Mostrar el registro sencillo del ítem

dc.contributor.authorMUNTEANU -, CRISTIAN ROBERT
dc.contributor.authorGestal, Marcos
dc.contributor.authorMartinez-Acevedo, Yunuen G
dc.contributor.authorPedreira, Nieves
dc.contributor.authorPAZOS SIERRA, ALEJANDRO
dc.contributor.authorDorado, Julian
dc.date.accessioned2022-01-25T12:16:19Z
dc.date.available2022-01-25T12:16:19Z
dc.date.issued2019
dc.identifier.issn1661-6596
dc.identifier.otherhttps://www.ncbi.nlm.nih.gov/pubmed/31491969es
dc.identifier.urihttp://hdl.handle.net/20.500.11940/15907
dc.description.abstractIn this work, we improved a previous model used for the prediction of proteomes as new B-cell epitopes in vaccine design. The predicted epitope activity of a queried peptide is based on its sequence, a known reference epitope sequence under specific experimental conditions. The peptide sequences were transformed into molecular descriptors of sequence recurrence networks and were mixed under experimental conditions. The new models were generated using 709,100 instances of pair descriptors for query and reference peptide sequences. Using perturbations of the initial descriptors under sequence or assay conditions, 10 transformed features were used as inputs for seven Machine Learning methods. The best model was obtained with random forest classifiers with an Area Under the Receiver Operating Characteristics (AUROC) of 0.981 +/- 0.0005 for the external validation series (five-fold cross-validation). The database included information about 83,683 peptides sequences, 1448 epitope organisms, 323 host organisms, 15 types of in vivo processes, 28 experimental techniques, and 505 adjuvant additives. The current model could improve the in silico predictions of epitopes for vaccine design. The script and results are available as a free repository.en
dc.language.isoenges
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.meshHumans*
dc.subject.meshAmino Acid Sequence*
dc.subject.meshPeptides*
dc.subject.meshEpitope Mapping*
dc.subject.meshROC Curve*
dc.subject.meshStructure-Activity Relationship*
dc.titleImprovement of Epitope Prediction Using Peptide Sequence Descriptors and Machine Learningen
dc.typeArtigoes
dc.identifier.doi10.3390/ijms20184362
dc.identifier.pmid31491969
dc.identifier.sophos32302
dc.issue.number18es
dc.journal.titleINTERNATIONAL JOURNAL OF MOLECULAR SCIENCESes
dc.organizationServizo Galego de Saúde::Estrutura de Xestión Integrada (EOXI)::Instituto de Investigación Biomédica da Coruña (INIBIC)es
dc.relation.publisherversionhttps://res.mdpi.com/d_attachment/ijms/ijms-20-04362/article_deploy/ijms-20-04362.pdfes
dc.rights.accessRightsopenAccesses
dc.subject.decscurva ROC*
dc.subject.decsmapeo de epítopos*
dc.subject.decspéptidos*
dc.subject.decshumanos*
dc.subject.decsrelación estructura-actividad*
dc.subject.decssecuencia de aminoácidos*
dc.subject.keywordINIBICes
dc.typefidesArtículo Originales
dc.typesophosArtículo Originales
dc.volume.number20es


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional