Development of antibacterial steel surfaces through laser texturing
Identifiers
Identifiers
Date issued
2020Journal title
APL materials
Type of content
Journal Article
Abstract
The aim of the present study was to develop novel antibacterial touch surfaces through the laser texturing optimization of stainless steel. A wide range of laser fluence (2.11 J/cm(2)-5.64 J/cm(2)) and scanning interval (10 mu m-30 mu m) parameters were explored. The impact of surfaces with different patterns, wettability, and oxidation states on the antimicrobial behavior of Escherichia coli K-12 and biofilm hyper-producing Acinetobacter baumannii MAR002 was assessed. Modification of laser input enacted topographical changes with high scanning intervals leading to ordered surface patterns, while increasing the laser fluence to 5.64 J/cm(2) created larger and less ordered plateaus and valleys. Texturing also drove a transition from a hydrophilic starting surface with a contact angle of 80.67 degrees +/- 3.35 degrees to hydrophobic (138 degrees -148 degrees). Antimicrobial analysis and bioluminescence assays of E. coli, alongside biofilm forming test through A. baumannii MAR002 indicated the ability of laser texturing to produce effective bactericidal touch surfaces. No simple correlation was found between wettability and bacterial behavior, revealing that proliferation is dependent on roughness, oxidation, and wettability. For the conditions selected in this study, a laser fluence of 5.64 J/cm(2) and a scanning interval of 10 mu m showcased the lowest amount of recovered bacteria after 30 min.