Mostrar el registro sencillo del ítem

dc.contributor.authorMOSQUERA ORGUEIRA, ADRIAN 
dc.contributor.authorDíaz Arias, José 
dc.contributor.authorCid López, Miguel
dc.contributor.authorPeleteiro Raindo, Andrés
dc.contributor.authorAntelo Rodríguez, Beatriz
dc.contributor.authorAliste Santos, Carlos 
dc.contributor.authorAlonso Vence, Natalia 
dc.contributor.authorBendaña López, Mª Ángeles
dc.contributor.authorAbuin Blanco, Aitor
dc.contributor.authorBAO PEREZ, LAURA 
dc.contributor.authorGonzález Pérez, Marta Sonia 
dc.contributor.authorPérez Encinas, Manuel Mateo 
dc.contributor.authorFraga Rodríguez, Máximo Francisco 
dc.contributor.authorBello López, José Luis 
dc.date.accessioned2022-04-26T07:43:56Z
dc.date.available2022-04-26T07:43:56Z
dc.date.issued2020
dc.identifier.issn1471-2407
dc.identifier.otherhttps://www.ncbi.nlm.nih.gov/pubmed/33087075es
dc.identifier.urihttp://hdl.handle.net/20.500.11940/16539
dc.description.abstractBACKGROUND: Thirty to forty percent of patients with Diffuse Large B-cell Lymphoma (DLBCL) have an adverse clinical evolution. The increased understanding of DLBCL biology has shed light on the clinical evolution of this pathology, leading to the discovery of prognostic factors based on gene expression data, genomic rearrangements and mutational subgroups. Nevertheless, additional efforts are needed in order to enable survival predictions at the patient level. In this study we investigated new machine learning-based models of survival using transcriptomic and clinical data. METHODS: Gene expression profiling (GEP) of in 2 different publicly available retrospective DLBCL cohorts were analyzed. Cox regression and unsupervised clustering were performed in order to identify probes associated with overall survival on the largest cohort. Random forests were created to model survival using combinations of GEP data, COO classification and clinical information. Cross-validation was used to compare model results in the training set, and Harrel's concordance index (c-index) was used to assess model's predictability. Results were validated in an independent test set. RESULTS: Two hundred thirty-three and sixty-four patients were included in the training and test set, respectively. Initially we derived and validated a 4-gene expression clusterization that was independently associated with lower survival in 20% of patients. This pattern included the following genes: TNFRSF9, BIRC3, BCL2L1 and G3BP2. Thereafter, we applied machine-learning models to predict survival. A set of 102 genes was highly predictive of disease outcome, outperforming available clinical information and COO classification. The final best model integrated clinical information, COO classification, 4-gene-based clusterization and the expression levels of 50 individual genes (training set c-index, 0.8404, test set c-index, 0.7942). CONCLUSION: Our results indicate that DLBCL survival models based on the application of machine learning algorithms to gene expression and clinical data can largely outperform other important prognostic variables such as disease stage and COO. Head-to-head comparisons with other risk stratification models are needed to compare its usefulness.en
dc.rightsAtribución 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.meshSurvival Analysis*
dc.subject.meshMiddle Aged*
dc.subject.meshRNA-Binding Proteins*
dc.subject.meshSurvival*
dc.subject.meshGene Expression Profiling*
dc.subject.meshMicroarray Analysis*
dc.subject.meshComputational Biology*
dc.subject.meshHumans*
dc.subject.meshLymphoma*
dc.subject.meshGene Expression Regulation*
dc.subject.meshRetrospective Studies*
dc.subject.meshbcl-X Protein*
dc.subject.meshPrognosis*
dc.titleImproved personalized survival prediction of patients with diffuse large B-cell Lymphoma using gene expression profilingen
dc.typeJournal Articlees
dc.authorsophosMosquera Orgueira, A.;Díaz Arias, J.;Cid López, M.;Peleteiro Raíndo, A.;Antelo Rodríguez, B.;Aliste Santos, C.;Alonso Vence, N.;Bendaña López, Á;Abuín Blanco, A.;Bao Pérez, L.;González Pérez, M. S.;Pérez Encinas, M. M.;Fraga Rodríguez, M. F.;Bello López, J. L.
dc.identifier.doi10.1186/s12885-020-07492-y
dc.identifier.pmid33087075
dc.identifier.sophos39251
dc.issue.number1es
dc.journal.titleBMC CANCERes
dc.organizationServizo Galego de Saúde::Estrutura de Xestión Integrada (EOXI)::EOXI de Santiago de Compostela - Complexo Hospitalario Universitario de Santiago de Compostela::Anatomía Patolóxicaes
dc.organizationServizo Galego de Saúde::Estrutura de Xestión Integrada (EOXI)::EOXI de Santiago de Compostela - Complexo Hospitalario Universitario de Santiago de Compostela::Hematoloxía clínica||SERGAS::Área Sanitaria de Santiago de Compostela e Barbanza::IDIS.- Instituto de investigaciones sanitarias de Santiagoes
dc.organizationServizo Galego de Saúde::Estrutura de Xestión Integrada (EOXI)::Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS)es
dc.page.initial1017es
dc.rights.accessRightsopenAccess
dc.subject.decspronóstico*
dc.subject.decslinfoma*
dc.subject.decsanálisis por micromatrices*
dc.subject.decsestudios retrospectivos*
dc.subject.decsmediana edad*
dc.subject.decsanálisis de supervivencia*
dc.subject.decsregulación de la expresión génica*
dc.subject.decssupervivencia*
dc.subject.decsbiología computacional*
dc.subject.decsproteínas de unión al ARN*
dc.subject.decshumanos*
dc.subject.decsperfiles de expresión génica*
dc.subject.decsproteína bcl-X*
dc.subject.keywordCHUSes
dc.subject.keywordIDISes
dc.typefidesArtículo Originales
dc.typesophosArtículo Originales
dc.volume.number20es


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional