Mostrar el registro sencillo del ítem
Intraretinal Fluid Pattern Characterization in Optical Coherence Tomography Images
dc.contributor.author | de Moura Ramos, Jose Joaquim | |
dc.contributor.author | Lizancos Vidal, Plácido Francisco | |
dc.contributor.author | Novo Buján, Jorge | |
dc.contributor.author | Rouco Maseda, José | |
dc.contributor.author | González Penedo, Manuel | |
dc.contributor.author | Ortega Hortas, Marcos | |
dc.date.accessioned | 2022-03-04T07:46:12Z | |
dc.date.available | 2022-03-04T07:46:12Z | |
dc.date.issued | 2020 | |
dc.identifier.issn | 1424-8220 | |
dc.identifier.other | https://www.ncbi.nlm.nih.gov/pubmed/32260062 | es |
dc.identifier.uri | http://hdl.handle.net/20.500.11940/16157 | |
dc.description.abstract | Optical Coherence Tomography (OCT) has become a relevant image modality in the ophthalmological clinical practice, as it offers a detailed representation of the eye fundus. This medical imaging modality is currently one of the main means of identification and characterization of intraretinal cystoid regions, a crucial task in the diagnosis of exudative macular disease or macular edema, among the main causes of blindness in developed countries. This work presents an exhaustive analysis of intensity and texture-based descriptors for its identification and classification, using a complete set of 510 texture features, three state-of-the-art feature selection strategies, and seven representative classifier strategies. The methodology validation and the analysis were performed using an image dataset of 83 OCT scans. From these images, 1609 samples were extracted from both cystoid and non-cystoid regions. The different tested configurations provided satisfactory results, reaching a mean cross-validation test accuracy of 92.69%. The most promising feature categories identified for the issue were the Gabor filters, the Histogram of Oriented Gradients (HOG), the Gray-Level Run-Length matrix (GLRL), and the Laws' texture filters (LAWS), being consistently and considerably selected along all feature selector algorithms in the top positions of different relevance rankings. | es |
dc.language.iso | en | es |
dc.rights | Atribución 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.title | Intraretinal Fluid Pattern Characterization in Optical Coherence Tomography Images | en |
dc.type | Journal Article | es |
dc.authorsophos | de Moura, Joaquim;L Vidal, Plácido;Novo, Jorge;Rouco, José;G Penedo, Manuel;Ortega, Marcos | |
dc.identifier.doi | 10.3390/s20072004 | |
dc.identifier.pmid | 32260062 | |
dc.identifier.sophos | 35566 | |
dc.issue.number | 7 | es |
dc.journal.title | SENSORS | es |
dc.organization | Servizo Galego de Saúde::Estrutura de Xestión Integrada (EOXI)::Instituto de Investigación Biomédica da Coruña (INIBIC) | |
dc.relation.publisherversion | https://mdpi-res.com/d://attachment/sensors/sensors-20-02004/article://deploy/sensors-20-02004-v2.pdf | es |
dc.rights.accessRights | openAccess | |
dc.subject.keyword | INIBIC | es |
dc.typefides | Artículo Original | es |
dc.typesophos | Artículo Original | es |
dc.volume.number | 20 | es |