Mostrar el registro sencillo del ítem

dc.contributor.authorBaamonde, S
dc.contributor.authorde Moura, J
dc.contributor.authorNovo Buján, Jorge
dc.contributor.authorCharlon P
dc.contributor.authorOrtega, M
dc.date.accessioned2022-02-02T08:16:10Z
dc.date.available2022-02-02T08:16:10Z
dc.date.issued2019
dc.identifier.issn1424-822
dc.identifier.otherhttps://www.ncbi.nlm.nih.gov/pubmed/31795480es
dc.identifier.urihttp://hdl.handle.net/20.500.11940/16069
dc.description.abstractOptical Coherence Tomography (OCT) is a medical image modality providing high-resolution cross-sectional visualizations of the retinal tissues without any invasive procedure, commonly used in the analysis of retinal diseases such as diabetic retinopathy or retinal detachment. Early identification of the epiretinal membrane (ERM) facilitates ERM surgical removal operations. Moreover, presence of the ERM is linked to other retinal pathologies, such as macular edemas, being among the main causes of vision loss. In this work, we propose an automatic method for the characterization and visualization of the ERM's presence using 3D OCT volumes. A set of 452 features is refined using the Spatial Uniform ReliefF (SURF) selection strategy to identify the most relevant ones. Afterwards, a set of representative classifiers is trained, selecting the most proficient model, generating a 2D reconstruction of the ERM's presence. Finally, a post-processing stage using a set of morphological operators is performed to improve the quality of the generated maps. To verify the proposed methodology, we used 20 3D OCT volumes, both with and without the ERM's presence, totalling 2428 OCT images manually labeled by a specialist. The most optimal classifier in the training stage achieved a mean accuracy of 91 . 9 % . Regarding the post-processing stage, mean specificity values of 91 . 9 % and 99 . 0 % were obtained from volumes with and without the ERM's presence, respectively.en
dc.language.isoenges
dc.rightsAtribución 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subject.meshEpiretinal Membrane*
dc.titleAutomatic Identification and Intuitive Map Representation of the Epiretinal Membrane Presence in 3D OCT Volumesen
dc.typeArtigoes
dc.identifier.doi10.3390/s19235269
dc.identifier.pmid31795480
dc.identifier.sophos34305
dc.issue.number23es
dc.journal.titleSensors (Basel)es
dc.organizationServizo Galego de Saúde::Estrutura de Xestión Integrada (EOXI)::Instituto de Investigación Biomédica da Coruña (INIBIC)es
dc.relation.publisherversionhttps://res.mdpi.com/d_attachment/sensors/sensors-19-05269/article_deploy/sensors-19-05269-v2.pdfes
dc.rights.accessRightsopenAccesses
dc.subject.decsmembrana epirretiniana*
dc.subject.keywordINIBICes
dc.typefidesArtículo Originales
dc.typesophosArtículo Originales
dc.volume.number19es


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional