Mostrar el registro sencillo del ítem

dc.contributor.authorRuano-Ordás, David
dc.contributor.authorBurggraaff, Lindsey
dc.contributor.authorLiu, Rongfang
dc.contributor.authorvan der Horst, Cas
dc.contributor.authorHeitman, Laura H.
dc.contributor.authorEmmerich, Michael T. M.
dc.contributor.authorMéndez Reboredo, José Ramón
dc.contributor.authorYevseyeva, Iryna
dc.contributor.authorvan Westen, Gerard J. P.
dc.date.accessioned2020-01-21T08:56:52Z
dc.date.available2020-01-21T08:56:52Z
dc.date.issued2019
dc.identifier.otherhttps://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=8&SID=F5LouaCEzZj4s8gs6Eq&page=1&doc=1es
dc.identifier.urihttp://hdl.handle.net/20.500.11940/12842
dc.description.abstractDrugs have become an essential part of our lives due to their ability to improve people's health and quality of life. However, for many diseases, approved drugs are not yet available or existing drugs have undesirable side effects, making the pharmaceutical industry strive to discover new drugs and active compounds. The development of drugs is an expensive process, which typically starts with the detection of candidate molecules (screening) after a protein target has been identified. To this end, the use of high-performance screening techniques has become a critical issue in order to palliate the high costs. Therefore, the popularity of computer-based screening (often called virtual screening or in silico screening) has rapidly increased during the last decade. A wide variety of Machine Learning (ML) techniques has been used in conjunction with chemical structure and physicochemical properties for screening purposes including (i) simple classifiers, (ii) ensemble methods, and more recently (iii) Multiple Classifier Systems (MCS). Here, we apply an MCS for virtual screening (D2-MCS) using circular fingerprints. We applied our technique to a dataset of cannabinoid CB2 ligands obtained from the ChEMBL database. The HTS collection of Enamine (1,834,362 compounds), was virtually screened to identify 48,232 potential active molecules using D2-MCS. Identified molecules were ranked to select 21 promising novel compounds for in vitro evaluation. Experimental validation confirmed six highly active hits (> 50% displacement at 10 mu M and subsequent Ki determination) and an additional five medium active hits (> 25% displacement at 10 mu M). Hence, D2-MCS provided a hit rate of 29% for highly active compounds and an overall hit rate of 52%.es
dc.description.sponsorshipXunta de Galicia. Consellería de Educación, Universidades e Formación Profesionales
dc.description.sponsorshipDutch Scientific Council Applied and Engineering Sciences (NWO-TTW)es
dc.format.extent14 p.es
dc.language.isoenges
dc.relation.isreferencedbyhttps://github.com/drordas/D2-MCSes
dc.relation.isreferencedbyhttps://zenodo.org/record/2677650es
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.meshDermatoglyphics*
dc.subject.meshDrug Discovery*
dc.subject.meshProbability*
dc.subject.meshSupport Vector Machines*
dc.subject.meshDataset*
dc.titleA multiple classifier system identifies novel cannabinoid CB2 receptor ligandses
dc.typeArtigoes
dc.rights.holderLos autoreses
dc.identifier.essn1758-2946
dc.issue.number1es
dc.journal.titleJournal of Cheminformaticses
dc.organizationServizo Galego de Saúde::Estrutura de Xestión Integrada (EOXI)::Instituto de Investigación Biomédica Ourense-Pontevedra-Vigo (IBI)es
dc.page.initial66es
dc.relation.projectIDXunta de Galicia. Consellería de Educación, Universidades e Formación Profesional/ED431C2018/55-GRCes
dc.relation.projectIDDutch Scientific Council Applied and Engineering Sciences (NWO-TTW)/(VENI 14410)es
dc.relation.publisherversionhttps://jcheminf.biomedcentral.com/articles/10.1186/s13321-019-0389-9es
dc.rights.accessRightsopenAccesses
dc.subject.decsmáquinas de vectores de apoyo*
dc.subject.decsprobabilidad*
dc.subject.decsconjunto de datos*
dc.subject.decsdermatoglifia*
dc.subject.decsdescubrimiento de fármacos*
dc.subject.keywordComposición de fármacoses
dc.subject.keywordDescubrimiento de fármacoses
dc.typefidesArtigo Científico (inclue Orixinal, Orixinal breve, Revisión Sistemática e Meta-análisis)es
dc.typesophosArtículo Originales
dc.volume.number11es


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional