Mostrar el registro sencillo del ítem

dc.contributor.authorBarreiro, E
dc.contributor.authorMUNTEANU -, CRISTIAN ROBERT
dc.contributor.authorGestal Pose, Marcos
dc.contributor.authorRabunal, JR
dc.contributor.authorPAZOS SIERRA, ALEJANDRO
dc.contributor.authorGonzalez-Diaz, H
dc.contributor.authorDorado, J
dc.date.accessioned2022-04-12T11:37:15Z
dc.date.available2022-04-12T11:37:15Z
dc.date.issued2020
dc.identifier.issn2076-3417
dc.identifier.urihttp://hdl.handle.net/20.500.11940/16452
dc.description.abstractBrain Connectome Networks (BCNs) are defined by brain cortex regions (nodes) interacting with others by electrophysiological co-activation (edges). The experimental prediction of new interactions in BCNs represents a difficult task due to the large number of edges and the complex connectivity patterns. Fortunately, we can use another special type of networks to achieve this goal-Artificial Neural Networks (ANNs). Thus, ANNs could use node descriptors such as Shannon Entropies (Sh) to predict node connectivity for large datasets including complex systems such as BCN. However, the training of a high number of ANNs for BCNs is a time-consuming task. In this work, we propose the use of a method to automatically determine which ANN topology is more efficient for the BCN prediction. Since a network (ANN) is used to predict the connectivity in another network (BCN), this method was entitled Net-Net AutoML. The algorithm uses Sh descriptors for pairs of nodes in BCNs and for ANN predictors of BCNs. Therefore, it is able to predict the efficiency of new ANN topologies to predict BCNs. The current study used a set of 500,470 examples from 10 different ANNs to predict node connectivity in BCNs and 20 features. After testing five Machine Learning classifiers, the best classification model to predict the ability of an ANN to evaluate node interactions in BCNs was provided by Random Forest (mean test AUROC of 0.9991 +/- 0.0001, 10-fold cross-validation). Net-Net AutoML algorithms based on entropy descriptors may become a useful tool in the design of automatic expert systems to select ANN topologies for complex biological systems. The scripts and dataset for this project are available in an open GitHub repository.en
dc.rightsAtribución 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleNet-Net AutoML Selection of Artificial Neural Network Topology for Brain Connectome Predictionen
dc.typeJournal Articlees
dc.authorsophosBarreiro, E Munteanu, CR Gestal, M Rabunal, JR Pazos, A Gonzalez-Diaz, H Dorado, J
dc.identifier.doi10.3390/app10041308
dc.identifier.sophos38812
dc.issue.number4es
dc.journal.titleAPPLIED SCIENCES (BASEL)es
dc.organizationServizo Galego de Saúde::Estrutura de Xestión Integrada (EOXI)::Instituto de Investigación Biomédica da Coruña (INIBIC)es
dc.rights.accessRightsopenAccess
dc.subject.keywordINIBICes
dc.typefidesArtículo Originales
dc.typesophosArtículo Originales
dc.volume.number10es


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional