Mostrar el registro sencillo del ítem

dc.contributor.authorSobrido Gómez, María Jesús 
dc.contributor.authorBauer, P.
dc.contributor.authorde Koning, T.
dc.contributor.authorKlopstock, T.
dc.contributor.authorNadjar, Y.
dc.contributor.authorPatterson, M. C.
dc.contributor.authorSynofzik, M.
dc.contributor.authorHendriksz, C. J.
dc.date.accessioned2021-10-14T12:58:39Z
dc.date.available2021-10-14T12:58:39Z
dc.date.issued2019
dc.identifier.issn1750-1172
dc.identifier.otherhttps://www.ncbi.nlm.nih.gov/pubmed/30665446
dc.identifier.otherhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6341610/pdf/13023_2018_Article_985.pdf
dc.identifier.urihttp://hdl.handle.net/20.500.11940/15549
dc.description.abstractBACKGROUND: Rare and ultra-rare diseases (URDs) are often chronic and life-threatening conditions that have a profound impact on sufferers and their families, but many are notoriously difficult to detect. Niemann-Pick disease type C (NP-C) serves to illustrate the challenges, benefits and pitfalls associated with screening for ultra-rare inborn errors of metabolism (IEMs). A comprehensive, non-systematic review of published information from NP-C screening studies was conducted, focusing on diagnostic methods and study designs that have been employed to date. As a key part of this analysis, data from both successful studies (where cases were positively identified) and unsuccessful studies (where the chosen approach failed to identify any cases) were included alongside information from our own experiences gained from the planning and execution of screening for NP-C. On this basis, best-practice recommendations for ultra-rare IEM screening are provided. Twenty-six published screening studies were identified and categorised according to study design into four groups: 1) prospective patient cohort and family-based secondary screenings (18 studies); 2) analyses of archived 'biobank' materials (one study); 3) medical chart review and bioinformatics data mining (five studies); and 4) newborn screening (two studies). NPC1/NPC2 sequencing was the most common primary screening method (Sanger sequencing in eight studies and next-generation sequencing [gene panel or exome sequencing] in five studies), followed by biomarker analyses (usually oxysterols) and clinical surveillance. CONCLUSIONS: Historically, screening for NP-C has been based on single-patient studies, small case series, and targeted cohorts, but the emergence of new diagnostic methods over the last 5-10 years has provided opportunities to screen for NP-C on a larger scale. Combining clinical, biomarker and genetic diagnostic methods represents the most effective way to identify NP-C cases, while reducing the likelihood of misdiagnosis. Our recommendations are intended as a guide for planning screening protocols for ultra-rare IEMs in general.
dc.rightsAtribución 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleRecommendations for patient screening in ultra-rare inherited metabolic diseases: what have we learned from Niemann-Pick disease type C?
dc.typeArtigoes
dc.authorsophosSobrido Gómez, María Jesús
dc.identifier.doi10.1186/s13023-018-0985-1
dc.identifier.pmid30665446
dc.identifier.sophos30994
dc.issue.number1
dc.journal.titleOrphanet Journal of Rare Diseases
dc.organizationServizo Galego de Saúde::Estrutura de Xestión Integrada (EOXI)::Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS)
dc.organizationServizo Galego de Saúde::Estrutura de Xestión Integrada (EOXI)::EOXI de Santiago de Compostela - Complexo Hospitalario Universitario de Santiago de Compostela::Xenética
dc.page.initial20es
dc.rights.accessRightsopenAccess
dc.subject.keywordIDIS
dc.subject.keywordCHUS
dc.typefidesArtículo Científico (incluye Original, Original breve, Revisión Sistemática y Meta-análisis)
dc.typesophosArtículo de Revisión
dc.volume.number14


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional