Show simple item record

dc.contributor.authorMoscoso Rial, Alexis
dc.contributor.authorSilva Rodríguez, Jesús
dc.contributor.authorAldrey Vázquez, José Manuel 
dc.contributor.authorCortés Hernández, Julia 
dc.contributor.authorFernández Ferreiro, Anxo
dc.contributor.authorGómez Lado, Noemí
dc.contributor.authorRuibal Morell, Alvaro 
dc.contributor.authorAguiar Souto, Pablo 
dc.date.accessioned2021-11-30T11:11:41Z
dc.date.available2021-11-30T11:11:41Z
dc.date.issued2019
dc.identifier.issn2213-1582
dc.identifier.otherhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6515129/pdf/main.pdfes
dc.identifier.otherhttps://www.ncbi.nlm.nih.gov/pubmed/31078938es
dc.identifier.urihttp://hdl.handle.net/20.500.11940/15773
dc.description.abstractMagnetic resonance imaging (MRI) volumetric measures have become a standard tool for the detection of incipient Alzheimer's Disease (AD) dementia in mild cognitive impairment (MCI). Focused on providing an earlier and more accurate diagnosis, sophisticated MRI machine learning algorithms have been developed over the recent years, most of them learning their non-disease patterns from MCI that remained stable over 2-3years. In this work, we analyzed whether these stable MCI over short-term periods are actually appropriate training examples of non-disease patterns. To this aim, we compared the diagnosis of MCI patients at 2 and 5years of follow-up and investigated its impact on the predictive performance of baseline volumetric MRI measures primarily involved in AD, i.e., hippocampal and entorhinal cortex volumes. Predictive power was evaluated in terms of the area under the ROC curve (AUC), sensitivity, and specificity in a trial sample of 248 MCI patients followed-up over 5years. We further compared the sensitivity in those MCI that converted before 2years and those that converted after 2years. Our results indicate that 23% of the stable MCI at 2years progressed in the next three years and that MRI volumetric measures are good predictors of conversion to AD dementia even at the mid-term, showing a better specificity and AUC as follow-up time increases. The combination of hippocampus and entorhinal cortex yielded an AUC that was significantly higher for the 5-year follow-up (AUC=73% at 2years vs. AUC=84% at 5years), as well as for specificity (56% vs. 71%). Sensitivity showed a non-significant slight decrease (81% vs. 78%). Remarkably, the performance of this model was comparable to machine learning models at the same follow-up times. MRI correctly identified most of the patients that converted after 2years (with sensitivity >60%), and these patients showed a similar degree of abnormalities to those that converted before 2years. This implies that most of the MCI patients that remained stable over short periods and subsequently progressed to AD dementia had evident atrophies at baseline. Therefore, machine learning models that use these patients to learn non-disease patterns are including an important fraction of patients with evident pathological changes related to the disease, something that might result in reduced performance and lack of biological interpretability.en
dc.language.isoenges
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International*
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.meshPredictive Value of Tests*
dc.subject.meshAlzheimer Disease*
dc.subject.meshDementia*
dc.subject.meshMiddle Aged*
dc.subject.meshHumans*
dc.subject.meshMagnetic Resonance Imaging*
dc.subject.meshFollow-Up Studies*
dc.subject.meshAged*
dc.subject.meshCohort Studies*
dc.titlePrediction of Alzheimer's disease dementia with MRI beyond the short-term: Implications for the design of predictive modelsen
dc.typeArtigoes
dc.contributor.authorcorpAlzheimer's Disease Neuroimaging Initiative
dc.authorsophosMoscoso, A.
dc.authorsophosSilva-Rodríguez, J.
dc.authorsophosAldrey, J. M.
dc.authorsophosCortés, J.
dc.authorsophosFernández-Ferreiro, A.
dc.authorsophosGómez-Lado, N.
dc.authorsophosRuibal, Á
dc.authorsophosAguiar, P.
dc.authorsophosfor the Alzheimer's Disease Neuroimaging, Initiative
dc.identifier.doi10.1016/j.nicl.2019.101837
dc.identifier.pmid31078938
dc.identifier.sophos31788
dc.journal.titleNEUROIMAGE. CLINICALes
dc.organizationServizo Galego de Saúde::Estrutura de Xestión Integrada (EOXI)::EOXI de Santiago de Compostela - Complexo Hospitalario Universitario de Santiago de Compostela::Farmaciaes
dc.organizationServizo Galego de Saúde::Estrutura de Xestión Integrada (EOXI)::EOXI de Santiago de Compostela - Complexo Hospitalario Universitario de Santiago de Compostela::Medicina nucleares
dc.organizationServizo Galego de Saúde::Estrutura de Xestión Integrada (EOXI)::EOXI de Santiago de Compostela - Complexo Hospitalario Universitario de Santiago de Compostela::Neuroloxíaes
dc.organizationServizo Galego de Saúde::Estrutura de Xestión Integrada (EOXI)::Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS)es
dc.page.initial101837es
dc.rights.accessRightsopenAccesses
dc.subject.decsanciano*
dc.subject.decsestudios de seguimiento*
dc.subject.decspruebas de valores predictivos*
dc.subject.decsenfermedad de Alzheimer*
dc.subject.decsmediana edad*
dc.subject.decsimagen por resonancia magnética*
dc.subject.decshumanos*
dc.subject.decsestudios de cohortes*
dc.subject.decsdemencia*
dc.subject.keywordCHUSes
dc.subject.keywordIDISes
dc.typefidesArtículo Originales
dc.typesophosArtículo Originales
dc.volume.number23.es


Files in this item

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 International
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 International