Mostrar el registro sencillo del ítem

dc.contributor.authorGonzalez-Castro, V.
dc.contributor.authorCernadas, E.
dc.contributor.authorHUELGA ZAPICO, EMILIO 
dc.contributor.authorFernandez-Delgado, M.
dc.contributor.authorPorto, J.
dc.contributor.authorAntúnez López, José Ramón 
dc.contributor.authorSouto Bayarri, José Miguel 
dc.date.accessioned2022-04-29T10:28:12Z
dc.date.available2022-04-29T10:28:12Z
dc.date.issued2020
dc.identifier.issn2076-3417
dc.identifier.urihttp://hdl.handle.net/20.500.11940/16635
dc.description.abstractIn this work, by using descriptive techniques, the characteristics of the texture of the CT (computed tomography) image of patients with colorectal cancer were extracted and, subsequently, classified in KRAS+ or KRAS-. This was accomplished by using different classifiers, such as Support Vector Machine (SVM), Grading Boosting Machine (GBM), Neural Networks (NNET), and Random Forest (RF). Texture analysis can provide a quantitative assessment of tumour heterogeneity by analysing both the distribution and relationship between the pixels in the image. The objective of this research is to demonstrate that CT-based Radiomics can predict the presence of mutation in the KRAS gene in colorectal cancer. This is a retrospective study, with 47 patients from the University Hospital, with a confirmatory pathological analysis of KRAS mutation. The highest accuracy and kappa achieved were 83% and 64.7%, respectively, with a sensitivity of 88.9% and a specificity of 75.0%, achieved by the NNET classifier using the texture feature vectors combining wavelet transform and Haralick coefficients. The fact of being able to identify the genetic expression of a tumour without having to perform either a biopsy or a genetic test is a great advantage, because it prevents invasive procedures that involve complications and may present biases in the sample. As well, it leads towards a more personalized and effective treatment.en
dc.rightsAtribución 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleCT Radiomics in Colorectal Cancer: Detection of KRAS Mutation Using Texture Analysis and Machine Learningen
dc.typeJournal Articlees
dc.authorsophosGonzalez-Castro, V.;Cernadas, E.;Huelga, E.;Fernandez-Delgado, M.;Porto, J.;Antunez, J. R.;Souto-Bayarri, M.
dc.identifier.doi10.3390/app10186214
dc.identifier.sophos39726
dc.issue.number18es
dc.journal.titleAPPLIED SCIENCES (BASEL)es
dc.organizationServizo Galego de Saúde::Estrutura de Xestión Integrada (EOXI)::EOXI de Santiago de Compostela - Complexo Hospitalario Universitario de Santiago de Compostela::Anatomía Patolóxicaes
dc.organizationServizo Galego de Saúde::Estrutura de Xestión Integrada (EOXI)::EOXI de Santiago de Compostela - Complexo Hospitalario Universitario de Santiago de Compostela::Radiodiagnósticoes
dc.page.initial6214es
dc.rights.accessRightsopenAccess
dc.subject.keywordCHUSes
dc.typefidesArtículo Originales
dc.typesophosArtículo Originales
dc.volume.number10es


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional