Mostrar el registro sencillo del ítem

dc.contributor.authorUrista, Diana V
dc.contributor.authorCarrué, Diego B
dc.contributor.authorOtero, Iago
dc.contributor.authorArrasate, Sonia
dc.contributor.authorQuevedo-Tumailli, Viviana F
dc.contributor.authorGestal Pose, Marcos
dc.contributor.authorGonzález-Díaz, Humbert
dc.contributor.authorMUNTEANU -, CRISTIAN ROBERT
dc.date.accessioned2022-03-04T07:46:45Z
dc.date.available2022-03-04T07:46:45Z
dc.date.issued2020
dc.identifier.issn2079-7737
dc.identifier.otherhttps://www.ncbi.nlm.nih.gov/pubmed/32751710es
dc.identifier.urihttp://hdl.handle.net/20.500.11940/16167
dc.description.abstractDrug-decorated nanoparticles (DDNPs) have important medical applications. The current work combined Perturbation Theory with Machine Learning and Information Fusion (PTMLIF). Thus, PTMLIF models were proposed to predict the probability of nanoparticle-compound/drug complexes having antimalarial activity (against Plasmodium). The aim is to save experimental resources and time by using a virtual screening for DDNPs. The raw data was obtained by the fusion of experimental data for nanoparticles with compound chemical assays from the ChEMBL database. The inputs for the eight Machine Learning classifiers were transformed features of drugs/compounds and nanoparticles as perturbations of molecular descriptors in specific experimental conditions (experiment-centered features). The resulting dataset contains 107 input features and 249,992 examples. The best classification model was provided by Random Forest, with 27 selected features of drugs/compounds and nanoparticles in all experimental conditions considered. The high performance of the model was demonstrated by the mean Area Under the Receiver Operating Characteristics (AUC) in a test subset with a value of 0.9921 +/- 0.000244 (10-fold cross-validation). The results demonstrated the power of information fusion of the experimental-centered features of drugs/compounds and nanoparticles for the prediction of nanoparticle-compound antimalarial activity. The scripts and dataset for this project are available in the open GitHub repository.en
dc.language.isoenes
dc.rightsAtribución 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titlePrediction of Antimalarial Drug-Decorated Nanoparticle Delivery Systems with Random Forest Modelsen
dc.typeJournal Articlees
dc.authorsophosUrista, Diana V;Carrué, Diego B;Otero, Iago;Arrasate, Sonia;Quevedo-Tumailli, Viviana F;Gestal, Marcos;González-Díaz, Humbert;Munteanu, Cristian R
dc.identifier.doi10.3390/biology9080198
dc.identifier.pmid32751710
dc.identifier.sophos35642
dc.issue.number8es
dc.journal.titleBiology (Basel)es
dc.organizationServizo Galego de Saúde::Estrutura de Xestión Integrada (EOXI)::Instituto de Investigación Biomédica da Coruña (INIBIC)es
dc.relation.publisherversionhttps://mdpi-res.com/d://attachment/biology/biology-09-00198/article://deploy/biology-09-00198.pdfes
dc.rights.accessRightsopenAccess
dc.subject.keywordINIBICes
dc.typefidesArtículo Originales
dc.typesophosArtículo Originales
dc.volume.number9es


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional