Mostrar el registro sencillo del ítem

dc.contributor.authorde Moura Ramos, Jose Joaquim
dc.contributor.authorRamos García, Lucía
dc.contributor.authorLizancos Vidal, Plácido Francisco
dc.contributor.authorCruz Sánchez, Nilfa Milena
dc.contributor.authorAbelairas López, Lucia
dc.contributor.authorCastro López, Eva
dc.contributor.authorNovo Buján, Jorge
dc.contributor.authorOrtega Hortas, Marcos
dc.date.accessioned2022-04-12T11:37:17Z
dc.date.available2022-04-12T11:37:17Z
dc.date.issued2020
dc.identifier.issn2169-3536
dc.identifier.otherhttps://www.ncbi.nlm.nih.gov/pubmed/34786295es
dc.identifier.urihttp://hdl.handle.net/20.500.11940/16453
dc.description.abstractThe recent human coronavirus disease (COVID-19) is a respiratory infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Given the effects of COVID-19 in pulmonary tissues, chest radiography imaging plays an important role in the screening, early detection, and monitoring of the suspected individuals. Hence, as the pandemic of COVID-19 progresses, there will be a greater reliance on the use of portable equipment for the acquisition of chest X-ray images due to its accessibility, widespread availability, and benefits regarding to infection control issues, minimizing the risk of cross-contamination. This work presents novel fully automatic approaches specifically tailored for the classification of chest X-ray images acquired by portable equipment into 3 different clinical categories: normal, pathological, and COVID-19. For this purpose, 3 complementary deep learning approaches based on a densely convolutional network architecture are herein presented. The joint response of all the approaches allows to enhance the differentiation between patients infected with COVID-19, patients with other diseases that manifest characteristics similar to COVID-19 and normal cases. The proposed approaches were validated over a dataset specifically retrieved for this research. Despite the poor quality of the chest X-ray images that is inherent to the nature of the portable equipment, the proposed approaches provided global accuracy values of 79.62%, 90.27% and 79.86%, respectively, allowing a reliable analysis of portable radiographs to facilitate the clinical decision-making process.en
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.titleDeep Convolutional Approaches for the Analysis of COVID-19 Using Chest X-Ray Images From Portable Devicesen
dc.typeJournal Articlees
dc.authorsophosDe Moura, J Garcia, LR Vidal, PFL Cruz, M Lopez, LA Lopez, EC Novo, J Ortega, M
dc.identifier.doi10.1109/ACCESS.2020.3033762
dc.identifier.pmidPMC8545263
dc.identifier.sophos38845
dc.journal.titleIEEE access : practical innovations, open solutions.es
dc.organizationServizo Galego de Saúde::Estrutura de Xestión Integrada (EOXI)::EOXI de A Coruña - Complexo Hospitalario Universitario de A Coruña::Radiodiagnósticoes
dc.organizationServizo Galego de Saúde::Estrutura de Xestión Integrada (EOXI)::Instituto de Investigación Biomédica da Coruña (INIBIC)es
dc.page.initial195594es
dc.page.final195607es
dc.rights.accessRightsopenAccess
dc.subject.keywordCHUACes
dc.subject.keywordINIBICes
dc.typefidesArtículo Originales
dc.typesophosArtículo Originales
dc.volume.number8.es


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Attribution-NonCommercial-NoDerivatives 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International