Mostrar el registro sencillo del ítem

dc.contributor.authorChiesa-Estomba, Carlos M
dc.contributor.authorSistiaga-Suarez, Jon A
dc.contributor.authorGonzález-García, José Ángel
dc.contributor.authorLarruscain, Ekhiñe
dc.contributor.authorCammaroto, Giovanni
dc.contributor.authorMAYO YAÑEZ, MIGUEL 
dc.contributor.authorLechien, Jerome R
dc.contributor.authorCALVO HENRIQUEZ, CHRISTIAN EZEQUIEL 
dc.contributor.authorAltuna, Xabier
dc.contributor.authorMedela, Alfonso
dc.date.accessioned2022-03-08T08:50:43Z
dc.date.available2022-03-08T08:50:43Z
dc.date.issued2020
dc.identifier.issn2076-3271
dc.identifier.otherhttps://www.ncbi.nlm.nih.gov/pubmed/33036481es
dc.identifier.urihttp://hdl.handle.net/20.500.11940/16214
dc.description.abstractBackground: Despite the increasing use of intraoperative facial nerve monitoring during parotid gland surgery or the improvement in the preoperative radiological assessment, facial nerve injury (FNI) continues to be the most feared complication; (2) Methods: patients who underwent parotid gland surgery for benign tumors between June 2010 and June 2019 were included in this study aiming to make a proof of concept about the reliability of an artificial neural networks (AAN) algorithm for prediction of FNI and compared with a multivariate linear regression (MLR); (3) Results: Concerning prediction accuracy and performance, the ANN achieved the highest sensitivity (86.53% vs 46.23%), specificity (95.67% vs 92.59%), PPV (87.28% vs 66.94%), NPV (95.68% vs 83.37%), ROC-AUC (0.960 vs 0.769) and accuracy (93.42 vs 80.42) than MLR; and (4) Conclusions: ANN prediction models can be useful for otolaryngologists-head and neck surgeons-and patients to provide evidence-based predictions about the risk of FNI. As an advantage, the possibility to develop a calculator using clinical, radiological and histological or cytological information can improve our ability to generate patients counselling before surgery.en
dc.rightsAtribución 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleArtificial Neural Network as a Tool to Predict Facial Nerve Palsy in Parotid Gland Surgery for Benign Tumorsen
dc.typeJournal Articlees
dc.authorsophosChiesa-Estomba, Carlos M;Sistiaga-Suarez, Jon A;González-García, José Ángel;Larruscain, Ekhiñe;Cammaroto, Giovanni;Mayo-Yánez, Miguel;Lechien, Jerome R;Calvo-Henríquez, Christian;Altuna, Xabier;Medela, Alfonso
dc.identifier.doi10.3390/medsci8040042
dc.identifier.pmid33036481
dc.identifier.sophos35893
dc.issue.number4es
dc.journal.titleMedical Sciences (Basel, Switzerland)es
dc.organizationServizo Galego de Saúde::Estrutura de Xestión Integrada (EOXI)::EOXI de A Coruña - Complexo Hospitalario Universitario de A Coruña::Otorrinolaringoloxíaes
dc.organizationServizo Galego de Saúde::Estrutura de Xestión Integrada (EOXI)::EOXI de Santiago de Compostela - Complexo Hospitalario Universitario de Santiago de Compostela::Otorrinolaringoloxíaes
dc.relation.publisherversionhttps://mdpi-res.com/d://attachment/medsci/medsci-08-00042/article://deploy/medsci-08-00042-v2.pdfes
dc.rights.accessRightsopenAccess
dc.subject.keywordCHUACes
dc.subject.keywordCHUSes
dc.typefidesArtículo Originales
dc.typesophosArtículo Originales
dc.volume.number8es


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional