Mostrar el registro sencillo del ítem

dc.contributor.authorLopez-Cortes, A
dc.contributor.authorCabrera-Andrade, A
dc.contributor.authorVázquez Naya, José Manuel
dc.contributor.authorPAZOS SIERRA, ALEJANDRO
dc.contributor.authorGonzales-Diaz, H
dc.contributor.authorPaz-y-Mino, C
dc.contributor.authorGuerrero, S
dc.contributor.authorPerez-Castillo, Y
dc.contributor.authorTejera, E
dc.contributor.authorMUNTEANU -, CRISTIAN ROBERT
dc.date.accessioned2022-04-12T11:37:00Z
dc.date.available2022-04-12T11:37:00Z
dc.date.issued2020
dc.identifier.issn2045-2322
dc.identifier.otherhttps://www.ncbi.nlm.nih.gov/pubmed/32444848es
dc.identifier.urihttp://hdl.handle.net/20.500.11940/16447
dc.description.abstractBreast cancer (BC) is a heterogeneous disease where genomic alterations, protein expression deregulation, signaling pathway alterations, hormone disruption, ethnicity and environmental determinants are involved. Due to the complexity of BC, the prediction of proteins involved in this disease is a trending topic in drug design. This work is proposing accurate prediction classifier for BC proteins using six sets of protein sequence descriptors and 13 machine-learning methods. After using a univariate feature selection for the mix of five descriptor families, the best classifier was obtained using multilayer perceptron method (artificial neural network) and 300 features. The performance of the model is demonstrated by the area under the receiver operating characteristics (AUROC) of 0.980 +/- 0.0037, and accuracy of 0.936 +/- 0.0056 (3-fold cross-validation). Regarding the prediction of 4,504 cancer-associated proteins using this model, the best ranked cancer immunotherapy proteins related to BC were RPS27, SUPT4H1, CLPSL2, POLR2K, RPL38, AKT3, CDK3, RPS20, RASL11A and UBTD1; the best ranked metastasis driver proteins related to BC were S100A9, DDA1, TXN, PRNP, RPS27, S100A14, S100A7, MAPK1, AGR3 and NDUFA13; and the best ranked RNA-binding proteins related to BC were S100A9, TXN, RPS27L, RPS27, RPS27A, RPL38, MRPL54, PPAN, RPS20 and CSRP1. This powerful model predicts several BC-related proteins that should be deeply studied to find new biomarkers and better therapeutic targets. Scripts can be downloaded at https://github.com/muntisa/neural-networks-for-breast-cancer-proteins.en
dc.rightsAtribución 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.meshImmunotherapy*
dc.subject.meshBreast Neoplasms*
dc.subject.meshHumans*
dc.subject.meshNeoplasm Metastasis*
dc.subject.meshRNA*
dc.subject.meshGene Expression Profiling*
dc.titlePrediction of breast cancer proteins involved in immunotherapy, metastasis, and RNA-binding using molecular descriptors and artificial neural networksen
dc.typeJournal Articlees
dc.authorsophosLopez-Cortes, A Cabrera-Andrade, A Vazquez-Naya, JM Pazos, A Gonzales-Diaz, H Paz-y-Mino, C Guerrero, S Perez-Castillo, Y Tejera, E Munteanu, CR
dc.identifier.doi10.1038/s41598-020-65584-y
dc.identifier.pmid32444848
dc.identifier.sophos38692
dc.issue.number1es
dc.journal.titleScientific Reportses
dc.organizationServizo Galego de Saúde::Estrutura de Xestión Integrada (EOXI)::Instituto de Investigación Biomédica da Coruña (INIBIC)es
dc.rights.accessRightsopenAccess
dc.subject.decsARN*
dc.subject.decsinmunoterapia*
dc.subject.decsneoplasias de la mama*
dc.subject.decsmetástasis neoplásica*
dc.subject.decshumanos*
dc.subject.decsperfiles de expresión génica*
dc.subject.keywordINIBICes
dc.typefidesArtículo Originales
dc.typesophosArtículo Originales
dc.volume.number10es


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional