{aligned}$
C15	CALMs; lymphoblastic lymphoma (MSS/ MLH1 lost in N and) (5); glioblastoma (MLH1 lost in N and T) (6)	10	Co, S, R	MLHI	9	$\begin{aligned} & \text { c.678-7_686del ; p.? } \\ & \text { c.678-7_686del ; p.? } \end{aligned}$	Splice Splice	$\begin{aligned} & \text { DM } \\ & \text { DM } \end{aligned}$
C16	CALMs; neurofibroma (6); several adenomas and rectal cancer (15) since publication	9	Co	MLHI	$\begin{aligned} & 17 \\ & 17 \end{aligned}$	c.1942C>T ; p.Pro648Ser c.1942C>T ; p.Pro648Ser	Missense Missense	$\begin{aligned} & \text { DM } \\ & \text { DM } \end{aligned}$
C17	CALMs; cavernoma (3), T-cell lymphoblastic lymphoma (3)	6	P, Co	MSH2	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & \text { c.1277-?_c.1386+? ; p.? } \\ & \text { c.1277-?_c. } 1386+? ; \text { p.? } \end{aligned}$	Large deletion Large deletion	$\begin{aligned} & \text { DM } \\ & \text { DM } \end{aligned}$
Patients with clinical characteristics of CMMRD syndrome but a lack of confirmatory standard genetic defect								
C18	CALMs; colorectal cancer (22); colorectal cancer (MSI/PMS2 lost in N and T) with adenoma (32); multiple adenomas with high grade dysplasia (38); glioblastoma (40)	6	R	PMS2	$\begin{aligned} & 10 \\ & 13 \end{aligned}$	c. 989?_1144+?del ; p.Glu330_Glu381del c. $2249 \mathrm{G}>\mathrm{A} ;$ p. Gly 750 Asp	In frame deletion Missense	$\begin{gathered} \text { DM } \\ \text { VUS } \end{gathered}$
C19	Colorectal cancer (MSI / PMS2 lost in N and T) (21); glioblastoma (22)	8	S, R	PMS2	$\begin{gathered} 2 \\ 11 \end{gathered}$	c. $161 \mathrm{~T}>\mathrm{C}$; p.Ile54Thr c.1831dup ; p.Ile611Asnfs2*	Missense Frameshift	vus DM
C20.1	CALMs; gliomatosis (MSS /MSH6 lost in N and T) (9)	7	Co, S	MSH6	4	c. $2216 \mathrm{C}>\mathrm{A} ; \mathrm{p} . \mathrm{Thr} 739 \mathrm{Lys}$ c.2216C>A ; p.Thr739Lys	Missense Missense	vus vUS
C20.2	CALMs; glioblastoma (MSS / MSH6 weak in N and T) (6)	7	Co, S	MSH6	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	c. $2216 \mathrm{C}>\mathrm{A} ; \mathrm{p} . \mathrm{Thr} 739 \mathrm{Lys}$ c.2216C>A ; p.Thr739Lys	Missense Missense	$\begin{aligned} & \text { vUS } \\ & \text { vUS } \end{aligned}$
C21	CALMs; adenomas (14); colorectal cancer (17 and 19); urinary tract carcinoma (MSS / MSH6 lost in N and T) (24)	14	S, R	MSH6 MSH2	$\begin{aligned} & 5 \\ & 4 \\ & 5 \end{aligned}$	c.3261dupC ; p.Phe1088Leufs*5 c.2561_2563del ; p.Lys854del c. $832 \mathrm{G}>\mathrm{A} ;$ p.Glu278Lys	Frameshift In frame deletion Missense	DM vus vus
C22	CALMs; colorectal cancer (MLH1, MSH2, PMS2, MSH6 normal in N) (16)		Co, S	MSH6 PMS2	$\begin{gathered} 5 \\ 5 \\ 11 \end{gathered}$	c.3184T>C ; p.Cys1062Arg c.3184T>C ; p.Cys1062Arg c. $1688 \mathrm{G}>\mathrm{T} ; \mathrm{p} . \mathrm{Arg} 563 \mathrm{Leu}$	Missense Missense Missense	vus vUS vus
C23	CALMs; T-cell lymphoblastic lymphoma (6 and 11); glioblastoma (14); colorectal cancer (MSS/MLH1, MSH6, MSH2 normal at 1rst analysis; MSH2 and MSH6 lost in N and T at 2nd look) with polyposis (14)	13	Co	MSH6	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	c.1763_1771dup ; p.His588_Pro590dup c.1763_1771dup ; p.His588_Pro590dup	In frame duplication In frame duplication	$\begin{aligned} & \text { vUS } \\ & \text { vUS } \end{aligned}$
C24	no CALMs; colorectal cancer (MSH2 normal in N, lost in T) (12); 1 skin nodule (neurofibroma histologically not confirmed)	6	R	MSH2	$\begin{aligned} & \text { i6 } \\ & \text { i6 } \end{aligned}$	$\begin{aligned} & \text { c. } 1076+1 \mathrm{G}>\mathrm{A} ; \text { p.Gly315Ilefs*29 } \\ & \text { c. } 1077-11 \mathrm{~A}>\mathrm{G} ; \mathrm{p} . ? \end{aligned}$	Splice Splice	$\begin{gathered} \text { DM } \\ \text { VUS } \end{gathered}$
C25	CALMs; colorectal cancer (MSI, MLH1 lost in T; PMS2 lost in N and T) (25); breast cancer (36)	5	R	PMS2	11-14	large genomic conversion with PMS2CL ; p.?	Frameshift	DM

ACCEPTED MANUSCRIPT

C26	no CALMs; rectal cancer (17); colon cancer (MSI in N and $\mathrm{T} / \mathrm{PMS} 2$ normal in N , lost in T) (27)	4	S, R	PMS2	i11-i12	c.2007-786_2174+493del1447; p.Ser669_Ala725delinsArg	Large deletion	DM
C27	two colorectal cancers with one adenoma $>1 \mathrm{~cm}$ (30)	3	S, P, R	$\begin{aligned} & \text { MLH1 } \\ & \text { MSH2 } \end{aligned}$	$\begin{aligned} & 9 \\ & 5 \end{aligned}$	c.769del ; p.Ile257Serfs*11 c. $832 \mathrm{G}>\mathrm{A}$; p.Glu278Lys	Frameshift Missense	$\begin{gathered} \text { DM } \\ \text { VUS } \end{gathered}$
C28	osteosarcoma (11); urothelial carcinoma (32 and 33); cholangiosarcoma (MLH1 normal in N , lost in T) (36); colorectal cancer (MLH1 lost in T) (36); bladder carcinoma (37)	1	-	MLHI	15	c.1731G>A ; p.Ser577Ser	Splice	DM
C29.1	CALMs; glioblastoma (PMS2 lost in N and T) (6)	4	R	-	-	no MMR mutation identified ${ }^{\text {d }}$	-	-
C30	CALMs; T-cell lymphoblastic lymphoma (8)	4	-	MSH2	i4	c. $792+16 \mathrm{~A}>\mathrm{G} ; \mathrm{p}$.?	Splice	VUS
C31	lymphosarcoma (5); oligodendroglioma (MSS / MLH1, MSH2 normal in T) (21); thyroid cancer (29)	3	-			no MMR mutation identified	-	-
C32	Hodgkin lymphoma (11)	3	R	-	-	no MMR mutation identified	-	-
C33	CALMs; oligodendroglioma (27)	4	S	-	-	no MMR mutation identified	-	-
C34.1	colorectal tumor (MSI / MLH1 lost in T) (18)	4	S	-	-	no MMR mutation identified	-	-
C35	CALMs; glioblastoma (18)	6	R, Co	-	-	no MMR mutation identified	-	-
C36	colorectal tumor (MSI / MLH1 lost in T) (17)	3	-	-	$-$	no MMR mutation identified	-	-
C37	CALMs; adenomatous polyposis ($\mathrm{n}>50$) with duodenal adenomas (APC, MUTYH negative) (24); bilateral breast cancer (BRCA negative) (35 and 37); diffuse gastric cancer (CDH1 negative) (39); duodenal adenoma with high grade dysplasia (40)	4	R		-	no MMR mutation identified	-	-
C29.2	CALMs	NA	S, R	$-$	-	no MMR mutation identified ${ }^{\text {d }}$	-	-
C34.2	pinealoblastoma (MLH1, MSH6, MSH2, PMS2 normal in N and T) (12)	4	S		-	no MMR mutation identified	-	-

Supplementary Table 1. Data set relative to proved and putative CMMRD patients

${ }^{\text {a }}$ When available, data relative to the microsatellite status of the tumor, i.e. stable (MSS) or unstable (MSI), and to immunohistochemistry for MMR proteins in normal (N) and tumoral (T) tissues are indicated. Age at diagnosis is indicated in brackets. CALMs, café-au-lait macules
${ }^{\text {b }}$ Clinical score according to ${ }^{9}$; NA, not applicable
${ }^{\text {c }}$ Co, consanguinity; S, sibling affected with CMMRD-associated cancer; P, parent affected with Lynch syndrome-associated cancer; R, relative affected with Lynch syndrome- or CMMRD-associated cancer
${ }^{\mathrm{d}}$ Extensive genetic screening that was performed post-hoc in view of the abnormal functional assay results found in patient C29.1, led to the identification of a homozygous deletion of exons $14-15$ of the
PMS2 gene, c.276-? (*160?) del, while the brother (patient C29.2) was found as heterozygote for the PMS2 deletion
${ }^{\mathrm{e}}$ DM, deleterious mutation; VUS, variant of unknown significance

	Mutated gene	methylation tolerance ${ }^{\text {a }}$									evMSI ${ }^{\text {b }}$			
		1 pulse MNNG			2 pulses MNNG			3 pulses MNNG						ure
		$1.25 \mu \mathrm{M}$	$2.5 \mu \mathrm{M}$	$5 \mu \mathrm{M}$	$1.25 \mu \mathrm{M}$	$2.5 \mu \mathrm{M}$	$5 \mu \mathrm{M}$	$1.25 \mu \mathrm{M}$	$2.5 \mu \mathrm{M}$	$5 \mu \mathrm{M}$	BAT26	NR21	NR27	me
CMMRD patients														
C01.1	PMS2	96.8 ± 14.1	93.9 ± 10.1	75.1 ± 17.7	108 ± 8.5	99.9 ± 6	22.3 ± 10.7	95.8 ± 12.1	90.1 ± 19.2	18.1 ± 4.8	178/178 / 0	106 / 106 / 0	86/84/-2	X
C01.2	PMS2	85.6 ± 13.8	77.4 ± 16.4	29.7 ± 11.2	85.3 ± 9.6	69.6 ± 15.8	26.6 ± 11.1	72.8 ± 15.4	24.8 ± 10.8	13.2 ± 4.7	178/178 / 0	105 / 105 / 0	86/84/-2	X
C02	PMS2	91.6 ± 18.6	97.5 ± 12.6	83.9 ± 12.2	96 ± 11.8	89.1 ± 9	90.9 ± 17.9	91.2 ± 15.8	91 ± 16.1	35.7 ± 8.1	179/178/-1	105 / 105/0	87/86/-1	78
C04	PMS2	92.5 ± 15	93 ± 17.8	46 ± 13.3	97.9 ± 12.4	89.4 ± 12	50.1 ± 18.6	99.1 ± 12.6	91.2 ± 14.5	72.1 ± 15.1	179 / 179 / 0	105/104/-1	86/85/-1	X
C05	PMS2	94.4 ± 13.6	79.6 ± 15.2	31.4 ± 10.7	94.9 ± 10.6	79.6 ± 15.6	40.5 ± 17.3	98.1 ± 7.3	77.7 ± 15.1	27.5 ± 12.5	180/179 /-1	105/103/-2	85/84/-1	46
C06	PMS2	85.3 ± 16.6	61.6 ± 10	53.1 ± 14.1	98 ± 11.6	64.2 ± 17.6	23.8 ± 5.5	98.6 ± 12.7	53.1 ± 11	18.2 ± 1.5	180/178/-2	106/105/-1	$86 / 86 / 0$	81
C07	PMS2	84.6 ± 7.4	72.9 ± 12.6	57.3 ± 10.4	95.3 ± 17.8	83.2 ± 17.7	87 ± 16.3	82.2 ± 15.7	63.5 ± 13.5	72.1 ± 14.3	182/182 / 0	105 / 105 / 0	86/85/-1	100
C08	PMS2	93.3 ± 8	90.3 ± 13.1	79.3 ± 15.7	99.3 ± 8.4	89.5 ± 10.9	53.2 ± 15.4	91.7 ± 11.8	73.5 ± 12	29.4 ± 6.7	178/177/-1	105 / 104/-1	86/85/-1	82
C09.1	PMS2	112.4 ± 15	106.4 ± 10.9	111 ± 11.6	113.4 ± 14.8	99.6 ± 14.2	102.9 ± 12.9	93.9 ± 16.8	96.8 ± 14.5	84.1 ± 8.7	181/180/-1	105 / 105/0	$86 / 86 / 0$	120
C10	PMS2	103.2 ± 12.4	81.4 ± 14.3	86.2 ± 17.6	91.9 ± 14.4	81.6 ± 11.3	40.2 ± 16	91.9 ± 8.2	65.5 ± 18.8	34.8 ± 16.8	180 / 180 / 0	105 / 105 / 0	86/85/-1	115
C12	MSH6	103.3 ± 13.3	98 ± 18.5	97.7 ± 14.9	102.5 ± 11	93.8 ± 20.1	105.6 ± 8.7	90.2 ± 15.7	96.1 ± 13.7	89 ± 8.1	181/181/0	105 / 105 / 0	87/86/-1	80
C13.1	MSH6	99.5 ± 9.3	85.2 ± 15.3	81.1 ± 13	100.1 ± 17.7	83.9 ± 17.9	43 ± 9.9	97.8 ± 14.5	63.4 ± 18.1	25.7 ± 6.3	179 / 178/-1	106/106/0	$86 / 86 / 0$	70
C14	MSH6	92.5 ± 14.1	96.1 ± 11.6	96.7 ± 11.2	106.4 ± 8.8	101.8 ± 8.6	104.6 ± 13.4	90.1 ± 8.6	91.8 ± 15.9	97 ± 8.9	178/175/-3	105 / 104/-1	87/84/-3	X
C15	MLH1	101.1 ± 8.5	99.4 ± 16.3	84.3 ± 11.5	108.2 ± 14.2	99.5 ± 14.7	81.9 ± 16.1	84.2 ± 11.8	77.6 ± 16.3	53.6 ± 17.2	179 / 177 / -2	105 / 105 / 0	87/86/-1	64
Patients at-risk for CMMRD														
C20.1	MSH6	85.6 ± 19.2	92 ± 18.8	67.8 ± 16.6	96.4 ± 14.5	96.2 ± 13.3	42.3 ± 6.7	85.6 ± 12.5	56.3 ± 9.7	27.9 ± 7.1	180/179 / -1	105 / 105 / 0	$87 / 87 / 0$	45
C20.2	MSH6	89.2 ± 15.3	80.3 ± 11.3	33.9 ± 7.7	77 ± 13.6	70.8 ± 16.5	17.1 ± 2.1	72.4 ± 13.6	47.4 ± 8.8	18.6 ± 5.1	180/179 / -1	105 / 105/0	87/86/-1	45
C18	PMS2	92 ± 7.7	89.2 ± 3.1	79.9 ± 15.9	94.8 ± 8.4	89.2 ± 9.7	85 ± 16.4	90.8 ± 6	80.9 ± 6.8	59.3 ± 6.8	180 / 180 / 0	106/105/-1	$87 / 87 / 0$	X
C27	MLH1	23.9 ± 11.3	14.2 ± 2	11.4 ± 1.6	18 ± 1.7	13.1 ± 1.2	11.3 ± 1	14.1 ± 2.5	11.4 ± 1.7	10.6 ± 1	180/180 / 0	105 / 105 / 0	$86 / 86 / 0$	182
C25	PMS2	16.7 ± 1.8	14.5 ± 2	14.8 ± 2.9	17.1 ± 2.1	15.3 ± 2.6	15.5 ± 2.3	18.9 ± 5.9	16.8 ± 2.7	16.3 ± 2.6	180 / 180 / 0	105 / 105 / 0	$87 / 87 / 0$	344
C22	MSH6	101.7 ± 5.3	93.8 ± 8	84.5 ± 7.6	108.2 ± 9.2	102.3 ± 12.2	83.1 ± 11.6	89.7 ± 16.2	78.2 ± 11.7	67.1 ± 12.5	180/179/-1	105 / 105 / 0	$87 / 87 / 0$	68
C24	MSH2	90.1 ± 13.2	50.2 ± 17.1	22.1 ± 3.9	67.9 ± 12	24.3 ± 6.6	14.3 ± 1.3	50.7 ± 19.9	22 ± 5.6	13.4 ± 2	181/181/0	106 / 106 / 0	$87 / 87 / 0$	140
C30	MSH2	23.4 ± 7.2	17.1 ± 2.7	15.7 ± 2.4	20.9 ± 4.6	17.4 ± 2.5	15.1 ± 2.9	16.5 ± 5.4	16.1 ± 2.8	13.7 ± 3	180/180/0	106/106/0	$87 / 87 / 0$	125
C19	PMS2	97.4 ± 11.1	81.4 ± 9.6	64.1 ± 17.3	105.2 ± 9.5	95.8 ± 4.7	55.3 ± 17.9	94.4 ± 14.8	62.6 ± 11.8	29.1 ± 8.1	181/178/-2	106/105/-1	87/86/-1	70
C21	MSH6	106 ± 10.8	88.1 ± 19.4	83.3 ± 18.4	105 ± 15	84.9 ± 18.7	45.9 ± 19.5	79.3 ± 19.7	72.6 ± 16.3	15.8 ± 1.3	180/180 / 0	105 / 105 / 0	$86 / 86 / 0$	270
C28	MLH1	17.2 ± 2.4	14.3 ± 3.1	13.3 ± 1.5	17.2 ± 3.4	14.1 ± 1.5	14 ± 1.6	18 ± 5.4	13.3 ± 1.2	13.6 ± 1.6	180 / 180 / 0	106/106/0	$88 / 88 / 0$	203
C26	PMS2	23.3 ± 6.5	19.3 ± 1.6	19.5 ± 3.9	27.1 ± 3.8	25.2 ± 7.4	21.1 ± 4.1	24.2 ± 3.6	21.4 ± 3.2	21.6 ± 3.9	179 / 179 / 0	105 / 105 / 0	$86 / 86 / 0$	139
C23	MSH6	98.2 ± 11.4	93.4 ± 8.4	91.5 ± 15.4	103.7 ± 17.3	90.9 ± 10.4	69.5 ± 15.9	86.3 ± 19.3	84.1 ± 17.7	28.9 ± 13.7	181/181/0	104 / 104/0	$87 / 87 / 0$	200
C29.1	PMS2	121.5 ± 17.2	99.4 ± 13.8	67.8 ± 13.7	122.1 ± 10.5	78.2 ± 20.6	32.1 ± 5.7	51.5 ± 8.6	39.1 ± 15.8	20.9 ± 2.4	181/180/-1	101/100/-1	86/86/0	66
C29.2	-	20.6 ± 5	15 ± 1.5	14.8 ± 1.2	16.7 ± 1.5	14.6 ± 1	14.3 ± 0.7	15.2 ± 1.8	14.3 ± 1.1	13.6 ± 0.9	180/180 / 0	101/101/0	$86 / 86 / 0$	105
C31	-	25 ± 13	13.4 ± 3	10 ± 1.6	13.7 ± 2.7	11.4 ± 1.6	9.5 ± 0.7	12.4 ± 1.3	10 ± 0.7	9.2 ± 0.6	180/180/0	105 / 105 / 0	$86 / 86 / 0$	70
C32	-	18.7 ± 1.4	16.8 ± 2.2	14.9 ± 1.1	18.8 ± 3.6	17.4 ± 3	15.3 ± 1.3	17.7 ± 1.4	16.4 ± 1.5	15.1 ± 1.1	180/180 / 0	106 / 106 / 0	$87 / 87 / 0$	131
C33	-	32 ± 15	21.2 ± 5.2	17 ± 5.5	24.7 ± 6.7	18.8 ± 5.6	17.1 ± 5.3	21.8 ± 5.2	19.1 ± 6.3	17.1 ± 6.1	180/180/0	105 / 105 / 0	$87 / 87 / 0$	80
C34.1	-	28.5 ± 5.9	17.4 ± 3.4	15.8 ± 2.7	22.9 ± 6.3	17.4 ± 2.3	15.2 ± 2	18.7 ± 5.1	14.5 ± 1.9	12.7 ± 1.2	181/181 / 0	105 / 105 / 0	$87 / 87 / 0$	150
C34.2	-	28.1 ± 2.6	21.5 ± 3.2	21.6 ± 3.9	24.3 ± 3.9	21.6 ± 3.9	21.7 ± 4.7	23 ± 4.9	21.9 ± 4.1	20.2 ± 4.8	180 / 180 / 0	105 / 105 / 0	$86 / 86 / 0$	140
C35	-	24.2 ± 9.1	15.3 ± 2.1	14.1 ± 2.4	22.5 ± 7.9	17 ± 3.4	15.2 ± 3.9	20.3 ± 3.7	18.2 ± 6.5	14.7 ± 2.5	180 / 180 / 0	106 / 106 / 0	$87 / 87 / 0$	144
C36	-	20.2 ± 6.7	18.2 ± 5.9	17.7 ± 7.3	21.4 ± 9.3	18.5 ± 7	18 ± 7.1	19.3 ± 7	17.6 ± 6.1	17.5 ± 6.3	180 / 180 / 0	105 / 105 / 0	$87 / 87 / 0$	175
C37	-	32.5 ± 11.2	18.7 ± 4.3	15.6 ± 2	24.4 ± 7.3	17.2 ± 3.4	15.2 ± 2.4	19.9 ± 5.1	15.8 ± 3.7	14.2 ± 3.1	180 / 180 / 0	106/106 / 0	$87 / 87 / 0$	135

MMR wild-type individuals														
A3	$A P C$	ND	180 / 180 / 0	106 / 106 / 0	87/87/0	> 120								
A2	$A P C$	ND	180 / 180 / 0	105 / 105 / 0	87/87/0	> 120								
A1	$A P C$	17.9 ± 2.2	16.4 ± 2.2	13.8 ± 2.1	16.3 ± 2.9	14.8 ± 2.3	14.7 ± 3.9	16.1 ± 1.7	14.7 ± 1.5	13.6 ± 2.9	180 / 180 / 0	105 / 105 / 0	86/86/0	> 120
A5	$A P C$	15.6 ± 3.5	15.5 ± 3.3	14.6 ± 2.9	16.1 ± 3.6	15.5 ± 4	15.3 ± 2.5	15.3 ± 3.3	14.8 ± 3.5	13.6 ± 2.9	ND	ND	ND	ND
A8	$A P C$	18 ± 3.2	14.6 ± 1	13 ± 1	14 ± 1.6	13.6 ± 1	12 ± 0.9	15.1 ± 1.3	13.6 ± 0.9	14 ± 1.2	180 / 180 / 0	105 / 105 / 0	87/87/0	223
N1	NF1	ND	180 / 180 / 0	106 / 106 / 0	87/87/0	122								
N3	NF1	20.8 ± 1.2	19.7 ± 1.3	18.3 ± 1.4	20.3 ± 1	19.8 ± 1.4	18.5 ± 1.2	20.5 ± 1.4	20 ± 1.2	18.4 ± 1	181/181/0	105 / 105 / 0	87/87/0	83
X1	-	25.3 ± 4.8	16.2 ± 3	13.4 ± 3.1	17.9 ± 3.6	14.4 ± 4.1	13.2 ± 3	18.6 ± 2.9	15 ± 2.3	13.6 ± 2.6	ND	ND	ND	ND
X2	-	20.5 ± 4	18.3 ± 3.9	17.1 ± 4.5	19.2 ± 4.4	19.1 ± 4.7	18 ± 5.3	17.5 ± 2.8	16.6 ± 2.7	15.7 ± 2	180 / 180 / 0	105 / 105 / 0	87/87/0	135
X5	-	22.2 ± 3.9	17.5 ± 2.3	14.4 ± 1.9	20.1 ± 1.8	16.7 ± 1.1	15.4 ± 1.6	17.5 ± 2.4	16.8 ± 2.6	15.4 ± 2.3	180 / 180 / 0	106/106/0	86/86/0	138
X7	-	17.5 ± 2.3	16.3 ± 1.9	14.2 ± 2.1	16.2 ± 2.1	16 ± 2.8	15.1 ± 3.2	16.3 ± 2.1	15.6 ± 2.4	14.9 ± 2.2	180 / 180 / 0	105 / 105 / 0	86/86/0	142
X12	-	10 ± 1.6	8.9 ± 1	8.1 ± 0.7	9.4 ± 1.1	9.3 ± 0.8	9 ± 1	9.6 ± 0.8	9.3 ± 0.8	9 ± 1.4	180 / 180 / 0	105 / 105 / 0	87/87/0	173
X14	-	25 ± 2.4	21.4 ± 2	19.7 ± 0.7	24.1 ± 4.4	21.9 ± 3.2	21 ± 2.1	22.3 ± 3	21.1 ± 2.5	19.5 ± 2.1	ND	ND	ND	ND
X13	-	17.7 ± 3.5	14.6 ± 2.6	13.6 ± 2.2	16.3 ± 2.8	15.1 ± 2.6	13.4 ± 2.3	15.4 ± 3.4	13.7 ± 2.4	13.3 ± 1.8	ND	ND	ND	ND
X17	-	26 ± 5.4	24.2 ± 5.3	21.3 ± 5.7	37.8 ± 15.3	23.5 ± 6.7	18.4 ± 4.5	25 ± 8.4	19 ± 5.8	15.1 ± 2.5	181/181/0	105 / 105 / 0	$85 / 85 / 0$	237
Patients with Lynch syndrome														
C20.3	MSH6	ND	180 / 180 / 0	105 / 105 / 0	86/86/0	122								
L13	MLH1	13.3 ± 1.8	12.8 ± 1.2	11.4 ± 1.2	13.1 ± 2.1	12.2 ± 1.4	11.5 ± 1.4	13.2 ± 1.8	12.3 ± 2	11.5 ± 1.9	180 / 180 / 0	106 / 106 / 0	87/87/0	> 120
L15	MLH1	17.2 ± 1.9	16.8 ± 1.7	15.4 ± 1.3	17.5 ± 1.3	17.3 ± 0.7	15.8 ± 0.6	16.9 ± 2.4	16.5 ± 2.2	15.3 ± 1.6	180 / 180 / 0	105 / 105 / 0	87/87/0	252
L20	MLH1	24.4 ± 11.5	15 ± 3.8	12.4 ± 1.9	22.5 ± 11.5	15.3 ± 3.9	12.9 ± 1.2	17.7 ± 1.8	16.4 ± 0.9	14.6 ± 0.9	180 / 180 / 0	106/106/0	86/86/0	126
L12	MSH2	45.8 ± 7	39 ± 10.6	20.6 ± 4.1	39.4 ± 9.5	24.2 ± 5.6	19.6 ± 4.3	28.1 ± 7.7	20.7 ± 3.2	18.9 ± 3.3	178/178/0	106/106/0	87/87/0	249
L14	MSH2	29.2 ± 5.5	23.3 ± 3.3	19.2 ± 3.4	28.1 ± 3.7	21.1 ± 2.2	19 ± 2.2	23.4 ± 2.6	21.1 ± 2.6	18.3 ± 3	180 / 180 / 0	105 / 105 / 0	87/87/0	>120
L16	MSH2	25.1 ± 6.9	16.8 ± 3	12.2 ± 2.3	18.4 ± 1.9	13.9 ± 2.5	11.7 ± 2	15.1 ± 3.5	12.3 ± 1.2	10.8 ± 1.1	180 / 180 / 0	106 / 106/0	86/86/0	207
L18	MSH2	33.4 ± 12.5	19 ± 2.3	13.9 ± 1.9	21.8 ± 2.1	17.3 ± 1.8	14.8 ± 2.1	17.5 ± 2.9	15 ± 1.7	13.2 ± 1	179 / 179 / 0	105 / 105 / 0	$85 / 85 / 0$	214
L17	MSH6	53.2 ± 11.5	32.2 ± 5.8	24.2 ± 6.9	40.9 ± 7.3	28.6 ± 1.9	20.8 ± 5.8	30.6 ± 4.8	25.4 ± 5.7	20.4 ± 8	179 / 179 / 0	105 / 105 / 0	86/86/0	304
L19	MSH6	58 ± 16.8	42.6 ± 19	22.6 ± 9.7	49.8 ± 17	25.6 ± 6.9	14 ± 3.2	38.8 ± 10.6	26.2 ± 13.8	12.4 ± 2	179 / 179 / 0	106/106/0	$85 / 85 / 0$	203
C13.2	MSH6	47.2 ± 12.2	36.2 ± 9.9	24.9 ± 8.5	41.5 ± 16.4	28 ± 8	20.5 ± 2.8	34.6 ± 10.3	21.9 ± 4.3	19 ± 2.3	180 / 180 / 0	105 / 105/0	87/87/0	100
C09.2	PMS2	54.7 ± 16.9	20.9 ± 6.7	15.3 ± 2.2	30.2 ± 12.6	17.9 ± 5.1	15.3 ± 3.3	21 ± 5.2	15.4 ± 2.3	14.2 ± 3.2	181/181/0	105 / 105 / 0	87/87/0	120
L42	PMS2	28.4 ± 11.8	17.7 ± 3.5	15.4 ± 2.7	23.1 ± 6.5	16.6 ± 3.1	15.6 ± 2.7	17.5 ± 3.7	16.4 ± 3.3	15.2 ± 2.7	ND	ND	ND	ND
L4	MLH1	34.9 ± 16.2	19.4 ± 3.2	17.8 ± 2.7	26.1 ± 5.3	20.1 ± 3	16.1 ± 2.8	25.1 ± 11.5	18.7 ± 3.8	12.9 ± 1	ND	ND	ND	ND
L5	MSH2	33.1 ± 6.5	26 ± 4.8	20.4 ± 0.6	32.1 ± 5.5	25.8 ± 6.4	17.1 ± 0.9	36.5 ± 14.4	26.1 ± 5.5	19.5 ± 1.7	ND	ND	ND	ND
L7	MSH2	56.3 ± 16	27 ± 9.5	25 ± 7.8	51.4 ± 19.7	27.5 ± 13.6	18.8 ± 5.4	28.3 ± 11.4	18.6 ± 5.4	15.5 ± 3.6	ND	ND	ND	ND
L3	MSH2	53.3 ± 18.3	26.6 ± 8.8	19.2 ± 4.1	39.4 ± 10.2	23.3 ± 3.4	16.9 ± 4.1	26.6 ± 5.8	17.9 ± 4.8	14.9 ± 3.7	ND	ND	ND	ND
L34	MSH6	59.9 ± 15.3	43.3 ± 6.1	17.6 ± 3.2	53.9 ± 9.5	25.9 ± 9	11.6 ± 0.4	42.1 ± 9.9	16 ± 3.1	11.6 ± 0.7	ND	ND	ND	ND
L33	MSH2	26.9 ± 9	19.6 ± 6.4	19.2 ± 3.6	30 ± 13.1	19.8 ± 4.4	17.5 ± 2.7	21 ± 4	20.1 ± 4.7	16.6 ± 2	ND	ND	ND	ND
L29	MSH2	56 ± 9.4	30.1 ± 5	21.6 ± 3.1	34.9 ± 7.9	23.8 ± 2.1	20 ± 2	29.6 ± 6	21.8 ± 2.1	21.1 ± 1.5	ND	ND	ND	ND
L24	MSH2	21.9 ± 4.6	17.3 ± 2.7	16.4 ± 3.7	18.5 ± 3.3	16.7 ± 2.8	15.7 ± 3	17.8 ± 2.8	16.9 ± 2.7	15 ± 1.7	ND	ND	ND	ND
L23	MSH2	58.7 ± 13	31.4 ± 10.6	21.1 ± 4.3	43.5 ± 15.9	25.7 ± 5.8	19.8 ± 2.6	29.5 ± 8.1	21.9 ± 4.1	17 ± 1.1	ND	ND	ND	ND
L40	PMS2	67.5 ± 9	27 ± 7.6	19.8 ± 3.8	36.4 ± 8.7	19.4 ± 2.9	17.5 ± 2.9	21 ± 5.7	16.9 ± 3.6	14.4 ± 0.6	ND	ND	ND	ND
L41	PMS2	61.8 ± 7	24.2 ± 8.7	17.4 ± 3.7	31.1 ± 13.6	17.9 ± 4.2	13.8 ± 2.3	28.2 ± 12.1	14.9 ± 1.8	11.5 ± 2.3	ND	ND	ND	ND
L47	MSH6	70.9 ± 12.6	47.6 ± 15.5	30.3 ± 12.6	60.3 ± 15.8	34.4 ± 10.1	22.6 ± 5.5	39.2 ± 17.6	26 ± 8.3	17 ± 1.3	ND	ND	ND	ND
L21	MSH2	19.4 ± 7.6	12 ± 2.7	10.9 ± 1.2	13.2 ± 2.1	11.7 ± 0.9	11 ± 0.7	12.9 ± 2.2	11 ± 1	11.1 ± 0.7	ND	ND	ND	ND
L27	MLH1	12 ± 4.8	10.8 ± 4.5	10.1 ± 4.2	15.9 ± 6.4	14 ± 5	15.2 ± 5.5	9.8 ± 1.7	8.2 ± 1.7	8.8 ± 0.6	ND	ND	ND	ND

L50	MSH6	79.6 ± 14.5	58.2 ± 12.9	27.7 ± 5.1	72.9 ± 14.8	37.9 ± 10.6	18.7 ± 3.8	52.2 ± 18.4	24.6 ± 8.5	16.4 ± 3.7	ND	ND	ND	ND
L52	MSH6	68.5 ± 8.4	49.9 ± 12.4	31.4 ± 7	54.4 ± 10	38 ± 8.8	21.6 ± 3.7	41.2 ± 10.8	26.1 ± 6.8	17.5 ± 1.6	ND	ND	ND	ND
L53	MSH6	92.3 ± 9.5	72.5 ± 9.2	36 ± 13.5	83 ± 12.3	60.4 ± 10.1	23.3 ± 7.4	68 ± 10.1	34.7 ± 11.6	17.5 ± 5.6	ND	ND	ND	ND
L54	MSH6	82 ± 17.2	61.2 ± 14.2	24.5 ± 13.2	67.5 ± 12.1	32 ± 9.8	13.9 ± 3.8	31.9 ± 2.5	18.1 ± 5	11.7 ± 2	ND	ND	ND	ND
L55	MSH6	55.8 ± 16	39.5 ± 14.4	23.3 ± 2.8	44.2 ± 11.8	37.8 ± 14.8	20.6 ± 1.3	35.7 ± 8.7	31.5 ± 12.9	35 ± 17.2	ND	ND	ND	ND
L56	MLH1	21.7 ± 7.9	15.7 ± 2.7	12.5 ± 3.2	15.9 ± 2	15 ± 1.5	14 ± 0.5	16 ± 1.9	13.3 ± 1.4	12.9 ± 0.6	ND	ND	ND	ND
L28	MLH1	9.5 ± 0.9	9 ± 0.5	8.9 ± 1	10.3 ± 1	9.3 ± 1.1	9.6 ± 1.2	10 ± 0.9	9.3 ± 1.1	9.8 ± 1.2	ND	ND	ND	ND
L43	MLH1	13.7 ± 2.6	11.8 ± 1.5	11.3 ± 1.5	13 ± 1.5	12.5 ± 1.6	11.9 ± 1.5	12.5 ± 1.3	12.2 ± 1.3	11.8 ± 1.7	ND	ND	ND	ND
L44	MLH1	19.3 ± 15.6	10.6 ± 3.2	9.9 ± 2.1	12.1 ± 3.6	10.8 ± 2.3	10.3 ± 1.8	11.7 ± 2.8	10.6 ± 2	11.1 ± 2.9	ND	ND	ND	ND
L45	MLH1	18.3 ± 5.2	15.4 ± 6.7	10.4 ± 3.5	17.2 ± 6.7	12.1 ± 3.7	10.5 ± 3.1	12.4 ± 3.1	11.4 ± 3.9	10.6 ± 2.8	ND	ND	ND	ND
L46	MLH1	9.2 ± 2.8	8.5 ± 2.1	8.2 ± 1.7	9.5 ± 2.3	9.2 ± 1.8	8.9 ± 1.8	9.7 ± 2.5	9.9 ± 3.3	9.3 ± 1.6	ND	ND	ND	ND
L48	MSH6	70.2 ± 14.7	31.7 ± 7.9	21.4 ± 2	44.3 ± 14.9	21.7 ± 2.8	17.5 ± 2.6	27.8 ± 7.3	19.6 ± 4.8	14.7 ± 1.9	ND	ND	ND	ND
L49	MSH6	22.4 ± 1.8	21.2 ± 2	24.1 ± 10.4	21.3 ± 1.7	21.7 ± 2.2	20.1 ± 1.4	21.6 ± 1	21.5 ± 1.2	20.6 ± 2	ND	ND	ND	ND
L51	MSH6	54.8 ± 11	33.7 ± 9.3	22.4 ± 4.3	43.9 ± 14.8	25.5 ± 6.1	21.6 ± 5.2	34.5 ± 10	22.3 ± 5.4	19.6 ± 5.2	ND	ND	ND	ND

Supplementary Table 2. Raw data relative to methylation tolerance and evMSI tests in all patients analyzed in the study

${ }^{\text {a }}$ For each MNNG condition, mean cell survival (\%) \pm standard deviation are indicated.
${ }^{\mathrm{b}}$ The size (in base pairs) of each marker is indicated in peripheral blood lymphocytes, in immortalized lymphocytes, along with the difference between the two (i.e. deletion size) at the indicated culture time (in days). For the cell lines displaying a shift in allele size, the shortest culture time showing evMSI is indicated, whereas for the cell lines displaying stable allele profiles, the longest culture time is indicated. Culture time was calculated from the day of lymphoblast immortalization. Since peripheral blood lymphocytes were not available for CMMRD patient C01.2, comparison of the allele size was performed with primary blood lymphocytes from the father.

ND, not done; X , unknown.

Patient	Mutated gene	gMSI ratio					
		D2S123	D17S250	Result			
CMMRD patients							
C01.1	PMS2	0.58 ± 0.012	0.37 ± 0.037	0.10 ± 0.006	positive		
C02	PMS2	NA	NA	NA	NI		
C04	PMS2	0.85 ± 0.007	0.48 ± 0.008	NA	positive		
C05	PMS2	NA	0.21 ± 0.071	0.77 ± 0.086	positive		
C06	PMS2	0.40 ± 0.040	0.25 ± 0.015	0.23 ± 0.012	positive		
C07	PMS2	0.45 ± 0.016	0.14 ± 0.005	0.13 ± 0.009	positive		
C08	$P M S 2$	0.45 ± 0.013	0.26 ± 0.021	0.08 ± 0.009	positive		
C09.1	$P M S 2$	NA	0.14 ± 0.015	0.11 ± 0.007	positive		
C10	$P M S 2$	0.58 ± 0.034	NA	0.33 ± 0.023	positive		
C12	MSH6	NA	0.00 ± 0.000	0.04 ± 0.002	negative		
C13.1	MSH6	0.04 ± 0.034	0.03 ± 0.023	0.02 ± 0.014	negative		
C14	MSH6	0.12 ± 0.005	NA		NA		

Patients at-risk for CMMRD

C20.1	MSH6	0.09 ± 0.005	0.03 ± 0.002	NA	negative
C20.2	MSH6	0.09 ± 0.005	0.04 ± 0.005	NA	negative
C18	PMS2	NA	0.05 ± 0.003	0.04 ± 0.002	negative
C27	MLH1	0.08 ± 0.001	0.00 ± 0.000	0.02 ± 0.001	negative
C25	PMS2	0.06 ± 0.004	0.03 ± 0.001	0.01 ± 0.013	negative
C22	MSH6	0.09 ± 0.009	0.03 ± 0.027	0.04 ± 0.005	negative
C24	MSH2	0.07 ± 0.002	0.03 ± 0.002	0.01 ± 0.014	negative
C30	MSH2	0.05 ± 0.002	NA	0.04 ± 0.010	negative
C19	PMS2	0.24 ± 0.015	0.02 ± 0.028	NA	NI
C21	MSH6	0.02 ± 0.034	0.00 ± 0.000	0.02 ± 0.017	negative
C28	MLH1	0.08 ± 0.002	0.01 ± 0.018	0.04 ± 0.006	negative
C26	PMS2	NA	0.00 ± 0.000	0.02 ± 0.002	negative
C23	MSH6	0.09 ± 0.006	0.06 ± 0.007	0.04 ± 0.005	negative
C29.1	PMS2	0.41 ± 0.049	0.18 ± 0.021	0.29 ± 0.008	positive
C29.2	-	0.02 ± 0.041	0.01 ± 0.019	0.02 ± 0.001	negative
C31	-	0.08 ± 0.003	0.00 ± 0.000	0.04 ± 0.001	negative
C32	-	0.07 ± 0.005	0.03 ± 0.003	NA	negative
C33	-		NA	NA	NA

Supplementary Table 3. Data set relative to gMSI testing in patients analyzed in the study
Test result is positive (i.e. abnormal) when the gMSI ratios of at least 2 markers are above the cut-off value, and negative (i.e. normal) when the gMSI ratios of at least 2 markers are below the cut-off value.
NI, not interpretable; NA, not applicable because of heterozygous markers with alleles closer than 6 base pairs.

	sensitivity \% (95\% CI)	specificity \% (95\% CI)	NPV \% (95\% CI)	PPV \% (95\% CI)
Patients and controls with available data $\mathrm{n}=56$				
Sequencing of MMR genes	80.1 (54.1-99.0)	97.6 (91.2-99.9)	91.2 (76.6-99.6)	93.6 (77.9-99.8)
$e v$ MSI and methylation tolerance	94.2 (79.4-99.9)	90.1 (76.1-99.5)	97.2 (89.8-99.9)	80.5 (53.9-99.0)
Patients and controls with available data $\mathrm{n}=40$				
Sequencing of MMR genes	75.5 (49.3-96.5)	96.4 (87.0-99.9)	87.3 (70.2-98.5)	92.1 (72.8-99.9)
$e v$ MSI and methylation tolerance	93.3 (76.7-99.8)	89.3 (72.5-99.5)	96.0 (85.6-99.9)	82.6 (55.3-99.2)
gMSI test	68.7 (42.6-91.0)	96.2 (86.8-99.9)	84.4 (67.5-96.4)	90.8 (69.0-99.8)

Supplementary table 4. Estimate of the sensitivity, specificity, negative and positive predictive values of the different tests for CMMRD diagnosis. $E v$ MSI and methylation tolerance assays were first compared to the standard diagnostic method, i.e. sequencing of the MMR genes (56 patients with available data), then the 3 tests under investigation were further compared (40 patients with available data).

CI, confidence interval; NPV, negative predictive value; PPV; positive predictive value.

Supplementary Figure 1

A. MNNG treatment

FET
SW620
LS513
A. Caco-2
$\operatorname{HCT}_{* * *}^{2} \mathrm{mlh} 1-2$

- HCT15 (MSH6 ${ }^{k o}$)
- KM12 (MLH1º)
\square LIM2405 (MLH ${ }^{1 \mathrm{ko}}$)
- LS174T (MLH1 $\left.{ }^{\text {ko }}\right)$
LoVo (MSH2ko)
- HCT116 (MLH1ko)
ns

B. 6-TG treatment

**

$20 \mu \mathrm{M}$

Supplementary figure 2

CT4
PMS2 DM hmz

Supplementary Figure 3

$0.15 \mu \mathrm{M}$ 6-TG

$1.25 \mu \mathrm{M}$ 6-TG

[^1]
$0.3 \mu \mathrm{M}$ 6-TG
2.5 ${ }^{\text {M M 6-TG }}$

$0.6 \mu \mathrm{M}$ 6-TG

Supplementary figure 4

[^0]: * equal contribution

[^1]: LS $\mathrm{n}=32$

